Kazhdan-Lusztig polynomials

Arun Ram University of Wisconsin-Madison 480 Lincoln Drive Madison, WI 53706 ram@math.wisc.edu

1 Kazhdan-Lusztig polynomials

The *Iwahori-Hecke* algebra is the algebra over $\mathbb{Z}[q]$ given by generators $T_w, w \in W$ and relations

$$T_{s_i}T_w = \begin{cases} T_{s_iw}, & \text{if } s_iw > w, \\ qT_{s_iw} + (q-1)T_w, & \text{if } s_iw < w. \end{cases}$$

The bar involution on H is the \mathbb{Z} -algebra involution given by

$$\overline{q} = q^{-1}$$
 and $\overline{T_w} = T_{w^{-1}}^{-1}$

for $w \in W$. The Kazhdan-Lusztig basis of H is the basis $\{C_w \mid w \in W\}$ given by

(a) $\overline{C_w} = C_w$, and (b) $C_w = T_w + \sum_{v \le w} p_{vw}(q) T_v$, where $p_{vw}(q) \in q\mathbb{Z}[q]$.

Proposition 1. Let W be the dihedral group of order 2m. For all $v \leq w$,

$$p_{vw}(q) = 1.$$

Proof. We will show that

$$C_w = q^{-\ell(w)/2} \left(\sum_{v \le w} T_v \right).$$

If $s_1 w > w$ so that $w = s_2 s_1 s_2 s_1 \cdots$ then

$$\begin{split} C_{s_1}C_w &= q^{-\ell(w)/2}q^{-1/2} \left(\sum_{v \le w} T_v + sum_{v \le s_1w, s_1v < v} T_v + (q-1) \sum_{v < w, s_1v < v} T_v + q \sum_{v < w, s_2v < v} T_v \right) \\ &= q^{-\ell(w)/2}q^{-1/2} \left(\sum_{v \le s_1w, s_2v < v} T_v + \sum_{v < w, s_1v < v} T_v + \sum_{v \le s_w, s_1v < v} T_v - \sum_{v < w, s_1v < v} T_v + q \sum_{v \le s_2w} T_v \right) \\ &= C_{s_1v} + q^{-\ell(w)/2}q^{1/2} \left(\sum_{v \le s_2w} T_v \right) \\ &= C_{s_1w} + C_{s_2w}, \end{split}$$

and, if $s_1w < w$ so that $w = s_1s_2s_1s_2\cdots$ then let $w' = s_1w$ and $w'' = s_2s_1w$ so that

$$C_{s_1}C_w = C_{s_1}C_{s_1w'} = C_{s_1}(C_{s_1}C_{w'} - C_{s_2w'})$$

= $C_{s_1}(C_{s_1}C_{w'} - C_{w''}) = (q^{1/2} + q^{-1/2})C_{s_1}C_{w'} - C_{s_1}C_{w''}$
= $(q^{1/2} + q^{-1/2})C_{s_1}C_{w'} - (q^{1/2} + q^{-1/2})C_{w''}$, by induction,
= $(q^{1/2} + q^{-1/2})(c_{s_1}C_{w'} - C_{w''}) = (q^{1/2} + q^{-1/2})C_w$.

In the first case, $\ell(s_2w) < \ell(w)$ and so, by induction, $C_{s_1w} = C_{s_1}C_w - C_{s_2w}$ is bar invariant. \Box

References

[Cu1] Curtis, C. "Representations of Hecke algebras." Astérisque 9 (1988): 13-60.