The 0 Hecke algebra

Arun Ram
Department of Mathematics
University of Wisconsin

Madison, WI 53706
ram@math.wisc.edu

1 The 0-Hecke algebra

Let W be a Weyl group with simple reflections s1,...,s,. The 0-Hecke algebra is given by
generators 11,...,7, and relations

T? = —T, and 1T, =TT -+, fori#j,

)

m;; factors my; factors
where m;; is the order of s;s; in W. If

ei = —1j, and  fi=1-e=1+1,

then
2 2
e; =ei, fi=Ffi, eiejei---=ejeiej---,  fififi---= fififj-o-.
~— ~—— —_——  ~—
m;; factors m;; factors m;; factors m;; factors

The last identity is proved by noting that a term of the form 1-1---.¢;-1-1_--- in the product
— ~—

k factors B
fifj--=(1—e)(l —ej)- - cancels with the term 1---1-¢;-1-¢e; ---. The remaining terms

B
are products of the form

—1)™iik 10001 eieies - and (=)™ %1 1...1 eee;--- -l
( ) N 7 =] ( ) K ) ey
k factors m;j—k factors k factors m;j—k—1 factors
Thus
fi j"':1_61'_ej+€iej+ej€i_ei6jei_ejeiej+"'+ €i€j -+
——
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my;—1
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k=1
k factors m;; factors
m;;—1
E k
k=1
k factors m;; factors



1.1 Irreducible representations
Let V be a simple H(0) module and let v € V', v # 0. Then
Ceyyv is a submodule of V.

So V = Ceyyv or ey,v = 0. If ey,v = 0 then Ceg,yp,v is a submodule of V', 1 < ¢ < n. So
V = Ces,w,v for some i, or all eg;,,,v = 0. Thus, by descending induction on ¢(w) we find

V = Ceyv, for some w e W.

So V' is one dimensional.
Let J C {1,2,...,n} and define

1, ifieJ,

7. H(0) - C b T(e;) =
X" H(0) y o X (e) 0. ifigJ

This defines 2" irreducible one dimensional representations of H(0). By the argument in the

first paragraph, all irreducible representations of H(0) are one dimensional. The relation e? = ¢;

forces x(e;) = 0 or x(e;) =1 for a one dimensional representation x: H(0) — C. so the
Y7, JC{1,2,...,n}

are a complete set of irreducible H(0) representations.

1.2 The radical of H(0)
For each 4,5, 1 <1i,j <n,i# j,and each J C {1,2,...,n}
X‘](eiej —ejeje;) = 0.
So the element e;e; — e;eje; acts by 0 on every irreducible H (0)-module. So

eiej — eeje; € Rad(H(0)).

If (0)
— H(0
H=— -
<ei€j — €i€j€¢>
and ¢€; is the image of e; in H then
€i€j = €€;€; = €,€j€i€j = -+ = 6267]61 .
——
m;; factors
=ejee; - = = €65,
~—

m;; factors
for i # j. So H is a commutative algebra. In view of the relation &2 = €; the elements
€€y, 1<i4p < < <m, span H

and so dim(H) < 2". Since all 2" irreducible representations x” of H(0) are representations of
H,

dim(H) = 2" and H is semisimple.

So
Rad(H(0)) = (eie; — eseje; | for i # j).



1.3 Projective Indecomposable H(0) modules

ForweWlete,=e¢€;...€
w.
Let J C {1,...,n} and define

and f, = fi, -+ fi, for a reduced decomposition w = s;, - --s;, of

P P

P(J) = H(O)ewjfch7

where wy and w je are the longest elements of the parabolic subgroups W; and W, respectively.
Then P(J) has basis

{ewfuw,e | Dr(w) = J}, where D, (w) = {i | ws; < w}.
The Cartan invariants are

cjix = (multiplicity of L(K) in a composition series of P(.J))
= Card{w € W | D,(w) = J, Dy(w) = K},

where Dy(w) = {i | s;w < w}. Since

ewfuwe = €w + E CyCu, for some ¢, € C,

v>w

it follows that
H(0) = @ P(J), as H(0)-modules.
JC{1,2...,n}

Since P(J) has head isomorphic to

P(J)
Span{€weu, fuye | W > 1}

L(J) =

the P(J) are the projective indecomposable modules (PIMs) for H(0). The matrix
C = (cik) is the Cartan matrix for H(0).

1.4 Decomposition numbers

Let Ly(M) be the irreducible H(g) modules in a form which can be specialized at ¢ = 0. Let
Ly(K) denote the irreducible H(0) module indexed by K. The decomposition numbers are

dyg = (multiplicity of L(K) in a composition series of Ag(A))
= Card{w € F* | Dy(w) = K}.

and
CIK = Z dxjdrr, or, in matrix notation, C =D'D,
A
where
C = (cjk), is the Cartan matrix, and
D = (d\g), is the decomposition matrix.



This can be checked directly when H is the dihedral Hecke algebra by noting that the
irreducible representations of H given in (77?7) specialize at ¢ = 0. They are given explicitly by

—(+€h) (M) (+eR) —(1+€5)  —(+eThHa+e)
k_c¢c—k k_¢c—k\2 k_¢—k k_¢—k)\2
p(Tr) = Eg_fk (§1+§—k) ; p(Tz) = gf_gk (£1+§*’“)
gk_gfk §k—§*k

Then, in this representation,

1+¢F
—T5 projects onto vy = 6’9—15*’“ ,

and Tive = 0. Similarly,

14-£F
—T7 projects onto v = Ekzﬁ_‘; ,

and

Tov =

. _ k
(1— i~ )1+ &%) (e
gh— ¢k 1
which is a multiple of v9 (equal to 0 mod v2). From this one deduces the decomposition matrices
as in (777).
1.5 Cell modules

Let A()\) be the cell module of H(q) indexed by the cell A and let Ag(\) be its specialization at
g = 0. The module Ag(A) has basis

{Cp | we FN where F? is the left cell in W indexed by .

By [KL, 2.3(a)-2.3(c)]

_Cun if Siw < w,
T5,Cw = 1 1 .
qu'{'qQCsiw‘{’qQ Zsiz<z ,U(Z,’LU)CZ, if s;w > w,

where u(z,w) is the coefficient of q%(e(w)_é(z)_l) in the Kazhdan-Lusztig polynomial P, ,,. The
cell decomposition numbers
karx = (multiplicity of Ly(K) in a composition series of Ag(\))
= Card{w € F* | Dy(w) = K}.

The decomposition of W into left and right cells

W« (left cell,right cell)
w o —  (P(w),Qw))

gives the formula????

CIK = Z RAJREAK (C=r'r),
)



where

C = (cjk), is the Cartan matrix, and

k = (kxk), 1is the cell decomposition matrix.
For dihedral groups, Iz(m), the left cells are

— 1 _
1"0 = {1}, ' = {81,8281,515251,82818281, ey "'818281},
N’

) m factors 19
T4 = {5275152,525152,81828182, ey "-828182}, I = {wo}
~—

m factors

and at ¢ = 0 the cell representations have matrices
AYT) = (1), AY(T) = (1),

0 —1
-1 0
A(Th) = 0 Ay (T) = —1

are (m — 1) x (m — 1) matrices with rows and columns indexed by Cy,Ca1, Cia1, . ..

-1 0
0 -1

AJ(Ty) = -1 A(Ty) = 0

are (m — 1) x (m — 1) matrices with rows and columns indexed by Cs, C2, Co12, .. ., and

A () =), AP m) = (0).
Hence

&

ALY & A L1} & =2 L({2}), if m s odd,
B0 = % ({1}) & - 2L({2})7 if m is even,
AR o mELlr({1}) @ mSEL({2)), if m s odd,
N mT_ {1} mglL({Q}), if m is even,
AR = {12

So the decomposition matrix for the cell representations is

when m is odd,

Om‘g‘wﬁ o
[
Ow‘g‘wﬁ o
i
_ oo O O

o O O =



and

1 0 0 0
0 LG -1 0
_ 2 2 :
K= 0 %_1 % 0 when m is even.
0 0 0 1

Thus k = C for dihedral Hecke algebras at ¢ = 0 (but the cell modules at ¢ = 0 are not the
projective indecomposables—the cell modules at ¢ = 0 are semisimple!).
1.6 Examples

For As, with rows indexed by the partitions (3), (21), (1%) and columns indexed by the subsets

0.{1},{2},{1,2}

1 0 0O

D=1011 0

0 0 0 1

and
1 00 1 0 0O
‘ 0101000 0110
D'D = 01 1 0]=

0100001 0110
0 01 00 0 1

For By, with rows indexed by pairs of partitions

((2).0), ((1%),0), ((1),(1), (©,(2), ©,1%)
and columns indexed by the subsets 0, {1}, {2},{1,2},

1 0 00
01 00
D=]0 110 picture of Bruhat graph
0 010
0 001
and

1 00 0O (1] (1) 8 8 1 0 00
01100 0 210

try _ _

DD = 001 10 8 (1) 1 8 101 20
00001 00 0 1 0 001

For I5(5), with rows indexed by
XFoxe X3 X1
and columns indexed by the subsets 0, {1}, {2}, {1, 2},

picture of Bruhat graph

SO O
S = = O
S = = O
_ o O O



and

D'D =

o O O
— = O
e )
o O O
S O =

O R, ~) O

O R = O

o O O

SO O

o N NN O

NN O

—_ o O O

0 01

For G5, with rows indexed by pairs of partitions

ja)

++ +— 1 2 —+ -
X17X17X27X27X17X1a

and columns indexed by the subsets 0, {1}, {2}, {1, 2},

1 0 00
01 00
0O 1 10 .
D= 011 0 picture of Bruhat graph
0 01 O
0 001
and
1 0 0O
100000 01 00 1 0 00
01 1100 01 10 0 3 2 0
try _ _
DD_OOlllO 01 10] (0230
00 00 01 00 10 0 0 0 1
0 0 01
So, in general,
1 0 0 0
0o 3] 175t o0
C = 2 2 for Ir(m),
0 [ (%] o m)
0 0 0 1
If m is odd then
1 0 0
10 0 0 0110
0 mt m o |
C = 0 m=—1 m=1 0 and D= :
S 011
0 0 0 1
0 0 1
with rows indexed by
m—1
XT? X%? X%7 R X22 9 X1_7
and columns indexed by the subsets 0, {1}, {2},{1,2}. If m is even then
1 0 00
01 00
1 0 0 0 01 10
o = m_1 0 B 0110
C = 0 mi1 m 0 and D= :
0 0 0 1 1 1 0
010
00 01




with rows indexed by

++ - 1.2 -1
X1 >X1 s X2s X2s --+5 X

S

—+ N
9 Xl 9 Xl 9

and columns indexed by the subsets 0, {1}, {2}, {1, 2}.

2 Representations of dihedral Hecke algebras
The dihedral Hecke algebra H = Hy, m2(p, q) can be given by generators 17,75 and relations

TE=(p-1)Ti+p, Ti=(q—-1)Tr+q and NI =TT .

m factors m factors

The braid relations give that (1172)™ € Z(H).
If p: H — Mj(C) is an irreducible representation of H then

AT =c-id  and ¢ = det(TyTo)™ = (—p)™(~q)™ = (pa)™
So ¢ = +(pq)™/? and, when p = ¢ = 1, p(s152)™ = 1. So ¢ = (pg)™. So

p(Tngp*%q*%) has root of unity eigenvalues, and
11 o
det(p(TiTep~2¢"2)) = (=p)(~a)p~ "¢~ =1,
since, because p is irreducible p(7T}) must have two distinct eigenvalues which must be p and —1

because of the equation (77 — p)(T1 + 1) = 0, and similarly p(7}) has eigenvalues ¢ and —1. So,

with appropriate choice of basis
k
0 m
(50 £_k>, 0<k<|%]

=

1
p(ThTz) = p2q

If

P(T2)=<Z Z) with a +d =¢q — 1 and ad — bc = —q,

then we may assume that
_(a q+ad

in which case

_ 11 (k0 [(—d d\ _ 11 [(—dek d\ek
) = T =i (50 5"“)(1 q+a>q1:p2q 2(5—§k (q_ZZ-?f)

—a

Thena+d=¢q—1 and p%qfé(—dfk —aé%) = p — 1. Solving for a and d gives

(q— D&+ (p—1p~2g2 (q—1)EF +(p—1)p 3¢
a= and d=
fk _ gfk gfk _ fk
If p = g then
—1)(&F +1 —1)(EF+1
I = —)(m—k P 5_)k(_€k ).
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