The wreath products $G_{H,1,k} = H \wr S_k$

Arun Ram Department of Mathematics University of Wisconsin Madison, WI 53706 ram@math.wisc.edu

1 The groups $G_{H,1,n}$

The semidirect product $G_{H,1,n} = H^n \rtimes S_n$ is the group of permutations with edges colored by elements of h. The product is the usual product on permutations with the convention that elements of H slide along edges and multiply when they collide. The group $G_{H,1,n}$ is generated by the elements

$$t_i(h) = \prod_{i \neq h} \cdots \prod_{i \neq h} \cdots \prod_{i \neq h} \text{ for } 1 \le i \le n, h \in H,$$
$$s_{ij} = \prod_{i \neq h} \cdots \prod_{i \neq h} \cdots \prod_{i \neq h} \cdots \prod_{i \neq h} \text{ for } 1 \le i < j \le n,$$

and the subgroup H^n consists of the elements

 $t_h = t_1(h_1)t_2(h_2)\cdots t_n(h_n),$ where $h = (h_1, \dots, h_n), h_i \in H.$

The operation in the semidirect product in the group

$$G_{H,1,n} = H^n \rtimes S_n = \{t_h w \mid h \in H^n, w \in S_n\}$$

is determined by the product in S_n , and

$$t_h t_k = t_{hk}, \quad \text{for } h, k \in H^n, \quad \text{and} \\ wt_h = t_{wh} w, \quad \text{where} \quad w(h_1, \dots, h_n) = (h_{w(1)}, \dots, h_{w(n)}),$$

$$(1.1)$$

for $w \in S_n$ and $h = (h_1, \ldots, h_n) \in H^n$.

Let H^* be an index set for the conjugacy classes of H and let H_{α} , $\alpha \in H^*$, be a set of conjugacy class representatives. Let

$$G_{H,1,n}^* = \{ \mu = (\mu^{(\alpha)})_{\alpha \in H^*} \mid \mu \text{ has } n \text{ boxes total} \},\$$

be the set of H^* -multipartitions, tuples of partitions with components indexed by the elements of H^* , such that the total number of boxes in the multipartition is n. Then the elements

$$\gamma_{\mu} = PICTURE, \quad \text{for } \mu \in G^*_{H,1,n},$$

are a set of conjugacy class representatives for $G_{H,1,n}$. The centralizer of γ_{μ} in $G_{H,1,n}$ is

$$Z_G(\gamma_\mu) = ???$$

with

$$\operatorname{Card}(Z_G(\mu)) = ???.$$

Each element of G(r, p, n) is conjugate by elements of S_n to a disjoint product of cycles of the form

$$\xi_i^{\lambda_i}\cdots\xi_k^{\lambda_k}(i,i+1,\ldots,k)$$

By conjugating this cycle by $\xi_i^{-c}\xi_{i+1}^{\lambda_i}\xi_{i+2}^{\lambda_i+\lambda_{i+1}}\cdots\xi_k^{\lambda_i+\dots+\lambda_{k-1}}\in G(r,r,n)$, we have

$$\xi_i^{-c}\xi_k^{c+\lambda_i+\dots+\lambda_k}(i,\dots,k), \quad \text{where } c = (k-i)\lambda_i + (k-i-1)\lambda_{i+1} + \dots + \lambda_{k-1}.$$

If $i_1, i_2, \ldots, i_{\ell}$ denote the minimal indices of the cycles and c_1, \ldots, c_{ℓ} are the numbers c for the various cycles, then after conjugating by $\xi_{i_1}^{c_1} \cdots \xi_{i_{\ell-1}}^{c_{\ell-1}} \xi_{i_{\ell}}^{-(c_1+\cdots+c_{\ell-1})} \in G(r, r, n)$, each cycle becomes

$$\xi_k^{\lambda_i + \dots + \lambda_k}(i, \dots, k)$$
 except the last, which is $\xi_{i_\ell}^{-a} \xi_n^b(i_\ell, \dots, n),$

where $a = c_1 + \cdots + c_\ell$ and $b = a + \lambda_{i_\ell} + \cdots + \lambda_n$. If $k = n - i_\ell + 1$ is the length of the last cycle, then conjugating the last cycle by $\xi_{i_\ell}^{k-1}\xi_{i_\ell+1}^{-1}\cdots\xi_n^{-1} \in G(r,r,n)$ gives

$$\xi_{i_\ell}^{-a+k}\xi_n^{b-k}(i_\ell,\ldots,n).$$

If we conjugate the last cycle by $\xi_{i_{\ell}}^p \in G(r, p, n)$, we have

$$\xi_{i_\ell}^{-a+p}\xi_n^{b-p}(i_\ell,\ldots,n).$$

In summary, any element g of G(r, p, n) is conjugate to a product of disjoint cycles where each cycle is of the form

$$\xi_k^a(i, i+1, \dots, k), \qquad 0 \le a \le r-1,$$

except possibly the last cycle, which is of the form

$$\xi_{i_{\ell}}^{a}\xi_{n}^{b}(i_{\ell},i_{\ell}+1,\ldots,n), \quad \text{with } 0 \le a \le \gcd(p,k) - 1,$$

where $k = n - i_{\ell} + 1$ is the length of the last cycle.

Let $Z_{G(r,p,n)}(g) = \{h \in G(r,p,n) \mid hg = gh\}$ denote the centralizer of $g \in G(r,p,n)$. Since G(r,p,n) is a subgroup of G(r,1,n),

$$Z_{G(r,p,n)}(g) = Z_{G(r,1,n)}(g) \cap G(r,p,n),$$

for any element $g \in G(r, p, n)$. Suppose that g is an element of G(r, 1, n) which is a product of disjoint cycles of the form $\xi_k^a(i, \ldots, k)$ and that $h \in G(r, 1, n)$ commutes with g. Conjugating g by h effects some combination of the following operations on the cycles of g:

- (a) permuting cycles of the same type, $\xi_k^a(i, \ldots, k)$ and $\xi_m^b(j, \ldots, m)$ with b = a and k i = m j,
- (b) conjugating a single cycle $\xi_k^a(i, \ldots, k)$ by powers of itself, and
- (c) conjugating a single cycle $\xi_k^a(i,\ldots,k)$ by $\xi_i^b\cdots\xi_k^b$, for any $0 \le b \le r-1$.

Furthermore, the elements of G(r, 1, n) which commute with g are determined by how they "rearrange" the cycles of g and a count (see [Mac, p. 170]) of the number of such operations shows that if $g \in G(r, 1, n)$ and $m_{a,k}$ is the number of cycles of type $\xi^a_{i+k}(i, i+1, \ldots, i+k)$ for g, then

$$\operatorname{Card}(Z_{G(r,1,n)}(g)) = \prod_{a,k} (m_{a,k}! \cdot k^{m_{a,k}} \cdot r).$$
 (1.2)

Let \hat{H} be an index set for the irreducible H modules. If $\gamma \in \hat{H}$ then let \hat{H}^{γ} be an index set for a basis of H^{γ} so that

 H^{γ} has basis $\{m_P \mid P \in \hat{H}^{\gamma}\}$, with *H*-action $h m_P = \sum_{Q \in \hat{H}^{\gamma}} h_{QP} m_Q$,

for appropriate constants $h_{QP} \in \mathbb{C}$.

Let $\lambda = (\lambda^{(\alpha)})_{\alpha \in \hat{H}}$ be a \hat{H} -tuple of partitions with n boxes total. A standard tableau of shape λ is a filling of the boxes of λ with $1, 2, \ldots, n$ such that, in each partition $\lambda^{(\alpha)}$,

- (a) the rows increase from left to right,
- (b) the columns increase from top to bottom.

The rows and columns of each partition $\lambda^{(\alpha)}$ are numbered as for matrices and

$$T(i)$$
 is the box containing i in T ,
 $c(b) = j - i$, if b is in position (i, j) , and
 $s(b) = \alpha$, if b is in $\lambda^{(\alpha)}$,

The numbers c(b) and s(b) are the *content* and the \hat{H} -type of the box b, respectively.

PICTURE

Theorem 1.1. Use notations as in (???) and (???).

(a) The irreducible representations G_n^{λ} of the group $G_{H,1,n} = H^n \ltimes S_n$ are indexed by the set

$$\hat{G}_n = \{ \lambda = (\lambda^{(\alpha)})_{\alpha \in \hat{H}} \mid \lambda \text{ has } n \text{-boxes total} \},\$$

of \hat{H} multipartitions with n boxes total.

(b)
$$\dim G_n^{\lambda} = \sum_{\alpha \in \hat{H}} \dim(H^{\alpha}) \dim(S_n^{\lambda^{(\alpha)}})$$

(c) The irreducible $G_{H,1,n}$ module

$$G_{r,1,n}^{\lambda} \quad has \ basis \quad \{(m_{P^{(1)}} \otimes \cdots \otimes m_{P^{(n)}}) \otimes v_T \mid T \in \hat{S}^{\lambda}, P^{(i)} \in \hat{H}^{s(T(i))}\}$$

• (--- ())

with $G_{H,1,n}$ action given by

$$\begin{split} t_i(h)(m_{P^{(1)}}\otimes\cdots\otimes m_{P^{(n)}}\otimes v_T) &= m_{P^{(1)}}\otimes\cdots\otimes hm_{P^{(i)}}\otimes\cdots\otimes m_{P^{(n)}}\otimes v_T,\\ s_i(m_{P^{(1)}}\otimes\cdots\otimes m_{P^{(n)}}\otimes v_T) &= s_i(m_{P^{(1)}}\otimes\cdots\otimes m_{P^{(n)}})\otimes s_iv_T, \end{split}$$

where

$$s_i v_T = (s_i)_{TT} v_T + (1 + (s_i)_{TT}) v_{s_i T},$$

with

$$(s_i)_{TT} = \begin{cases} \frac{1}{c(T(i)) - c(T(i-1))}, & \text{if } s(T(i)) = s(T(i-1)), \\ 0, & \text{if } s(T(i)) \neq s(T(i-1)), \end{cases}$$

c(T(i)) is the content of the box containing *i* in *T*, s_iT is the same as *T* except that *i* and *i* - 1 are switched, $v_{s_iT} = 0$ if s_iT is not standard.

Proof. The following argument determining the simple $G_{H,1,n}$ modules is often called *Clifford* theory. Let G^{λ} be a simple $G_{H,1,n} = H^n \rtimes S_n$ module. Let H^{γ} be a simple H^n submodule of G^{λ} . Then wH^{γ} is another simple H^n submodule of G^{λ} and

$$G^{\lambda} = \sum_{w \in S_n} w H^{\gamma},$$

since the right hand side is an $H^n \rtimes S_n$ submodule of G^{λ} . Let

$$S_{\gamma} = \{ w \in S_n \mid wH^{\gamma} \cong H^{\gamma} \} = \{ w \in S_n \mid w\gamma = \gamma \}.$$

Thus

$$G^{\lambda} = \sum_{w_i \in S_n/S_{\gamma}} w_i N = \operatorname{Ind}_{H^n \rtimes S_{\gamma}}^{H^n \rtimes H_n}(N), \quad \text{where} \quad N = \sum_{w \in S_{\gamma}} w H^{\gamma}.$$

Then

$$N \cong H^{\gamma} \otimes S^{\lambda}_{\gamma}$$
 with action $hw(m \otimes v) = hwm \otimes wm$,

where S_{γ}^{λ} is a simple S_{γ} module. Since we are free to choose γ in its S_n orbit we may assume that γ is of the form

$$\gamma = (\underbrace{\gamma_1, \dots, \gamma_1}_{\mu_1 \text{ times}}, \underbrace{\gamma_2, \dots, \gamma_2}_{\mu_2 \text{ times}}, \dots, \underbrace{\gamma_\ell, \dots, \gamma_\ell}_{\mu_\ell \text{ times}}) \qquad \text{so that} \qquad S_\gamma = S_{\mu_1} \times S_{\mu_2} \times \dots \times S_{\mu_\ell},$$

where $\mu = (\mu_1, \mu_2, \dots, \mu_\ell)$ is a partition of n. An irreducible representation of S_{γ} is indexed by a tuple of partitions, one partition for each γ_i that appears in γ , so that the total number of boxes in the tuple of partitions is n.

Let us make this construction more explicit. Using the notation in (???), the simple H^n modules are indexed by the set \hat{H}^n and a simple H^n module

$$H^{(\gamma_1,\ldots,\gamma_n)}$$
 has basis $\{m_{P^{(1)}}\otimes\cdots m_{P^{(n)}}\mid P^{(i)}\in\hat{H}^{\gamma_i}\}.$

Then the action of S_n on H^n modules in (???) is given by

$$w(m_{P^{(1)}} \otimes \cdots \otimes m_{P^{(n)}}) = m_{P^{(w(1))}} \otimes \cdots \otimes m_{P^{(w(n))}}, \quad \text{for } w \in S_n$$

defines an action of S_n on the irreducible H^n modules. The resulting action of S_n on \hat{H}^n is given by

$$w(\gamma_1,\ldots,\gamma_n)=(\gamma_{w(1)},\ldots,\gamma_{w(n)}).$$

Returning to the setup in equation (???),

$$wH^{\gamma} = H^{w\gamma}, \quad \text{for } w \in S_n.$$

(The fact that $wH^{\gamma} = H^{w\gamma}$ means that in this case the cocycles (factor sets) that appear in Clifford theory are trivial.)

The *Casimir element* is the sum of the elements in the conjugacy class of s_{12} ,

$$\kappa_n = \sum_{1 \le i < j \le n} \sum_{h \in H} t_i(h) t_j(h^{-1}) s_{ij},$$

with notations as in (???).

Theorem 1.2.

(a) The Casimir element κ_n for $G_{H,1,n}$ is a central element of the group algebra of $G_{H,1,n}$ such that

$$\kappa_n \text{ acts on } G_n^{\lambda} \text{ by the constant} \quad \sum_{b \in \lambda} c(b).$$

(b) Let H^* be an index set for the conjugacy classes of H and let $\mu \in H^*$. Let

$$z(\mu) = \sum_{h \in \mathcal{C}_{\mu}} \sum_{i=1}^{n} t_i(h),$$

where the sum is over all elements of H in the conjugacy class μ . Then $z(\mu)$ is an element of the center of the group algebra of $G_{H,1,n}$ and

$$z(\mu) \ acts \ on \ G_n^{\lambda} \ by \ the \ constant \ \sum_{\alpha \in \hat{H}} \frac{\chi_H^{\alpha}(\mu)}{\dim(H^{\alpha})}.$$

Proof.

$$\frac{1}{|H|} \sum_{h \in H} hm_Q \otimes h^{-1}m_P = \sum_{h,R,S} A^{\alpha}_{RQ}(h) A^{\beta}_{SP}(h^{-1})(m_R \otimes m_S)$$
$$= \sum_{R,S} (m_R \otimes m_S) \sum_{h \in H} A^{\alpha}_{RQ}(h) A^{\beta}_{SP}(h^{-1}).$$

Define an element of $\operatorname{Hom}(H^{\alpha}, H^{\beta})$,

$$\varphi_{QS}^{\alpha\beta} \colon H^{\alpha} \to H^{\beta}, \qquad \text{by} \qquad \varphi_{QS}^{\alpha\beta}(m_P) = \delta_{QP}m_S.$$

Then as elements of $\operatorname{Hom}(H^{\alpha}, H^{\beta}),$

$$g\sum_{h\in H}h\varphi_{QS}^{\alpha\beta}h^{-1} = \sum_{h\in H}gh\varphi_{QS}^{\alpha\beta}(gh)^{-1}g,$$

and

$$\operatorname{Tr}\left(\sum_{h\in H} h\varphi_{QS}^{\alpha\alpha}h^{-1}\right) = \operatorname{Tr}\left(\sum_{h\in H} \varphi_{QS}^{\alpha\alpha}\right) = |H|\delta_{QS},$$

and thus, by Schur's lemma,

$$\sum_{h \in H} h \varphi_{QS}^{\alpha\beta} h^{-1} = \frac{|H|}{d_{\lambda}} \delta_{\alpha\beta} \delta_{QS} \cdot \mathrm{id}$$

where $d_{\alpha} = \dim(H^{\alpha})$. Thus

$$\sum_{h \in H} A^{\alpha}_{RQ}(h) A^{\beta}_{SP}(h^{-1}) = \left(\sum_{h \in H} A^{\alpha}(h) \varphi_{QS} A^{\beta}(h^{-1}) \right)_{RP} = \frac{|H|}{d_{\alpha}} \delta_{\alpha\beta} \delta_{QS} \delta_{RP}.$$

Hence

$$\frac{1}{|H|} \sum_{h \in H} hm_Q \otimes h^{-1} m_P = \frac{1}{d_\alpha} \delta_{\alpha\beta}(m_P \otimes m_Q)$$

(a) Let $x_1 = 0$ and, for $2 \le k \le n$ let

$$x_k = \sum_{h \in H} \sum_{1 \le i < k} t_i(h) t_k(h^{-1}) s_{ik} \quad \text{so that} \quad x_1 + x_2 + \dots + x_n = \kappa_n.$$
(1.3)

Then

$$x_k = s_k x_k s_k + \sum_{h \in H} t_{k-1}(h) s_k t_{k-1}(h^{-1}).$$
(1.4)

and

$$\begin{aligned} x_k(m_P \otimes v_T) &= \left(s_k x_{k-1} s_k + \sum_{h \in H} s_k t_k(h) t_{k-1}(h^{-1}) \right) (m_P \otimes v_T) \\ &= s_k \left(c(T(k-1))(s_k)_{TT}(s_k m_P \otimes v_T) + c(T(k))(1+(s_k)_{TT})(s_k m_P \otimes v_{s_k T}) \right) \\ &+ \sum_{h \in H} t_{k-1}(h^{-1})t_k(h)(m_P \otimes v_T) \right) \\ &= s_k \left(c(T(k))s_k(m_P \otimes v_T) + (c(T(k-1)) - c(T(k)))(s_k)_{TT}(m_P \otimes v_T) \right) \\ &+ \sum_{h \in H} t_{k-1}(h^{-1})t_k(h)(m_P \otimes v_T) \right) \\ &= \begin{cases} s_k(c(T(k))s_k v_T + ((-1) + 1)v_T, & \text{if } s(T(k)) = s(T(k-1)), \\ s_k(c(T(k))s_k v_T + (0 + 0)v_T, & \text{if } s(T(k)) \neq s(T(k-1)), \end{cases} \\ &= c(T(k))v_T. \end{aligned}$$

(b) Since $\sum_{h \in \mathcal{C}_{\mu}}$ acts on H^{α} by the constant

$$\frac{\chi_H^\alpha(\mu)}{\dim(H^\alpha)}$$

it follows that

s that

$$\left(\sum_{h\in\mathcal{C}_{\mu}}t_{i}(h)\right)(m_{P}\otimes v_{T})=\sum_{h\in\mathcal{C}_{\mu}}(t_{i}(h)m_{P}\otimes v_{T})=\frac{\chi_{H}^{(\alpha_{i})}(\mu)}{\dim(H^{(\alpha_{i})})}(m_{P}\otimes v_{T}).$$

Part (b) of the theorem now follows by summing over i.

For example, if

$$\begin{split} H &= \mathbb{Z}/r\mathbb{Z}, \quad \text{then} \quad \hat{H} = \{0, 1, 2, \dots, r-1\}, \\ H &= \mathbb{Z}, \quad \text{then} \quad \hat{H} = \mathbb{C}^*, \\ H &= \mathbb{C}^*, \quad \text{then} \quad \hat{H} = \mathbb{Z}, \end{split}$$

where, in the last case \hat{H} indexes the rational representations of $H = \mathbb{C}^*$.

1.1 Characters of $G_{H,1,n}$

Let $\mu \in G_n^*$. Then

$$Z_{G_n}(\mu) \Big| = \prod_{\beta \in H^*} \left(\left| Z_{S_n}(\mu^{(\beta)}) \right) \right| \cdot \left| Z_H(\beta) \right|^{\ell(\mu^{(\beta)})} \right).$$

Let H^* be an index set for the conjugacy classes of H and, for each $\beta \in H^*$, let

$$x^{(\beta)} = \{x_1^{(\beta)}, x_2^{(\beta)}, \ldots\}$$
 be a set of variables indexed by β ,

and let

$$p_{\mu}(x) = \prod_{\beta \in H^*} p_{\mu^{(\beta)}}(x^{(\beta)}), \quad \text{for } \mu \in G_n^*,$$

so that $p_{\mu}(x)$ is the product of power symmetric functions from each of the variable sets $x^{(\beta)}$. Define a "change of variables" from the $x^{(\beta)}$ variables, which are indexed by $\beta \in H^*$, to $y^{(\alpha)}$ variables indexed by $\alpha \in \hat{H}$, by setting

$$p_r(y^{(\alpha)}) = \sum_{\beta \in H^*} \frac{\chi_H^{\alpha}(\beta) p_r(x^{(\beta)})}{|Z_H(\beta)|}, \quad \text{for each } \alpha \in \hat{H}, \text{ and each } r \in \mathbb{Z}_{>0}.$$

Define

$$s_{\lambda}(y) = \prod_{\alpha \in \hat{H}} s_{\lambda^{(\alpha)}}(y^{(\alpha)}), \quad \text{for } \lambda \in \hat{G}_n.$$

Then

$$s_{\lambda}(y) = \sum_{\mu \in \hat{G}_n^*} \frac{\chi_{G_n}^{\lambda}(\mu) p_{\mu}(x)}{|Z_{G_n}(\mu)|} \quad \text{and} \quad p_{\mu}(x) = \sum_{\lambda \in \hat{G}_n} \overline{\chi_{G_n}^{\lambda}(\mu)} s_{\lambda}(y),$$

for $\lambda \in \hat{G}_n$ and $\mu \in G_n^*$.

2 The groups $G_{H,H/K,n}$

Let H be a group. Assume that H is abelian so that there is a well defined map $\phi: G_{H,1,n} \to H$ given by $\phi(t_h w) = h_1 \cdots h_n$, for $h = (h_1, \dots, h_n) \in H^n$ and $w \in S_n$. Let K be a subgroup of Hand define a normal subgroup $G_{H,H/K,n}$ of $G_{H,1,n}$ by the exact sequence

$$\{1\} \longrightarrow G_{H,H/K,n} \longrightarrow G_{H,1,n} \longrightarrow H/K \longrightarrow \{1\}$$

$$t_h w \longmapsto h_1 h_2 \cdots h_n.$$

Thus

$$G_{H,H/K,n} = \{t_h w \mid h_1 h_2 \cdots h_n \in K\}$$
 with order $|G^K| = |H|^{n-1} |K| n!$.

Let H be an abelian group and let \hat{H} be an index set for the simple H-modules. The *dual* group is the set \hat{H} with the operation induced by tensor product of H-modules. If $H = \mathbb{C}^*$ then the irreducible representations of H (as an algebraic group) are

so that $\hat{H} \cong \mathbb{Z}$. If $H = (\mathbb{C}^*)^n$ then \hat{H} is a lattice,

$$\hat{H} \cong \mathbb{Z}^n$$
, with $X^{\lambda} X^{\mu} = X^{\lambda+\mu}$,

for $\lambda, \mu \in \mathbb{Z}^n$. If H is a finite abelian group then

$$H \cong \mathbb{Z}/r_1\mathbb{Z} \oplus \mathbb{Z}/r_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/r_\ell\mathbb{Z}$$
 and $\hat{H} \cong \mathbb{Z}/r_1\mathbb{Z} \oplus \mathbb{Z}/r_2\mathbb{Z} \oplus \cdots \oplus \mathbb{Z}/r_\ell\mathbb{Z}$,

a quotient of the lattice in (???), so that

$$\hat{H} = \{X^{\lambda} \mid \lambda = (\lambda_1, \dots, \lambda_n) \text{ with } \lambda_i \in \mathbb{Z}/r_i\mathbb{Z}\}.$$

Let H be abelian and let \hat{H} be the dual group of H. The group \hat{H} acts on the group algebra of H^n by algebra automorphisms,

$$\begin{array}{cccc} X^{\lambda} \colon & \mathbb{C}H^n & \longrightarrow & \mathbb{C}H^n \\ & t_{(h_1,\dots,h_n)} & \longmapsto & X^{\lambda}(h_1h_2\cdots h_n)t_{(h_1,\dots,h_n)} \end{array}$$

and on the group algebra of $G_{H,1,n} = H^n \rtimes S_n$ by algebra automorphisms,

$$\begin{array}{rcccc} X^{\lambda} \colon & \mathbb{C}G_{H,1,n} & \longrightarrow & \mathbb{C}G_{H,1,n} \\ & t_{(h_1,\ldots,h_n)} w & \longmapsto & X^{\lambda}(h_1h_2\cdots h_n)t_{(h_1,\ldots,h_n)} w \end{array}$$

Let \hat{K} be a subgroup of \hat{H} . Then the subalgebra of $\mathbb{C}G_{H,1,n}$ fixed by \hat{K} is

$$(\mathbb{C}G_{H,1,n})^{\hat{K}} = \operatorname{span}\{t_{(h_1,\dots,h_n)}w \mid X^{\lambda}(h_1h_2\cdots h_n) = 1, \text{ for all } X^{\lambda} \in \hat{K}\}.$$

Then

$$(\mathbb{C}G_{H,1,n})^{\hat{K}} = \operatorname{span}\{t_{(h_1,\dots,h_n)}w \mid h_1h_2\cdots h_n \in K\}$$
$$= \mathbb{C}G_{H,H/K,n}, \quad \text{where } K = \bigcap_{\lambda \in \hat{K}} \ker(X^{\lambda}).$$

3 The groups $G_{r,p,n}$

The group $G_{H,H/K,n}$ is

denoted $G_{r,p,n}$ if H is a cyclic group of order r and H/K is order p.

Note that p is not necessarily prime and p divides r. The group $G_{r,p,n}$ can be realised as the group of $n \times n$ matrices such that

- (a) There is exactly one nonzero entry in each row and each column,
- (b) The nonzero entries are rth roots of unity,
- (c) The (r/p)th power of the product of the nonzero entries is 1.

Special cases of these groups are

- (1) $G_{r,1,1}$, the cyclic group of order r,
- (2) $G_{r,r,2}$, the dihedral group of order 2r,

- (3) $G_{1,1,n} = S_n$, the symmetric group, or Weyl group of type A,
- (4) $G_{\infty,1,n}$ is the affine symmetric group or the affine Weyl group of type A,
- (5) $G_{2,1,n} = WB_n$, the Weyl group of type B_n ,
- (6) $G_{2,2,n} = WD_n$, the Weyl group of type D_n ,

All of these are subgroups of the group

$$N = (\mathbb{C}^*)^n \ltimes S_n$$
 of monomial matrices in $GL_n(\mathbb{C})$

(the normalizer of the torus of diagonal matrices in $GL_n(\mathbb{C})$).

Let $\mathbb{Z}/r\mathbb{Z} = \{0, 1, \dots, r-1\}$ and let $\xi = e^{2\pi i/r}$. The groups $G_{r,p,n}$ are complex reflection groups (generated by reflections). The *reflections* in $G_{r,p,n}$ are the elements

$$t_i^k t_j^{-k} s_{ij},$$
 and $t_i^{\ell p} = t_{(0,\dots,0,\ell p,0,\dots0)} = \prod_{i=1}^{\ell} \prod_{j=1}^{\ell} \cdots \prod_{i=1}^{\ell} \prod_{j=1}^{\ell p} \prod_{i=1}^{\ell} \cdots \prod_{j=1}^{\ell} \prod_{j=1}^{\ell} \cdots \prod_{i=1}^{\ell} \prod_{j=1}^{\ell} \prod_{i=1}^{\ell} \cdots \prod_{j=1}^{\ell} \prod_{i=1}^{\ell} \prod_{j=1}^{\ell} \prod_{j=1}^{\ell} \prod_{j=1}^{\ell} \prod_{j=1}^{\ell} \prod_{j=1}^{\ell} \prod_{i=1}^{\ell} \prod_{j=1}^{\ell} \prod_$

for $\leq i < j \leq n$, $0 \leq k \leq r-1$, and $0 \leq \ell \leq (r/p) - 1$. Define

$$t_1 = \begin{bmatrix} \xi & & \\$$

$$s_i = (i-1,i) =$$
 , for $2 \le i \le n$.

The group $G_{r,p,n}$ has a presentation by generators $t_1^p, s_1, s_2, \ldots, s_n$ and relations

For $G_{r,1,n}$ the generator s_1 is unnecessary and, for $G_{r,r,n}$ the generator $t_1^r = 1$ and is irrelevant. Note that only the groups ???? can be generated by n reflections.

4 Representations of the groups $G_{H,H/K,n}$

The irreducible representations of the group $G_{H,1,n}$ can be derived from Clifford theory or via the tower

$$\{1\} \subseteq G_{\frac{1}{2}} = G_1 \subseteq G_{\frac{3}{2}} \subseteq G_2 \subseteq G_{\frac{5}{2}} \subseteq G_3 \subseteq \cdots,$$

where

$$G_n = G_{H,1,n} = H^n \rtimes S_n$$
 and $G_{n+\frac{1}{2}} = G_{H1,n} \times G_{H,1,1}$,

so that $G_{n+\frac{1}{2}}$ is a "Levi subgroup" of G_{n+1} . The tower \hat{G} has

vertices on level n: multipartitions $\lambda = (\lambda^{(\alpha)})_{\alpha \in \hat{H}}$ with n boxes total,

vertices on level $n + \frac{1}{2}$: pairs (λ, \Box_{α}) , where $\lambda \in \hat{G}_n$, $\alpha \in \hat{H}$.

edges from level n to level $n + \frac{1}{2}$:

 $\lambda \to (\lambda, \Box_{\alpha})$ for each $\alpha \in \hat{H}$.

edges from level $n + \frac{1}{2}$ to level n:

 $(\mu, \Box_{\alpha}) \to \nu$ if ν is obtained from μ by adding a box to $\mu^{(\alpha)}$.

For each $0 \le m \le r-1$ the elements t_i^m , $1 \le i \le n$, form a conjugacy class in G(r, 1, n) and the elements $t_i^m t_j^{-m}(i, j)$, $1 \le i < j \le n$, $0 \le m \le r-1$, form another conjugacy class in G(r, 1, n). Thus the elements

$$z_s(m) = \sum_{i=1}^n t_i^m, \quad 0 \le m \le r-1, \qquad \text{and} \qquad z_\ell = \frac{1}{r} \sum_{m=0}^{r-1} \sum_{1 \le i < j \le n} t_i^m t_j^{-m}(i,j),$$

are elements of $Z(\mathbb{C}G(r,1,n))$. So $z_s(m)$ and z_ℓ must act by a constant on any irreducible representation S^{λ} of G(r,1,n). Define $x_1 = 0$,

$$x_{k} = \left(\sum_{\substack{1 \le i < j \le k \\ 0 \le \ell \le r-1}} t_{i}^{\ell} t_{j}^{-\ell}(i,j)\right) - \left(\sum_{\substack{1 \le i < j \le k-1 \\ 0 \le \ell \le r-1}} t_{i}^{\ell} t_{j}^{-\ell}(i,j)\right) = \frac{1}{r} \sum_{1 \le i < k, \ 0 \le \ell \le r-1} t_{i}^{\ell} t_{k}^{-\ell}(i,k), \quad \text{for } 2 \le k \le n, \text{ and}$$
$$y_{k} = \left(\sum_{i=1}^{k} t_{i}\right) - \left(\sum_{i=1}^{k-1} t_{i}\right) = t_{k}, \quad \text{for } 1 \le k \le n.$$

Theorem 4.1. The elements x_1, \ldots, x_n and y_1, \ldots, y_n all commute with each other and the action of these elements on the irreducible representation S^{λ} of G(r, 1, n) is given by

$$y_k v_T = s(T(k))v_T$$
 and $x_k v_T = c(T(k))v_T$,

for all standard tableaux T.

Proof. The proof is by induction on k using the relations

$$x_k = s_k x_{k-1} s_k + \sum_{\ell=0}^{r-1} y_{k-1}^{\ell} s_k y_{k-1}^{-\ell}$$
 and $y_k = s_k y_{k-1} s_k$.

The base cases

$$x_1v_T = 0 = c(T(1))v_T$$
 and $y_1v_T = s(T(1))v_T$

are immediate from the definitions. Then

$$\begin{split} y_k v_T &= s_k y_{k-1} s_k \\ &= s_k \left(s(T(k-1))(s_k)_{TT} v_T + (1+(s_k)_{TT}) s(T(k)) v_{s_k T} \right) \\ &= s_k \left(s(T(k)) s_k v_T + (s(T(k-1)) - s(T(k)))(s_k)_{TT} v_T \right) \\ &= s(T(k)) v_T + 0 = s(T(k)) v_T, \quad \text{and} \end{split}$$

$$\begin{aligned} x_k v_T &= \left(s_k x_{k-1} s_k + \frac{1}{r} \sum_{\ell=0}^{r-1} s_k y_{k-1}^{-\ell} y_k^{\ell} \right) v_T \\ &= s_k \left(c(T(k-1))(s_k)_{TT} v_T + c(T(k))(1 + (s_k)_{TT}) v_{s_kT} + \frac{1}{r} \sum_{\ell=0}^{r-1} s(T(k-1))^{-\ell} s(T(k))^{\ell} v_T \right) \\ &= s_k \left(c(T(k)) s_k v_T + (c(T(k-1)) - c(T(k)))(s_k)_{TT} v_T + \frac{1}{r} \sum_{\ell=0}^{r-1} \left(s(T(k))^{-1} s(T(k)) \right)^{\ell} v_T \right) \\ &= \begin{cases} s_k (c(T(k)) s_k v_T + ((-1) + 1) v_T, & \text{if } s(T(k)) = s(T(k-1)), \\ s_k (c(T(k)) s_k v_T + (0 + 0) v_T, & \text{if } s(T(k)) \neq s(T(k-1)), \\ &= c(T(k)) v_T. \end{cases} \end{aligned}$$

Define an action of H on \hat{H} by

$$h\alpha = \chi_h \otimes \alpha,$$

and extend this to an action of H on the simple $G_{H,1,n}$ modules by

$$m_P \otimes v_T \longmapsto m_{hP} \otimes v_{hT}.$$

Theorem 4.2.

- (a) The simple $G_{H,H/K,n}$ modules are indexed by pairs $(\bar{\lambda}, \mu)$ where $\bar{\lambda} \in K \setminus \hat{G}_n$, $\mu \in \hat{K}_{\lambda}$, where K_{λ} is the stabilizer of λ in K.
- (b) The simple $G_{H,H/K,n}$ module, then for any fixed representative λ of the coset $\overline{\lambda}$,

$$G_{K,n}^{(\overline{\lambda},\mu)} = p_{\mu}G_{n}^{\lambda}, \qquad where \quad p_{\mu} = \sum_{k \in K_{\lambda}} \chi^{\mu}(k^{-1})k,$$

is the minimal idempotent of K_{λ} corresponding to the module K_{λ}^{μ} .

(c) As a $(G_{H.H/K,n}, K_{\lambda})$ bimodule

$$G^{\lambda} = \bigoplus_{\mu \in \hat{K}_{\lambda}} G_n^{(\lambda,\mu)} \otimes K_{\lambda}^{\mu}$$

References

- [HR] T. Halverson and A. Ram, Partition algebras, European J. Combinatorics 26 (2005), 869– 921.
- [Ko1] M. Kosuda, Irreducible representations of the party algebra, preprint 2004.
- [Ko2] M. Kosuda, Characterization of the party algebras Ryukyu Math. J. 13 (2003), 199–228.
- [Ta] K. Tanabe, On the centralizer algebra of the unitary reflection group G(m, p, n), Nagoya Math. J. 148 (1997), 113-126.
- [Dr1] V.G. Drinfel'd, A new realization of Yangians and quantized affine algebras, Soviet Math. Dokl. 36 No, 2 (1998), 212–216.