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1 The groups Gu1,

The semidirect product Gg,1,, = H™ % S, is the group of permutations with edges colored by
elements of h. The product is the usual product on permutations with the convention that
elements of H slide along edges and multiply when they collide. The group Gp,1,, is generated
by the elements

h

i(h) = I II I I I for 1<i<n,heH,

,L'th

i J
and the subgroup H™ consists of the elements
tp, =ti(h1)ta(ha) - tn(hn), where h = (hy,...,hy,), h; € H.
The operation in the semidirect product in the group
Guin=H"xS,={thw | he H",w € S,}
is determined by the product in S,, and

thty = tpr, for h,k € H", and 1)
wtp = twpw, where ’UJ(hl, SERE) hn) = (hw(l)a R hw(n)): '

for w € S, and h = (hy,...,h,) € H".
Let H* be an index set for the conjugacy classes of H and let H,, o € H*, be a set of
conjugacy class representatives. Let

Ghin=1n= (,u(a))aeH* | 1 has n boxes total},

be the set of H*-multipartitions, tuples of partitions with components indexed by the elements
of H*, such that the total number of boxes in the multipartition is n. Then the elements

Y= PICTURE,  for p€ Gy,



are a set of conjugacy class representatives for G'p7,1,,. The centralizer of vy, in G 1y is

Za(n) =777

with
Card(Zg(u)) =777.

Each element of G(r,p,n) is conjugate by elements of S, to a disjoint product of cycles of
the form

ek (i1, k).

By conjugating this cycle by 55653115;1;)%1 e ,;\i+m+/\k_1 € G(r,r,n), we have

TGN k), where e= (k= )A+ (k=i = DA oo A

If 41,40,...,7, denote the minimal indices of the cycles and c¢q,...,c, are the numbers ¢ for
the various cycles, then after conjugating by &;! ---gfj_jg;(c”“'““) € G(r,r,n), each cycle
becomes

§T (i, k) except the last, whichis & “€h (i, ..., n),

where a =ci+---+candb=a+ N\, +---+ \,. If k. =n —1i,+ 1 is the length of the last
cycle, then conjugating the last cycle by fk 15@[ 16 Le G(r,r,n) gives

gi;a—i_kgzik(ifu cee 7n)'

If we conjugate the last cycle by §p € G(r,p,n), we have

&, PP (i, .. m).

In summary, any element g of G(r,p,n) is conjugate to a product of disjoint cycles where each
cycle is of the form
(i, i+ 1,...,k), 0<a<r-—1,

except possibly the last cycle, which is of the form
fgfg(ig,ig +1,...,n), with 0 < a < ged(p, k) — 1,

where kK = n — iy + 1 is the length of the last cycle.
Let Zg(rpn)(9) = {h € G(r,p,n) | hg = gh} denote the centralizer of g € G(r,p,n). Since
G(r,p,n) is a subgroup of G(r,1,n),

ZG(’/‘,p,n) (g) = ZG(’/‘,Ln) (g) N G(T‘,p, n)a

for any element g € G(r,p,n). Suppose that g is an element of G(r,1,n) which is a product of
disjoint cycles of the form £(4,..., k) and that h € G(r,1,n) commutes with g. Conjugating g
by h effects some combination of the following operations on the cycles of g:

(a) permuting cycles of the same type, (i, ..., k) and &2,(j,...,m) with b = a and k — i =
m — j)
(b) conjugating a single cycle £(, . .., k) by powers of itself, and

(c) conjugating a single cycle £&(i,..., k) by &--- &b, forany 0<b<r—1.



Furthermore, the elements of G(r,1,n) which commute with g are determined by how they
“rearrange” the cycles of g and a count (see [Mac, p. 170]) of the number of such operations
shows that if g € G(r,1,n) and mqy is the number of cycles of type &, (4,7 +1,...,i + k) for
g, then

Card(Zg(r,1,m(9)) = [ [(man! - E™* 7). (1.2)
a,k

Let H be an index set for the irreducible H modules. If v E H then let H” be an index set
for a basis of H” so that

H” has basis {mp | P € H}, with H-action hmp = Z hopmg,
QeH"

for appropriate constants hgp € C.
Let A = (A(O‘))aeﬁ be a H-tuple of partitions with n boxes total. A standard tableau of shape
A is a filling of the boxes of A with 1,2,...,n such that, in each partition @)

(a) the rows increase from left to right,
(b) the columns increase from top to bottom.

The rows and columns of each partition A(®) are numbered as for matrices and

T'(i) is the box containing ¢ in T,
¢(b) = j —i, if bis in position (i, 7), and
s(b) = a, if bisin (),

The numbers ¢(b) and s(b) are the content and the H-type of the box b, respectively.
PICTURE
Theorem 1.1. Use notations as in (2?) and (977).
(a) The irreducible representations G2 of the group Guin=H" xS, are indexed by the set
Gn={\= ()\(a))aeﬁ | A has n-bozxes total},
of H multipartitions with n boxes total.

(b) dimG) = 3" dim(H*)dim(S)"").
acH

(¢) The irreducible Gg 1, module

G has basis {(mpa) @ @mpw) @vr | T € S, PO e gy

r,ln

with Gp 1.5 action given by

ti(h)(mpu) K- @Mp»n) ® UT) =mp1 Q@ -+ & hmp(i) K- @Mpn) K v,
si(mpa) @ - @ Mpm @vr) = 8i(Mpa) @ -+ @ Mpm)) @ s;vr,

where
sivr = (si)rrvr + (1 + (si)rr) vs, T,



with
1

(s)pp = | @@ —c@G =y IO =sTGE=1),
0 if s(T(i)) # s(T(i — 1)),

c(T(i)) is the content of the box containing i in T,

s; " is the same as T except that © and i — 1 are switched,
vs,7 = 0 if 8;T is not standard.
Proof. The following argument determining the simple Gg,1, modules is often called Clifford

theory. Let G* be a simple Gy,1, = H" x S, module. Let H" be a simple H" submodule of
G*. Then wH?” is another simple H" submodule of G* and

A= Y wh,
weSy
since the right hand side is an H™ x S,, submodule of G*. Let
Sy={weS, |wH"=2H"} ={we S, | wy=~}

Thus
G= Y wN=Tndj. 3" (N),  where N=Y wH.
wiesn/S'\/ wGSa,
Then
N=H"® Si‘ with action hw(m ® v) = hwm ® wm,

where Si‘ is a simple S, module. Since we are free to choose 7 in its S, orbit we may assume
that v is of the form

’Y:(71)"'7’717727"'a72--'77@7"'3’75) so that S’Y:SMIXSHZX'“XS}LN
—— ——— —_——
w1 times po times e times
where po = (p1, pt2, - . ., jte) is a partition of n. An irreducible representation of S, is indexed by

a tuple of partitions, one partition for each ~; that appears in -, so that the total number of
boxes in the tuple of partitions is n.

Let us make this construction more explicit. Using the notation in (77?7), the simple H"
modules are indexed by the set H" and a simple H™ module

HOv ) has basis {mpa) @ -mpwm | PO e H7iY,
Then the action of S, on H™ modules in (??7) is given by
w(Mmpa) @ - Mpm) = Mp) @ M pum), for w € Sy,

defines an action of S, on the irreducible H™ modules. The resulting action of S,, on H" is
given by
UJ("Yl, e 77’/L) = (7111(1)7 s 7'7111(71))

Returning to the setup in equation (777),
wHY = H"7, for w € S,.

(The fact that wH?Y = H"Y means that in this case the cocycles (factor sets) that appear in
Clifford theory are trivial.) O



The Casimir element is the sum of the elements in the conjugacy class of s19,

ko= Y > ()t (h sy,

1<i<j<n heH
with notations as in (?77).

Theorem 1.2.

(a) The Casimir element ky for Gu 1y is a central element of the group algebra of Gy, such
that
kn acts on Go by the constant Zc(b).
beA

(b) Let H* be an index set for the conjugacy classes of H and let p € H*. Let
n
Ap) =Y Y tilh),
heC,, i=1

where the sum is over all elements of H in the conjugacy class p. Then z(u) is an element of
the center of the group algebra of Gy 1, and

A X )
z(p) acts on G, by the constant  Tm(HY)
acH
Proof.
1
T Y hmq@hTtmp =Y A%o(h)Adp(h ) (mp @ ms)
heH h.R,S
=Y (mr@ms) Y Ag(h)Alp(h™).
R,S heH

Define an element of Hom(H®, H?),
%ﬁs: H® — H”, by cpaQ%(mp) = dgpms.
Then as elements of Hom(H®, H5),

9 hedh™ =" gheli(gh) g,
heH heH

and

Tr (Z hsoz%h—l) —Tr (Z soz;%> = |H|dgs.

heH heH

and thus, by Schur’s lemma,

af ;- H :
> hegih Tt = ’d’(sa[ga@q -id
heH A



where d, = dim(H®). Thus

> A% (M) AGp(h7Y). = (Z A%hmsAﬁ(h—l)) = 'Z‘aaﬁacgsam.
RP

heH heH
Hence ] 1
— Z hmg ® himp = —dap(mp @ mq)
|| heH da
(a) Let 21 = 0 and, for 2 < k < n let
Tp = Z Z ti(R)t(h ™) s, so that x1+ x4+ 4+ Ty = K (1.3)
heH 1<i<k
Then
T = SpTESE + Z tk_l(h)sktk_l(h_l). (1.4)
heH
and

zp(mp @ vp) = (.Sk.’xk_lsk + Z Sktk(h)tk_l(h_1)> (mp ® vr)
heH

= 8k (C(T(k = D)(sk)rr(skmp @ vr) + (T (k))(1 + (si)77) (sxmp © vs,7)

+ 3 (B mp @ o))

heH
= Sk (c(T(k))sk(mP ®@uvr) + (c(T(k —1)) — e(T(k)))(sk)rr(mp ® vr)
+ > e (B )t(h) (mp © UT))
heH
{sk(c(T(k))sva + ((=1) + Do, if s(T(k)) =s(T(k—-1)),
sk(c(T(k))sgvr + (0 + 0)vr, if s(T'(k)) # s(T'(k —1)),
(T'(k))vr

(b) Since Zhecu acts on H® by the constant

X (1)
dim(H<)

it follows that

(i)
(Z ti(h)> (mp®@uvr) = Y (ti(h)ymp © vr) = X ).

hec,, hec, dim(H ()
Part (b) of the theorem now follows by summing over i. O

For example, if
H =17/rZ, then I;T:{O,I,Q,...,r—l},
H =17, then H = C*,
H =C~, then H =7,

where, in the last case H indexes the rational representations of H = C*.



1.1 Characters of Gy,

Let 1 € G%. Then
Za, ()| = H <\an (M(ﬁ)))} . ‘ZH(,B)|E(‘LL(6))> .

Let H* be an index set for the conjugacy classes of H and, for each 8 € H*, let

= {x(ﬂ ), . be a set of variables indexed by [3,
and let
= II ruo (= for € Gy,
BeH*

so that p,(z) is the product of power symmetric functions from each of the variable sets ),
Define a ”change of variables” from the z(%) variables, which are indexed by 8 € H*, to y(®
variables indexed by a € H, by setting

a (B) )
pr(y(a)) = Z %T(x), for each o € H, and each r € Z~.
Define )
y) = H NG (y(a)), for A € G,,.
aef[
Then

A x
sy) = X6, (1)) and  pu(@) = Y X, ()saly

peGx ‘ZG" (1) | AeGy,

for A € G, and p € G=.

2 The groups GH,H/K,,L

Let H be a group. Assume that H is abelian so that there is a well defined map ¢: Gy 1, — H
given by ¢(tpw) = hy---hy, for h = (hy,...h,) € H" and w € S,,. Let K be a subgroup of H
and define a normal subgroup Gy /K, of Gu1, by the exact sequence

{1} — Guarn — Goin — H/K — {1}
thw — h1h2‘--hn.

Thus
Gub/kn = {thw | hihy---h, € K} with order G| = |H" Y| K|n!.

Let H be an abelian group and let H be an index set for the simple H-modules. The dual
group is the set H with the operation induced by tensor product of H-modules. If H = C* then
the irreducible representations of H (as an algebraic group) are

k. * *
X0 (S; - Sk for k € Z, and Xkxt = xF+t,



so that H = Z. If H = (C*)" then H is a lattice,
H>~7"  with X XF =X "
for A\, u € Z™. If H is a finite abelian group then
H2Z/MLOL/rl® - SL/rZ  and HEZ/MLOL/mMLS-- & L)L,
a quotient of the lattice in (777), so that
H={X"|A=\1,..., ) with \; € Z/r;Z}.

Let H be abelian and let H be the dual group of H. The group H acts on the group algebra
of H™ by algebra automorphisms,

XA CH™ — CH™
by > X*(hihg - ho)t(hy,... hn)

and on the group algebra of G 1, = H" xS, by algebra automorphisms,

X)‘: (CGH,I,n e CGH,I,n
thy, oy > X*Mhiho - hy)t,  pow

Let K be a subgroup of H. Then the subalgebra of CG 14, fixed by K is
(CGr 1) = span{t(n,. pyw | X hihs---hy) = 1, for all X € K}.
Then

(CGHJ,n)K = span{t(hh_,’hn)w h1h2 R hn c K}
= CGH,H/K,n? where K = ﬂ)\ék ker(X)‘).

3 The groups G, ,
The group Gy g/ is
denoted G,p, if H is a cyclic group of order r and H/K is order p.

Note that p is not necessarily prime and p divides r. The group G, can be realised as the
group of n X n matrices such that

(a) There is exactly one nonzero entry in each row and each column,

(b) The nonzero entries are rth roots of unity,

(¢) The (r/p)th power of the product of the nonzero entries is 1.
Special cases of these groups are

(1) Gy, the cyclic group of order r,

(2) G2, the dihedral group of order 2r,



3) G1,1n = Sp, the symmetric group, or Weyl group of type A,

(3)
(4) Goo,1,n is the affine symmetric group or the affine Weyl group of type A,
(5) Go2,1,n = WB,y,, the Weyl group of type By,
(6) G22,n = WD, the Weyl group of type D,,
All of these are subgroups of the group
N=(C"xS, of monomial matrices in GL,(C)

(the normalizer of the torus of diagonal matrices in GL,(C)).
Let Z/rZ = {0,1,...,7 — 1} and let £ = ¢*™/". The groups G pn are complex reflection
groups (generated by reflections). The reflections in G, p , are the elements

%

ky—k ¢

tit; " sij, and ;" =t 06p0..0) = I I I I I I,
ith

for<i<j<n,0<k<r—1,and0</¢<(r/p)—1.

Define
3 £ ¢!
tl:II...L 31:><II...I, and
si—(i—l,i)—I II XII, for 2 <i<mn.
The group G, has a presentation by generators ¢}, s1, s2, ..., s, and relations

/P =1 and s2=1, 1<i<n,

5i8; = 8;Si, for 4,j > 2 such that |i — j| > 1,
8i8i+15i = Si4+15iSi+1, for 2 <i <,
§18381 = S38183, and s1sj = sjs1, for j > 3,
PP — o tP o tP P _ 4P ;
1] 5ot 52 = satysoty, and sjty = tys;, for j > 2,
tll’sltzl’sl cee= sltﬁ’sltﬁ) e and §18981 -+ = S28182 - ",
—_—
2(r/p) factors  2(r/p) factors r factors 7 factors

For G 1, the generator s; is unnecessary and, for G ,.,, the generator t] = 1 and is irrelevant.
Note that only the groups 7777 can be generated by n reflections.

4 Representations of the groups Gy /i,
The irreducible representations of the group G 1, can be derived from Clifford theory or via

the tower
{1CG1=G1CG;CG2CGsCG3C

9



where
Gn = GH,l,n =H" % Sn and GnJr% = GHl,n X GH,l,ly

so that G, 1 is a “Levi subgroup” of Gp1. The tower G has
2

vertices on level n: multipartitions A\ = ()‘(a))aef{ with n boxes total,
vertices on level n + %: pairs (A, O, ), where A € Gn, o€ H.

edges from level n to level n + %:

A — (X\,0g) for each a € H.

edges from level n + % to level n:

(11, 0a) — v if v is obtained from p by adding a box to p(®).

For each 0 < m < r — 1 the elements t]*, 1 < i < n, form a conjugacy class in G(r,1,n)
and the elements tlmt;m(i,j), 1<i<j<n, 0<m<r-—1, form another conjugacy class in
G(r,1,n). Thus the elements

n r—1
1
a(m) =)t 0<m<r—1  and  z=-3 Y #'70)),
i=1

m=01<i<j<n

are elements of Z(CG(r,1,n)). So zs(m) and z; must act by a constant on any irreducible
representation S* of G(r,1,n). Define z; = 0,

o= >t i) | - St | = 1 > tht (i, k),  for 2 <k <n, and
5o SR 1<k, 02t
k k—1

Y = (Zu)—(th) =1k, for 1 <k <n.
i=1 i=1

Theorem 4.1. The elements x1,...,x, and y1,...,yn all commute with each other and the

action of these elements on the irreducible representation S* of G(r,1,n) is given by
yrvr = s(T(k))vr and  zpor = c(T(k))vr,
for all standard tableaux T .

Proof. The proof is by induction on k using the relations

r—1

i —t
Tp = SpTE—15k + Zyk;—lskyk_l and Yk = SkYk—15k-
=0

The base cases
zivp =0=1¢c(T(1))vr and yrvr = s(T(1))vr

10



are immediate from the definitions. Then

YrVT = SkYk—1Sk
= s (s(T(k = 1))(sk)rrvr + (1 + (sk)r7)s(T(k))vs, 1)
= 55, (s(T'(k))skvr + (s(T'(k — 1)) — s(T(k)))(sk)rrvT)
= s(T(k))vr + 0 = s(T(k))vp, and

1 r—1
_ 1 -t ¢
TR = | SkTk—15k + . SkYp_ 1Yk | VT
=0

r—1
= s, (c(T(k — D)) (sp)rrvr + e(T(k) (A + (sp)77)vs, T + % > s(T(k - 1))—ZS(T(z¢))%T>
=0

= S (c(T(k))sva + (c(T(k—1)) — e(T(k)))(sk)rror + % i (S(T(k))lg(T(k)))fvT>
=0

_ {Sk(C(T(k))SkUT + (=) + Doz, if s(T'(k)) = s(T(k - 1)),
(

sk(c(T'(k))skvr + (0 + 0)vr, if s(T'(k)) # s(T'(k—1)),

Define an action of H on H by
ha =x, ® a,

and extend this to an action of H on the simple Gf,1,, modules by
mp @ vp —— Mpp O UVxT-
Theorem 4.2.

(a) The simple G 1k, modules are indexed by pairs (\, ) where X € K\én, p € Ky, where
K is the stabilizer of A in K.

(b) The simple Gy p/in module, then for any fized representative A of the coset A,

GO = p, G, where p,= Y XM(kVE,
keK

is the minimal idempotent of Ky corresponding to the module Kf\L

(c) As a (Gy.p/kmn: K)) bimodule

=P e KL
HEK

11
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