
The wreath products GH,1,k = H o Sk

Arun Ram
Department of Mathematics

University of Wisconsin
Madison, WI 53706
ram@math.wisc.edu

1 The groups GH,1,n

The semidirect product GH,1,n = Hn o Sn is the group of permutations with edges colored by
elements of h. The product is the usual product on permutations with the convention that
elements of H slide along edges and multiply when they collide. The group GH,1,n is generated
by the elements
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, for 1 ≤ i ≤ n, h ∈ H,
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..............................................................................................................................................................

..................................................................................................................................................... •
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, for 1 ≤ i < j ≤ n,

and the subgroup Hn consists of the elements

th = t1(h1)t2(h2) · · · tn(hn), where h = (h1, . . . , hn), hi ∈ H.

The operation in the semidirect product in the group

GH,1,n = Hn o Sn = {thw | h ∈ Hn, w ∈ Sn}

is determined by the product in Sn, and

thtk = thk, for h, k ∈ Hn, and
wth = twhw, where w(h1, . . . , hn) = (hw(1), . . . , hw(n)),

(1.1)

for w ∈ Sn and h = (h1, . . . , hn) ∈ Hn.
Let H∗ be an index set for the conjugacy classes of H and let Hα, α ∈ H∗, be a set of

conjugacy class representatives. Let

G∗
H,1,n = {µ = (µ(α))α∈H∗ | µ has n boxes total},

be the set of H∗-multipartitions, tuples of partitions with components indexed by the elements
of H∗, such that the total number of boxes in the multipartition is n. Then the elements

γµ = PICTURE, for µ ∈ G∗
H,1,n,
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are a set of conjugacy class representatives for GH,1,n. The centralizer of γµ in GH,1,n is

ZG(γµ) =???

with
Card(ZG(µ)) =???.

Each element of G(r, p, n) is conjugate by elements of Sn to a disjoint product of cycles of
the form

ξλi
i · · · ξλk

k (i, i + 1, . . . , k).

By conjugating this cycle by ξ−c
i ξλi

i+1ξ
λi+λi+1

i+2 · · · ξλi+···+λk−1

k ∈ G(r, r, n), we have

ξ−c
i ξc+λi+···+λk

k (i, . . . , k), where c = (k − i)λi + (k − i− 1)λi+1 + · · ·+ λk−1.

If i1, i2, . . . , i` denote the minimal indices of the cycles and c1, . . . , c` are the numbers c for
the various cycles, then after conjugating by ξc1

i1
· · · ξc`−1

i`−1
ξ
−(c1+···+c`−1)
i`

∈ G(r, r, n), each cycle
becomes

ξλi+···+λk
k (i, . . . , k) except the last, which is ξ−a

i`
ξb
n(i`, . . . , n),

where a = c1 + · · · + c` and b = a + λi` + · · · + λn. If k = n − i` + 1 is the length of the last
cycle, then conjugating the last cycle by ξk−1

i`
ξ−1
i`+1 · · · ξ−1

n ∈ G(r, r, n) gives

ξ−a+k
i`

ξb−k
n (i`, . . . , n).

If we conjugate the last cycle by ξp
i`
∈ G(r, p, n), we have

ξ−a+p
i`

ξb−p
n (i`, . . . , n).

In summary, any element g of G(r, p, n) is conjugate to a product of disjoint cycles where each
cycle is of the form

ξa
k(i, i + 1, . . . , k), 0 ≤ a ≤ r − 1,

except possibly the last cycle, which is of the form

ξa
i`
ξb
n(i`, i` + 1, . . . , n), with 0 ≤ a ≤ gcd(p, k)− 1,

where k = n− i` + 1 is the length of the last cycle.
Let ZG(r,p,n)(g) = {h ∈ G(r, p, n) | hg = gh} denote the centralizer of g ∈ G(r, p, n). Since

G(r, p, n) is a subgroup of G(r, 1, n),

ZG(r,p,n)(g) = ZG(r,1,n)(g) ∩G(r, p, n),

for any element g ∈ G(r, p, n). Suppose that g is an element of G(r, 1, n) which is a product of
disjoint cycles of the form ξa

k(i, . . . , k) and that h ∈ G(r, 1, n) commutes with g. Conjugating g
by h effects some combination of the following operations on the cycles of g:

(a) permuting cycles of the same type, ξa
k(i, . . . , k) and ξb

m(j, . . . , m) with b = a and k − i =
m− j,

(b) conjugating a single cycle ξa
k(i, . . . , k) by powers of itself, and

(c) conjugating a single cycle ξa
k(i, . . . , k) by ξb

i · · · ξb
k, for any 0 ≤ b ≤ r − 1.
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Furthermore, the elements of G(r, 1, n) which commute with g are determined by how they
“rearrange” the cycles of g and a count (see [Mac, p. 170]) of the number of such operations
shows that if g ∈ G(r, 1, n) and ma,k is the number of cycles of type ξa

i+k(i, i + 1, . . . , i + k) for
g, then

Card(ZG(r,1,n)(g)) =
∏
a,k

(ma,k! · kma,k · r) . (1.2)

Let Ĥ be an index set for the irreducible H modules. If γ ∈ Ĥ then let Ĥγ be an index set
for a basis of Hγ so that

Hγ has basis {mP | P ∈ Ĥγ}, with H-action h mP =
∑

Q∈Ĥγ

hQP mQ,

for appropriate constants hQP ∈ C.
Let λ = (λ(α))α∈Ĥ be a Ĥ-tuple of partitions with n boxes total. A standard tableau of shape

λ is a filling of the boxes of λ with 1, 2, . . . , n such that, in each partition λ(α),

(a) the rows increase from left to right,

(b) the columns increase from top to bottom.

The rows and columns of each partition λ(α) are numbered as for matrices and

T (i) is the box containing i in T ,
c(b) = j − i, if b is in position (i, j), and

s(b) = α, if b is in λ(α),

The numbers c(b) and s(b) are the content and the Ĥ-type of the box b, respectively.

PICTURE

Theorem 1.1. Use notations as in (???) and (???).

(a) The irreducible representations Gλ
n of the group GH,1,n = Hn n Sn are indexed by the set

Ĝn = {λ = (λ(α))α∈Ĥ | λ has n-boxes total},

of Ĥ multipartitions with n boxes total.

(b) dimGλ
n =

∑
α∈Ĥ

dim(Hα)dim(Sλ(α)

n ).

(c) The irreducible GH,1,n module

Gλ
r,1,n has basis {(mP (1) ⊗ · · · ⊗mP (n))⊗ vT | T ∈ Ŝλ, P (i) ∈ Ĥs(T (i))}

with GH,1,n action given by

ti(h)(mP (1) ⊗ · · · ⊗mP (n) ⊗ vT ) = mP (1) ⊗ · · · ⊗ hmP (i) ⊗ · · · ⊗mP (n) ⊗ vT ,

si(mP (1) ⊗ · · · ⊗mP (n) ⊗ vT ) = si(mP (1) ⊗ · · · ⊗mP (n))⊗ sivT ,

where
sivT = (si)TT vT + (1 + (si)TT ) vsiT ,
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with

(si)TT =


1

c(T (i))− c(T (i− 1))
, if s(T (i)) = s(T (i− 1)),

0, if s(T (i)) 6= s(T (i− 1)),

c(T (i)) is the content of the box containing i in T ,

siT is the same as T except that i and i− 1 are switched,

vsiT = 0 if siT is not standard.

Proof. The following argument determining the simple GH,1,n modules is often called Clifford
theory. Let Gλ be a simple GH,1,n = Hn o Sn module. Let Hγ be a simple Hn submodule of
Gλ. Then wHγ is another simple Hn submodule of Gλ and

Gλ =
∑

w∈Sn

wHγ ,

since the right hand side is an Hn o Sn submodule of Gλ. Let

Sγ = {w ∈ Sn | wHγ ∼= Hγ} = {w ∈ Sn | wγ = γ}.

Thus
Gλ =

∑
wi∈Sn/Sγ

wiN = IndHnoHn
HnoSγ

(N), where N =
∑

w∈Sγ

wHγ .

Then
N ∼= Hγ ⊗ Sλ

γ with action hw(m⊗ v) = hwm⊗ wm,

where Sλ
γ is a simple Sγ module. Since we are free to choose γ in its Sn orbit we may assume

that γ is of the form

γ = (γ1, . . . , γ1,︸ ︷︷ ︸
µ1 times

γ2, . . . , γ2︸ ︷︷ ︸
µ2 times

. . . , γ`, . . . , γ`︸ ︷︷ ︸
µ` times

) so that Sγ = Sµ1 × Sµ2 × · · · × Sµ`
,

where µ = (µ1, µ2, . . . , µ`) is a partition of n. An irreducible representation of Sγ is indexed by
a tuple of partitions, one partition for each γi that appears in γ, so that the total number of
boxes in the tuple of partitions is n.

Let us make this construction more explicit. Using the notation in (???), the simple Hn

modules are indexed by the set Ĥn and a simple Hn module

H(γ1,...,γn) has basis {mP (1) ⊗ · · ·mP (n) | P (i) ∈ Ĥγi}.

Then the action of Sn on Hn modules in (???) is given by

w(mP (1) ⊗ · · ·mP (n)) = mP (w(1)) ⊗ · · ·mP (w(n)) , for w ∈ Sn,

defines an action of Sn on the irreducible Hn modules. The resulting action of Sn on Ĥn is
given by

w(γ1, . . . , γn) = (γw(1), . . . , γw(n)).

Returning to the setup in equation (???),

wHγ = Hwγ , for w ∈ Sn.

(The fact that wHγ = Hwγ means that in this case the cocycles (factor sets) that appear in
Clifford theory are trivial.)
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The Casimir element is the sum of the elements in the conjugacy class of s12,

κn =
∑

1≤i<j≤n

∑
h∈H

ti(h)tj(h−1)sij ,

with notations as in (???).

Theorem 1.2.

(a) The Casimir element κn for GH,1,n is a central element of the group algebra of GH,1,n such
that

κn acts on Gλ
n by the constant

∑
b∈λ

c(b).

(b) Let H∗ be an index set for the conjugacy classes of H and let µ ∈ H∗. Let

z(µ) =
∑
h∈Cµ

n∑
i=1

ti(h),

where the sum is over all elements of H in the conjugacy class µ. Then z(µ) is an element of
the center of the group algebra of GH,1,n and

z(µ) acts on Gλ
n by the constant

∑
α∈Ĥ

χα
H(µ)

dim(Hα)
.

Proof.

1
|H|

∑
h∈H

hmQ ⊗ h−1mP =
∑

h,R,S

Aα
RQ(h)Aβ

SP (h−1)(mR ⊗mS)

=
∑
R,S

(mR ⊗mS)
∑
h∈H

Aα
RQ(h)Aβ

SP (h−1).

Define an element of Hom(Hα,Hβ),

ϕαβ
QS : Hα → Hβ, by ϕαβ

QS(mP ) = δQP mS .

Then as elements of Hom(Hα,Hβ),

g
∑
h∈H

hϕαβ
QSh−1 =

∑
h∈H

ghϕαβ
QS(gh)−1g,

and

Tr

(∑
h∈H

hϕαα
QSh−1

)
= Tr

(∑
h∈H

ϕαα
QS

)
= |H|δQS ,

and thus, by Schur’s lemma, ∑
h∈H

hϕαβ
QSh−1 =

|H|
dλ

δαβδQS · id
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where dα = dim(Hα). Thus

∑
h∈H

Aα
RQ(h)Aβ

SP (h−1). =

(∑
h∈H

Aα(h)ϕQSAβ(h−1)

)
RP

=
|H|
dα

δαβδQSδRP .

Hence
1
|H|

∑
h∈H

hmQ ⊗ h−1mP =
1
dα

δαβ(mP ⊗mQ)

(a) Let x1 = 0 and, for 2 ≤ k ≤ n let

xk =
∑
h∈H

∑
1≤i<k

ti(h)tk(h−1)sik so that x1 + x2 + · · ·+ xn = κn. (1.3)

Then
xk = skxksk +

∑
h∈H

tk−1(h)sktk−1(h−1). (1.4)

and

xk(mP ⊗ vT ) =

(
skxk−1sk +

∑
h∈H

sktk(h)tk−1(h−1)

)
(mP ⊗ vT )

= sk

(
c(T (k − 1))(sk)TT (skmP ⊗ vT ) + c(T (k))(1 + (sk)TT )(skmP ⊗ vskT )

+
∑
h∈H

tk−1(h−1)tk(h)(mP ⊗ vT )
)

= sk

(
c(T (k))sk(mP ⊗ vT ) + (c(T (k − 1))− c(T (k)))(sk)TT (mP ⊗ vT )

+
∑
h∈H

tk−1(h−1)tk(h)(mP ⊗ vT )
)

=

{
sk(c(T (k))skvT + ((−1) + 1)vT , if s(T (k)) = s(T (k − 1)),
sk(c(T (k))skvT + (0 + 0)vT , if s(T (k)) 6= s(T (k − 1)),

= c(T (k))vT .

(b) Since
∑

h∈Cµ
acts on Hα by the constant

χα
H(µ)

dim(Hα)

it follows that∑
h∈Cµ

ti(h)

 (mP ⊗ vT ) =
∑
h∈Cµ

(ti(h)mP ⊗ vT ) =
χ

(αi)
H (µ)

dim(H(αi))
(mP ⊗ vT ).

Part (b) of the theorem now follows by summing over i.

For example, if
H = Z/rZ, then Ĥ = {0, 1, 2, . . . , r − 1},
H = Z, then Ĥ = C∗,

H = C∗, then Ĥ = Z,

where, in the last case Ĥ indexes the rational representations of H = C∗.
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1.1 Characters of GH,1,n

Let µ ∈ G∗
n. Then ∣∣ZGn(µ)

∣∣ = ∏
β∈H∗

(∣∣ZSn

(
µ(β))

)∣∣ · ∣∣ZH(β)
∣∣`(µ(β))

)
.

Let H∗ be an index set for the conjugacy classes of H and, for each β ∈ H∗, let

x(β) = {x(β)
1 , x

(β)
2 , . . .} be a set of variables indexed by β,

and let
pµ(x) =

∏
β∈H∗

pµ(β)

(
x(β)

)
, for µ ∈ G∗

n,

so that pµ(x) is the product of power symmetric functions from each of the variable sets x(β).
Define a ”change of variables” from the x(β) variables, which are indexed by β ∈ H∗, to y(α)

variables indexed by α ∈ Ĥ, by setting

pr(y(α)) =
∑

β∈H∗

χα
H(β)pr

(
x(β)

)∣∣ZH(β)
∣∣ , for each α ∈ Ĥ, and each r ∈ Z>0.

Define
sλ(y) =

∏
α∈Ĥ

sλ(α)

(
y(α)

)
, for λ ∈ Ĝn.

Then

sλ(y) =
∑

µ∈Ĝ∗n

χλ
Gn

(µ)pµ(x)∣∣ZGn(µ)
∣∣ and pµ(x) =

∑
λ∈Ĝn

χλ
Gn

(µ)sλ(y),

for λ ∈ Ĝn and µ ∈ G∗
n.

2 The groups GH,H/K,n

Let H be a group. Assume that H is abelian so that there is a well defined map φ : GH,1,n → H
given by φ(thw) = h1 · · ·hn, for h = (h1, . . . hn) ∈ Hn and w ∈ Sn. Let K be a subgroup of H
and define a normal subgroup GH,H/K,n of GH,1,n by the exact sequence

{1} −→ GH,H/K,n −→ GH,1,n −→ H/K −→ {1}
thw 7−→ h1h2 · · ·hn.

Thus

GH,H/K,n = {thw | h1h2 · · ·hn ∈ K} with order |GK | = |H|n−1|K|n!.

Let H be an abelian group and let Ĥ be an index set for the simple H-modules. The dual
group is the set Ĥ with the operation induced by tensor product of H-modules. If H = C∗ then
the irreducible representations of H (as an algebraic group) are

Xk : C∗ −→ C∗

x 7−→ xk for k ∈ Z, and XkX` = Xk+`,
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so that Ĥ ∼= Z. If H = (C∗)n then Ĥ is a lattice,

Ĥ ∼= Zn, with XλXµ = Xλ+µ,

for λ, µ ∈ Zn. If H is a finite abelian group then

H ∼= Z/r1Z⊕ Z/r2Z⊕ · · · ⊕ Z/r`Z and Ĥ ∼= Z/r1Z⊕ Z/r2Z⊕ · · · ⊕ Z/r`Z,

a quotient of the lattice in (???), so that

Ĥ = {Xλ | λ = (λ1, . . . , λn) with λi ∈ Z/riZ}.

Let H be abelian and let Ĥ be the dual group of H. The group Ĥ acts on the group algebra
of Hn by algebra automorphisms,

Xλ : CHn −→ CHn

t(h1,...,hn) 7−→ Xλ(h1h2 · · ·hn)t(h1,...,hn)

and on the group algebra of GH,1,n = Hn o Sn by algebra automorphisms,

Xλ : CGH,1,n −→ CGH,1,n

t(h1,...,hn)w 7−→ Xλ(h1h2 · · ·hn)t(h1,...,hn)w

Let K̂ be a subgroup of Ĥ. Then the subalgebra of CGH,1,n fixed by K̂ is

(CGH,1,n)K̂ = span{t(h1,...,hn)w | Xλ(h1h2 · · ·hn) = 1, for all Xλ ∈ K̂}.

Then

(CGH,1,n)K̂ = span{t(h1,...,hn)w
∣∣∣ h1h2 · · ·hn ∈ K}

= CGH,H/K,n, where K =
⋂

λ∈K̂ ker(Xλ).

3 The groups Gr,p,n

The group GH,H/K,n is

denoted Gr,p,n if H is a cyclic group of order r and H/K is order p.

Note that p is not necessarily prime and p divides r. The group Gr,p,n can be realised as the
group of n× n matrices such that

(a) There is exactly one nonzero entry in each row and each column,

(b) The nonzero entries are rth roots of unity,

(c) The (r/p)th power of the product of the nonzero entries is 1.

Special cases of these groups are

(1) Gr,1,1, the cyclic group of order r,

(2) Gr,r,2, the dihedral group of order 2r,
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(3) G1,1,n = Sn, the symmetric group, or Weyl group of type A,

(4) G∞,1,n is the affine symmetric group or the affine Weyl group of type A,

(5) G2,1,n = WBn, the Weyl group of type Bn,

(6) G2,2,n = WDn, the Weyl group of type Dn,

All of these are subgroups of the group

N = (C∗)n n Sn of monomial matrices in GLn(C)

(the normalizer of the torus of diagonal matrices in GLn(C)).
Let Z/rZ = {0, 1, . . . , r − 1} and let ξ = e2πi/r. The groups Gr,p,n are complex reflection

groups (generated by reflections). The reflections in Gr,p,n are the elements

tki t
−k
j sij , and t`pi = t(0,...,0,`p,0,...0) =

• •

• •

.........................................................

.........................................................
· · ·

ξ`p

ith

• • •

• • •

.........................................................

.........................................................

.........................................................
· · ·

•

•

.........................................................
,

for ≤ i < j ≤ n, 0 ≤ k ≤ r − 1, and 0 ≤ ` ≤ (r/p)− 1.
Define

t1 =

ξ
• •

• •

.........................................................

.........................................................
· · ·

•

•

.........................................................
, s1 =

ξ ξ−1

• • • •

• • • •

....................................................................

....................................................................

.........................................................

.........................................................
· · ·

•

•

.........................................................
, and

si = (i− 1, i) =
• •

• •

.........................................................

.........................................................
· · ·

• • • •

• • • •

.........................................................

....................................................................

....................................................................

.........................................................
· · ·

•

•

.........................................................
, for 2 ≤ i ≤ n.

The group Gr,p,n has a presentation by generators tp1, s1, s2, . . . , sn and relations

(tp1)
r/p = 1 and s2

i = 1, 1 ≤ i ≤ n,

sisj = sjsi, for i, j ≥ 2 such that |i− j| > 1,
sisi+1si = si+1sisi+1, for 2 ≤ i ≤ n,
s1s3s1 = s3s1s3, and s1sj = sjs1, for j > 3,

tp1s2t
p
1s2 = s2t

p
1s2t

p
1, and sjt

p
1 = tp1sj , for j > 2,

tp1s1t
p
1s1 · · ·︸ ︷︷ ︸

2(r/p) factors

= s1t
p
1s1t

p
1 · · ·︸ ︷︷ ︸

2(r/p) factors

, and s1s2s1 · · ·︸ ︷︷ ︸
r factors

= s2s1s2 · · ·︸ ︷︷ ︸
r factors

,

For Gr,1,n the generator s1 is unnecessary and, for Gr,r,n the generator tr1 = 1 and is irrelevant.
Note that only the groups ???? can be generated by n reflections.

4 Representations of the groups GH,H/K,n

The irreducible representations of the group GH,1,n can be derived from Clifford theory or via
the tower

{1} ⊆ G 1
2

= G1 ⊆ G 3
2
⊆ G2 ⊆ G 5

2
⊆ G3 ⊆ · · · ,
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where
Gn = GH,1,n = Hn o Sn and Gn+ 1

2
= GH1,n ×GH,1,1,

so that Gn+ 1
2

is a “Levi subgroup” of Gn+1. The tower Ĝ has

vertices on level n: multipartitions λ = (λ(α))α∈Ĥ with n boxes total,

vertices on level n + 1
2 : pairs (λ, �α), where λ ∈ Ĝn, α ∈ Ĥ.

edges from level n to level n + 1
2 :

λ → (λ, �α) for each α ∈ Ĥ.

edges from level n + 1
2 to level n:

(µ,�α) → ν if ν is obtained from µ by adding a box to µ(α).

For each 0 ≤ m ≤ r − 1 the elements tmi , 1 ≤ i ≤ n, form a conjugacy class in G(r, 1, n)
and the elements tmi t−m

j (i, j), 1 ≤ i < j ≤ n, 0 ≤ m ≤ r − 1, form another conjugacy class in
G(r, 1, n). Thus the elements

zs(m) =
n∑

i=1

tmi , 0 ≤ m ≤ r − 1, and z` =
1
r

r−1∑
m=0

∑
1≤i<j≤n

tmi t−m
j (i, j),

are elements of Z(CG(r, 1, n)). So zs(m) and z` must act by a constant on any irreducible
representation Sλ of G(r, 1, n). Define x1 = 0,

xk =

 ∑
1≤i<j≤k
0≤`≤r−1

t`it
−`
j (i, j)

−

 ∑
1≤i<j≤k−1
0≤`≤r−1

t`it
−`
j (i, j)

 =
1
r

∑
1≤i<k, 0≤`≤r−1

t`it
−`
k (i, k), for 2 ≤ k ≤ n, and

yk =

(
k∑

i=1

ti

)
−

(
k−1∑
i=1

ti

)
= tk, for 1 ≤ k ≤ n.

Theorem 4.1. The elements x1, . . . , xn and y1, . . . , yn all commute with each other and the
action of these elements on the irreducible representation Sλ of G(r, 1, n) is given by

ykvT = s(T (k))vT and xkvT = c(T (k))vT ,

for all standard tableaux T .

Proof. The proof is by induction on k using the relations

xk = skxk−1sk +
r−1∑
`=0

y`
k−1sky

−`
k−1 and yk = skyk−1sk.

The base cases
x1vT = 0 = c(T (1))vT and y1vT = s(T (1))vT
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are immediate from the definitions. Then

ykvT = skyk−1sk

= sk (s(T (k − 1))(sk)TT vT + (1 + (sk)TT )s(T (k))vskT )
= sk (s(T (k))skvT + (s(T (k − 1))− s(T (k)))(sk)TT vT )
= s(T (k))vT + 0 = s(T (k))vT , and

xkvT =

(
skxk−1sk +

1
r

r−1∑
`=0

sky
−`
k−1y

`
k

)
vT

= sk

(
c(T (k − 1))(sk)TT vT + c(T (k))(1 + (sk)TT )vskT +

1
r

r−1∑
`=0

s(T (k − 1))−`s(T (k))`vT

)

= sk

(
c(T (k))skvT + (c(T (k − 1))− c(T (k)))(sk)TT vT +

1
r

r−1∑
`=0

(
s(T (k))−1s(T (k))

)`
vT

)

=

{
sk(c(T (k))skvT + ((−1) + 1)vT , if s(T (k)) = s(T (k − 1)),
sk(c(T (k))skvT + (0 + 0)vT , if s(T (k)) 6= s(T (k − 1)),

= c(T (k))vT .

Define an action of H on Ĥ by
hα = χh ⊗ α,

and extend this to an action of H on the simple GH,1,n modules by

mP ⊗ vT 7−→ mhP ⊗ vhT .

Theorem 4.2.

(a) The simple GH,H/K,n modules are indexed by pairs (λ̄, µ) where λ̄ ∈ K\Ĝn, µ ∈ K̂λ, where
Kλ is the stabilizer of λ in K.

(b) The simple GH,H/K,n module, then for any fixed representative λ of the coset λ̄,

G
(λ,µ)
K,n = pµGλ

n, where pµ =
∑

k∈Kλ

χµ(k−1)k,

is the minimal idempotent of Kλ corresponding to the module Kµ
λ .

(c) As a (GH.H/K,n,Kλ) bimodule

Gλ =
⊕

µ∈K̂λ

G(λ,µ)
n ⊗Kµ

λ .
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