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1 Hopf algebras

Let K be a commutative ring. A wector space over K is a free K-module. Unless otherwise
specified all maps between vector spaces over K are assumed to be K-linear and, if V' is a vector
space over K, then id: V' — V denotes the identity map from V to V.

An algebra over K is a vector space over K with a multiplication and an identity element
1 € A such that

(a) m is associative, i.e. (ajaz)as = aj(agas), for all aj,as, a3z € A, and
(b) la=al =a, forall a€ A.

Equivalently, an algebra over K is a vector space A over K with a multiplication m: AQ A — A
and a unit t: K — A such that

(a) m is associative, i.e. m(m ®id) = m(id ® m), and
(b) (unit condition) m(r®id) =m(id ®¢) = id.

The relationship between the identity 1 € A and the unit ¢: K — A is ¢(1) = 1.
Let A be an algebra over K. An A-module is a vector space M over K with an A-action

A M — M

such that (araz)m = aj(agm), and 1m =m,
akm +—— am

for all a;,a0 € A and m € M.
Let M and N be A-modules. An A-module morphism from M to N is a map ¢: M — N
such that
p(am) = ap(m), forallae Aand m e M.

The set of A-module morphisms from M to N is denoted Hom 4 (M, N).
A Hopf algebra is a vector space A over K with

a multiplication, m: AQ A — A,
a comultiplication, A:A— AR A,
a unit, 1 K— A,

a counit, e: A— K,

an antipode, S:A— A,

such that



1) m is associative, m(id ® m) = m(m ®1id),

2) A is coassociative, (id ® A)A = (A®1id)A,

3) (unit condition), m(id®:) =m( ®id) =1id,

(
([d®e)A = (e ®id)A =1id,
5) A is an algebra homomorphism, Am = (m®@m)(id® 7 ®id)(A @ A),

6) € is an algebra homomorphism, em =¢e® ¢,

(1)

(2)

3)

(4) (counit condition),
(5)

(6)

(7) (antipode condition), pu(id® S)A = u(S ®@id)A =
In condition (5) the algebra structure on A ® A is given by

7 ARA — AQA

b d) = bd, for a,b,c,d e A, d
(a®@b)(c®d)=ac® or a,b,c an L4 o ay®ar
In condition (6) we have identified the vector space K ® K with K. Since
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the antipode S: A — A is an antihomomorphism
S(araz) = S(a2)S(ay), for all a1, a9 € A.

Let A be a Hopf algebra over K. If a € A write

Ala) =3 am) ®ag)

a

to express A(a) as an element of A ® A. This notation is called Sweedler notation and is a
standard notation for working with Hopf algebras. It should be bothersome, it is simply a way
to write A(a) so that it looks like an element of A® A without having to go through the rigmarole
of actually choosing a basis in A.

For A-modules M, N and P, define the tensor product to be the A-module M ® N with
A-action given by

a(m®@mn) = A(a)(m ®@n) Za(l)m@)a if A(a Za ® a(2),

the trivial module 1 = K- 1, with A-action given by
a-1=c¢(a)-1,
and the dual module M* = Homg (M, K) with A-action given by
(ap)(m) = (S(a)m),  for p € M*, mem,

The definition of a Hopf algebra is exactly designed sot that M ® N, K. and M* are well defined

A-modules and the maps
(M@N)@P — M®(N®P)
menQp — menp



Ml — M 1M — M
and
m1l — m 19om — m

and
1 — MQM*

MM — 1 4
and 1 +— Zei@)ez (1.1)

mee = p(m)

are A-module homomorphisms. The sum in (77?) is over a K-basis {¢;} of M and we only
consider this map when this sum exists. CHECK on and REMARK on the order of M and M*
in the tensor products.
Let A be a Hopf algebra. The vector space A is an A-module where the action of A on A is
given by
ARA — A

a®b Z 1)bS(a): ~ Where  Ala) = > ey ®ag.

The linear transformation of A determined by the action of an element a € A is denoted ad,.
Thus,

ada(b) = a)bS(a@),  forallbe A

a

Let M be an A-module and let p: A — End(M) be the corresponding representation of A, i.e.
the map
p: A — End(M)
a +—  pla)

~

where p(a) is the linear transformation of M determined by the action of a. Note that End(M) =
M ® M* as a vector space. On the other hand M ® M* is an A-module. The definition of the
adjoint action is exactly designed so that the composite map

p: A—End(M)= M e M* is an A-module homomorphism.

2 Quasitriangular Hopf algebras

Let A= (A,m,A,¢e,.,S) be a Hopf algebra and let 7 be the K linear map

T AQRA — A®A

. Let AP = TA
a®b — b®a

so that, if a € A and

Aa) = Z amy @ a), then A°P(a Z a@) @ ag (2.1)
a
Then (A, m, A%, 1,e,57 1) is a Hopf algebra.
The map 7: A® A — A® A is an algebra automorphism of A ® A (the algebra structure on
A® Ais as gievn in (777)) and the following diagram commutes

A L ApA
fﬂ AgA

Sometimes we are lucky and we can replace 7 by an inner automorphism.



Let U be a Hopf algebra with an invertible element
ReU®U such that RA(a)R™' = A°(a), (2.2)

for all @ € U. The pair (U, R) is a quasitriangular Hopf algebra if RA(a)R™ = A°P(a), for all
a €U and
(A®id)(R) =R¥PR*® and (id® A)(R) = RPBR™. (2.3)

where, if R = > b; ® b°, then
Riz=) b@b®@l, Riz=)» b;®l®b, and Rayg=)» 1®b @b

The identities in (?77) relate the R-matrix to coproduct and the relations between the R matrix
and the counit and antipode are given by

(e ®id)(R) =1 = (id®)(R),

(S®id)R) = ([doSHR)=RL and (S®S)R)=R. 20
For any two U modules M and N, the map
. M®N
Ryn: M®N — No®M %
men +—— me®az’m ]\.7/®M
is a U module isomorphism since
Ryn(a(m®n)) = Ryn(A(a)(m ®@n)) = cRA(a)(m @ n) (2.5)

= 0A%(a)oo ' R(m ®n) = Ala)Ryrn(m @ n)

In order to be consistent with the graphical calculus the operators Rysy should be written on
the right.
For Upg modules M and N and a U-module isomorphism 73;: M — M,

M®N M®N
TMJ
(2.6)
f >
N®M N®M
Ryun(idy @ ) = (ty @ idy) Ry,

and the relations in (77?) imply that if M, N and P are U-modules then

M@ NP M®N®P
M® (N®P) P J (M@N))@P P,
'r\ - f % - S (2.7)
(N®@P) @ M P® (M ®N) 'Y
NPM PRMeN
Ry neop = (Ryn ®idp)(idy @ Rasp) Ruen.p = (idy @ Ryp)(Ryp ®idy),



as operators on M ® N ® P. The relations (2.9) and (2.10) together imply the braid relation

®}f @f ® (ij
_ S
S ( (2.8)
'd '4
PRNM PRINRQM
(Run ®idp)(idy ® Ryp)(Rvp ®idy) = (idy @ Ryp)(Rup @ idy)(idp ® Run),

3 The quantum double D(A)

In general it can be very difficult to find quasitriangular Hopf algebras, especially ones where
the element R is different from 1 ® 1. The construction in (77?) below says that, given a Hopf
algebra A we can sort of paste it and its dual A* together to get a quasitriangular Hopf algebra
D(A) and that the R for this new quasitriangular Hopf algebra is both a natural one and is
nontrivial.

Let A= (A,m,A,e,S) be a Hopf algebra over K. Let A* = Homg (A, K) be the dual of
A. There is a natural bilinear pairing (,): A* ® A — K between A and A* given by

(o, a) = ala), for all « € A* and a € A.
Extend this notation so that if a1, as € A* and a1, as € A then
(a1 ® g, a1 ® ag) = (a1, a1) (2, az).

We make A* into a Hopf algebra, which is denoted A*“°°P by defining a multiplication and a
comultiplication A on A* via the equations

(g, a) = (0 ® az, A(a))  and (A (@), a1 @ az) = (@, araz),
for all o, 1, 9 € A* and a,ay,as € A. The definition of AP is in (4.1).
(a) The identity in A*°°P is the counit e: A — K.
(b) The counit of A*°°P is the map

. *
R where 1 is the identity in A.
a +— afl)

(c) The antipode of A*®°°P is given by the identity (S(«),a) = (a, S~!(a)), for all & € A* and
all a € A.

We want to paste the algebras A and A*°°°P together in order to make a quasitriangular
Hopf algebra D(A). There are three main steps

(1) We paste A and A*°°P together by letting
D(A) = A® AP, (3.1)

Write elements of D(A) as a« instead of as a ® a.



(2) We want the multiplication in D(A) to reflect the multiplication in A and the multiplication
in A*°°P_ Similarly for the comultiplication.

(3) We want the R-matrix to be
R=> bl

where {b;} is a basis of A and {b'} is the dual basis in A*.

The condition in (2) determines the comultiplication in D(A),

A(aa) = Aa)A(a) = Za(l)a(l) ® a2)02),

a,o

where A(a) = >, aq) ® a@) and A(a) = >, aq) ® o). The condition in (2) doesn’t quite
determine the multiplication in D(A). We need to be able to expand products like (a1a1)(azaz).
If we knew

arag = Z b;B;, for some elements 3; € A*°°P and b; € A,
J

then we would have

(a1a1)(agaz) = Z(albj)(ﬁj%)

which is a well defined element of D(A). Miraculously, the condition in (3) and the equation
RA(a)R™ = A°P(a), for all a € A,

force that if @ € A*°°P and a € A then, in D(A),
aa = (a@), S aw))eE) a@)a@ae, — and

ac =Y {aq) o)) o), S~ ag))ae)ae),

a,a

where, if A is the comultiplication in D(A),

(A (039 1d)A(a) = Z a(1) X a(2) (039 a(3), and (A X 1d)A(a) = Z 1) X Q(2) X Q(3)-

a e}

These relations completely determine the multiplication in D(A). This construction is sum-
marised in the following theorem.

Theorem 3.1. Let A be a (finite dimensional) Hopf algebra over K and let A*°°P be the Hopf
algebra A* = Homg (A, K) except with opposite comultiplication. Then there exists a unique
quasitriangular Hopf algebra (D(A),R) given by

(1) The K-linear map
A A* — D(A)

aRa +—— ax
is bijective.

(2) D(A) contains A and A*°°P as Hopf subalgebras.



(3) The element R € D(A) ® D(A) is given by
R=> bl

where {b;} is a basis of A and {b'} is the dual basis in A*°°P.

In condition (2) of the theorem, A is identified with the image of A ® 1 under the map in
(1) and A*°°P is identified with the image of 1 ® A*“°°P under the map in (1).
The following proposition constucts an ad-invariant bilinear form on D(A).

Proposition 3.2. Let A be a Hopf algebra. The bilinear form on the quantum double D(A) of
A which is defined by

(ac,bB) = (B3, S(a)){a, STL(b)), forall a,b € A and all a, B € A*°°P,

satisfies
(ada(2),y) = (z,ads@y(y))  and  (y,z) = (2,5%(y)),
for all u,z,y € D(A).

4 The Casimir

There is also a quantum Casimir element e~y in the center of U and, for a U module M we
define

C M M ¥
M- — C
m +— (e "Pu)m I M

M

The elements R and e~ u satisfy relations (see [LR, (2.1-2.12)]) which imply that,
Cuen = (RunRym) H(Cu @ Cy). (4.1)

If M is a U module generated by a highest weight vector v™ of weight A then, by [Dr, Prop.

3.2,

Cy = q_<>")‘+2p>idM. (4.2)

Note that (A, A\+2p) = (A +p, A+ p) — (p, p) are the eigenvalues of the classical Casimir operator
[Dx, 7.8.5]. If M is a finite dimensional Uyg module then M is a direct sum of the irreducible
modules L(A\), A € P, and
CM — @ qf()\,/\+2p>P)\7
AEPT

where Py: M — M is the projection onto M in M. From the relation (???) it follows that
if M = L(pn), N = L(v) are finite dimensional irreducible Uyg modules then Ry n Ry acts on
the A isotypic component L()\)@Cﬁv of the decomposition

L(p) ® L(v) = EB L(\)®¢hw by the constant — gAA 2RI (mnd20)= (v +20), (4.3)
A



5 Inner products

Let A be a Hopf algebra with antipode S and let M be an A-module. A bilinear form

(): MeM — K

men  —  (m,n) is invariant if (amy,ma) = (my, S(a)ma),

for all a € A, my,my € M. This is equivalent to the condition that the map (,) is a homomor-
phism of A-module when we identify K with the trivial A-module 1.
A bilinear form

(L) A A—K is ad-invariant if (ada(b1),b2) = (b1, adg(q)(b2)),

for all by,bs. € A. In other words, the bilinear form is invariant if we view A as an A-module
via the adjoint action.

6 Examples of Hopf algebras

7 Spectral subalgebras

Then
Co={pe€ A" | p(zy) = pu(yz)} is a commutative algebra,

since, if £1,¢5 € Cy and a € A then
(bo1)(a) = (1 ® £2)A°P(a) = ({1 ® £2)RA(a)R ™!
= (l; @ L)A(@)RIR = (b1 ® o) A(a) = (£14:)(a),
where the third equality uses the definition of Cj.

If (A, R) is a quasitriangular Hopf algebra then R satisfies the quantum Yang-Bazter equation
(QYBE),

RUERBR® = R12(A®id)(R) = (A ® id)(R)R!? = RBRBR!Z (7.1)
Since
R=(e®id®id)(A®id)(R) = (e ®id ® id)RPR® = (¢ ®id)(R) - R, and
R=(d®id®e)(id®A)(R) = (d®id® e)R¥PR* = (ild®¢)(R) - R,
and so

(e®id)(R) =1 and (id®e)(R) =1. (7.2)
Then, since
R(S®id)(R) = (m®id)(id®S®id)(R¥R*?) = (m®id)(id®S®id)(A®id)(R) = (¢®id)(R) = 1,
it follows that

(S®id)(R) =R~ (7.3)
Applying this to the pair (4°P, R?!) gives (S~! @ id)(R?!) = (R?')°P, and so
(ido STHR)=R (7.4)

Then
(S®S)(R)=(d®S)(S®id)(R) = (i[d®S)(R!) =([do S)(ide ST'(R)=R.  (7.5)

The map ¢: C — Z(A) in the following proposition is an analogue of the Harish-Chandra
homomorphism.



Proposition 7.1. Let (A, R) be a quasitriangular Hopf algebra. Then
C={\e A" | Mzy) = M\yS*(z))} is a commutative algebra

and the map
¢p: C — Z(A)
¢ — (id®l)(RaR)

18 a well defined algebra homomorphism.

Proof. 1f £1,05 € A* and a € A then

(fal1)(a) = A%(a) = (01 ® £2)(RA(a)R™)

A(a)R™ 1(52 ® 5?)(R)), by definition of C,

and hence C' is a commutative algebra.
Let a € A. First note that

a®1=(id®e)A) = (id @ m)(id ® S~ @ id)(id @ A®)A(a)
= am)® S5 Hag)ae = > (105 o)) aqr) @ aqz)

=Y (1©5 ' (am)Aa),

since S~! is the antipode of A°, and
a®1l=>G1d®e)A(a) = (id @m)(id®id® 5)(id ® A)A(a)
= Za ® a@)S(ag) = (aan ® aqzy)(1 @ S(aw))

a

—ZA )(1® S(ag))).

Then, since
R*RA(a) = RMAP(a)R = A(a)RHR,

R?'R) = (id ® £)((a ® )R R'?)

d (e S_l(a(z)))A(a(l))R21R>

ap(f) = a(id ® ¢)

—~

= (id® ¢

a

= (id® /) Z A(a(l))R21R(1 ® S(a(g))> , by definition of C,

a

= (id® )

N N/ N

RQlRZA (1L ® S(a ()))>

= (([dRHR*"R(a®1) = (id® £)(R*'R)a = ¢({)a,



and so ¢(¢) € Z(A). Since
P(L14) = (Id ® £1£2)(R*'R) = (id ® £1 @ £o)((id ® A)(R?*'R))
(id @ 6 @ L)(RFRIRPR) = (id @ 01)(R* (4(f2) @ )R'?)
= (id @ () (R¥R(¢(f2) @ 1)), since ¢(f2) € Z(A),
= ¢(l1)9(£2),

and so ¢ is a homomorphism. O

8 RTT realizations

Let A be a Hopf algebra with an invertible element

R = Z a, @b, €ARA such that RA(a)R™ = A°(a),

for a € A. The dual A* of A is a Hopf algebra. Fix a positive integer n and an index set T. Let
{0+ A= M,(C) | xeT}
be a set of representations of A. Their matrix entries
pU A — C are elements of A*.

On the pf‘j, the coproduct A: A* — A* ® A* has values

n

pz] Z Pik @ Iok]? since pf\] (U1UQ) = Z pz)\k(ul)pég (u2)7
k=1

for ui,us € A. Let
RO p)=(p*@p")(R) and  T(A) = (o),
so that T'(\) is a matrix in M, (A*). Then
T\ @id =Y, 5 135(Eij @ Egg), id®@T (1) =32 i 1 tre(Bii @ Ege), and
1) = Z P25 (ar) pliy(br) (Eij @ Eg).
1,5,k ,¢

Since

RO ) (TN @id)(id @ T(n) = Y pi (a0, (be)th, (Bij @ Bre),  and

1]k€

(id ® T(w)(T(\) ® id)R Z th st o (as) pls(bs),

1,7,k€
a,B

the equation

R w)(TA) ®@id)(id @ T(p)) = (id © T(u))(T(A) @ id)R(A, p)

10



is a concise way of encoding the relations

(Z piv(ar)pl, (br pmpyg> () = > pi(an) o, (0r) s (o) Py (a2)

I,y,a
= Z P?j(arau))f’l;:g(bra(g))
= (py ® Pl (RA(a)) = (p}; @ pley) (AP (a)R)
= szg 2)as p]d(a(l)b )

= sza pa] as)pkﬁ( (1 ))pge(bs)

Z Pzgpg\apéj (GS)PgZ(bS) (a)
a7ﬁ

which are satisfied by the pf‘j in A*.
Let B be the Hopf algebra given by

generators . 1<4,57<n, A€ T,
and relations

R p)(T(A) ®@id)(id @ T(p) = (id @ T(p))(T(A) @ id)R(A, p)

with comultiplication given by

A A A
A(ty) = )t @t
k=1
The the map
B — A
A A
tz’j P

is a Hopf algebra homomorphism.
We really want a map B — A, not B — A*. But it is "easy” to make maps A* — A. For
example, one can construct a map A* — A by

I — (id®1)(R) or 1— (id®1)(Ry') or I — (id®1)(RaiR).

In the case of Yangian or U,(g), the composition ® : B — A* — A is surjective and ker ® is
generated by the elments of the center of B.
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