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1 The 0-Hecke algebra

Let W be a Weyl group with simple reflections s1, . . . , sn. The 0-Hecke algebra is given by
generators T1, . . . , Tn and relations

T 2
i = −Ti and TiTjTi · · ·︸ ︷︷ ︸

mij factors

= TjTiTj · · ·︸ ︷︷ ︸
mij factors

, for i 6= j,

where mij is the order of sisj in W . If

ei = −Ti, and fi = 1− ei = 1 + Ti,

then
e2
i = ei, f2

i = fi, eiejei · · ·︸ ︷︷ ︸
mij factors

= ejeiej · · ·︸ ︷︷ ︸
mij factors

, fifjfi · · ·︸ ︷︷ ︸
mij factors

= fjfifj · · ·︸ ︷︷ ︸
mij factors

.

The last identity is proved by noting that a term of the form 1 · 1 · · ·︸ ︷︷ ︸
k factors

·ei · 1 · 1 · · ·︸︷︷︸
B

in the product

fifj · · · = (1 − ei)(1 − ej) · · · cancels with the term 1 · · · 1 · ei · 1 · ei · · ·︸︷︷︸
B

. The remaining terms

are products of the form

(−1)mij−k 1 · · · 1︸ ︷︷ ︸
k factors

eiejei · · ·︸ ︷︷ ︸
mij−k factors

and (−1)mij−k−1 1 · · · 1︸ ︷︷ ︸
k factors

eiejei · · ·︸ ︷︷ ︸
mij−k−1 factors

·1.

Thus

fifj · · · = 1− ei − ej + eiej + ejei − eiejei − ejeiej + · · ·+ eiej · · ·︸ ︷︷ ︸
mij factors

= 1 +

mij−1∑
k=1

eiej · · ·︸ ︷︷ ︸
k factors

(−1)k

+ eiej · · ·︸ ︷︷ ︸
mij factors

= 1 +

mij−1∑
k=1

eiej · · ·︸ ︷︷ ︸
k factors

(−1)k

+ ejei · · ·︸ ︷︷ ︸
mij factors

= fjfi · · · .
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1.1 Irreducible representations

Let V be a simple H(0) module and let v ∈ V , v 6= 0. Then

Cew0v is a submodule of V .

So V = Cew0v or ew0v = 0. If ew0v = 0 then Cesiw0v is a submodule of V , 1 ≤ i ≤ n. So
V = Cesiw0v for some i, or all esiw0v = 0. Thus, by descending induction on `(w) we find

V = Cewv, for some w ∈W .

So V is one dimensional.
Let J ⊆ {1, 2, . . . , n} and define

χJ : H(0)→ C by χJ(ei) =

{
1, if i ∈ J ,
0, if i 6∈ J .

This defines 2n irreducible one dimensional representations of H(0). By the argument in the
first paragraph, all irreducible representations of H(0) are one dimensional. The relation e2

i = ei

forces χ(ei) = 0 or χ(ei) = 1 for a one dimensional representation χ : H(0)→ C. so the

χJ , J ⊆ {1, 2, . . . , n}

are a complete set of irreducible H(0) representations.

1.2 The radical of H(0)

For each i, j, 1 ≤ i, j ≤ n, i 6= j, and each J ⊆ {1, 2, . . . , n}

χJ(eiej − eiejei) = 0.

So the element eiej − eiejei acts by 0 on every irreducible H(0)-module. So

eiej − eiejei ∈ Rad(H(0)).

If
H =

H(0)
〈eiej − eiejei〉

and ei is the image of ei in H then

eiej = eiejei = eiejeiej = · · · = eiejei · · ·︸ ︷︷ ︸
mij factors

= ejeiej · · ·︸ ︷︷ ︸
mij factors

= · · · = eiej ,

for i 6= j. So H is a commutative algebra. In view of the relation ei
2 = ei the elements

ei1 · · · eik , 1 ≤ i1 < · · · < ik ≤ n, span H

and so dim(H) ≤ 2n. Since all 2n irreducible representations χJ of H(0) are representations of
H,

dim(H) = 2n and H is semisimple.

So
Rad(H(0)) = 〈eiej − eiejej | for i 6= j〉.
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1.3 Projective Indecomposable H(0) modules

For w ∈W let ew = ei1 . . . eip and fw = fi1 · · · fip for a reduced decomposition w = si1 · · · sip of
w.

Let J ⊆ {1, . . . , n} and define

P (J) = H(0)ewJ fwJc ,

where wJ and wJc are the longest elements of the parabolic subgroups WJ and WJc , respectively.
Then P (J) has basis

{ewfwJc | Dr(w) = J}, where Dr(w) = {i | wsi < w}.

The Cartan invariants are

cJK = (multiplicity of L(K) in a composition series of P (J))
= Card{w ∈W | Dr(w) = J, D`(w) = K},

where D`(w) = {i | siw < w}. Since

ewfwJc = ew +
∑
v>w

cvev, for some cv ∈ C,

it follows that
H(0) =

⊕
J⊆{1,2 ...,n}

P (J), as H(0)-modules.

Since P (J) has head isomorphic to

L(J) ∼=
P (J)

span{ewewJ fwJc | w > 1}

the P (J) are the projective indecomposable modules (PIMs) for H(0). The matrix

C = (cJK) is the Cartan matrix for H(0).

1.4 Decomposition numbers

Let Lq(λ) be the irreducible H(q) modules in a form which can be specialized at q = 0. Let
L0(K) denote the irreducible H(0) module indexed by K. The decomposition numbers are

dλK = (multiplicity of L(K) in a composition series of ∆0(λ))

= Card{w ∈ Fλ | D`(w) = K}.

and
cJK =

∑
λ

dλJdλK , or, in matrix notation, C = DtD,

where

C = (cJK), is the Cartan matrix, and
D = (dλK), is the decomposition matrix.

3



This can be checked directly when H is the dihedral Hecke algebra by noting that the
irreducible representations of H given in (???) specialize at q = 0. They are given explicitly by

ρ(T1) =

−(1+ξk)
ξk−ξ−k

−(1+ξk)(1+ξk)
(ξk−ξ−k)2

ξ−k 1+ξ−k

ξk−ξ−k

 , ρ(T2) =

−(1+ξk)
ξk−ξ−k

−(1+ξ−k)(1+ξ−k)
(ξk−ξ−k)2

ξ−k 1+ξ−k

ξk−ξ−k

 .

Then, in this representation,

−T2 projects onto v2 =

(
1+ξk

ξk−ξ−k

1

)
,

and T1v2 = 0. Similarly,

−T1 projects onto v1 =

(
1+ξk

ξk−ξ−k

−ξ−k

)
,

and

T2v1 =
(1− xi−2k)(1 + ξk)

ξk − ξ−k

(
−(1+ξk)
ξk−ξ−k

1

)
which is a multiple of v2 (equal to 0 mod v2). From this one deduces the decomposition matrices
as in (???).

1.5 Cell modules

Let ∆(λ) be the cell module of H(q) indexed by the cell λ and let ∆0(λ) be its specialization at
q = 0. The module ∆0(λ) has basis

{Cw | w ∈ Fλ} where Fλ is the left cell in W indexed by λ.

By [KL, 2.3(a)-2.3(c)]

TsiCw =

{
−Cw, if siw < w,
qCw + q

1
2 Csiw + q

1
2
∑

siz<z µ(z, w)Cz, if siw > w,

where µ(z, w) is the coefficient of q
1
2
(`(w)−`(z)−1) in the Kazhdan-Lusztig polynomial Pz,w. The

cell decomposition numbers

κλK = (multiplicity of L0(K) in a composition series of ∆0(λ))

= Card{w ∈ Fλ | D`(w) = K}.

The decomposition of W into left and right cells

W
∼←→ (left cell, right cell)

w 7−→ (P (w), Q(w))

gives the formula????
cJK =

∑
λ

κλJκλK ,
(
C = κtκ

)
,
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where

C = (cJK), is the Cartan matrix, and
κ = (κλK), is the cell decomposition matrix.

For dihedral groups, I2(m), the left cells are

Γ∅ = {1}, Γ1 = {s1, s2s1, s1s2s1, s2s1s2s1, . . . , · · · s1s2s1︸ ︷︷ ︸
m factors

},

Γ2 = {s2, s1s2, s2s1s2, s1s2s1s2, . . . , · · · s2s1s2︸ ︷︷ ︸
m factors

}, Γ12 = {w0}

and at q = 0 the cell representations have matrices

∆∅
0(T1) = (−1), ∆∅

0(T2) = (−1),

∆1
0(T1) =


0
−1

0
−1

. . .

 ∆1
0(T2) =


−1

0
−1

0
. . .


are (m− 1)× (m− 1) matrices with rows and columns indexed by C1, C21, C121, . . .,

∆2
0(T1) =


−1

0
−1

0
. . .

 ∆2
0(T2) =


0
−1

0
−1

. . .


are (m− 1)× (m− 1) matrices with rows and columns indexed by C2, C12, C212, . . ., and

∆{1,2}
0 (T1) = (0), ∆{1,2}

0 (T2) = (0).

Hence

∆0(∅) ∼= L(∅),

∆{1}
0
∼=

{
m−1

2 L({1})⊕ m−1
2 L({2}), if m is odd,

m
2 L({1})⊕ m−2

2 L({2}), if m is even,

∆{2}
0
∼=

{
m−1

2 L({1})⊕ m−1
2 L({2}), if m is odd,

m−2
2 L({1})⊕ m−1

2 L({2}), if m is even,

∆{1,2}
0

∼= L({1, 2}).

So the decomposition matrix for the cell representations is

κ =


1 0 0 0
0 m−1

2
m−1

2 0
0 m−1

2
m−1

2 0
0 0 0 1

 when m is odd,
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and

κ =


1 0 0 0
0 m

2
m
2 − 1 0

0 m
2 − 1 m

2 0
0 0 0 1

 when m is even.

Thus κ = C for dihedral Hecke algebras at q = 0 (but the cell modules at q = 0 are not the
projective indecomposables–the cell modules at q = 0 are semisimple!).

1.6 Examples

For A2, with rows indexed by the partitions (3), (21), (13) and columns indexed by the subsets
∅, {1}, {2}, {1, 2},

D =

1 0 0 0
0 1 1 0
0 0 0 1


and

DtD =


1 0 0
0 1 0
0 1 0
0 0 1


1 0 0 0

0 1 1 0
0 0 0 1

 =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1


For B2, with rows indexed by pairs of partitions

((2), ∅), ((12), ∅), ((1), (1)), (∅, (2)), (∅, (12))

and columns indexed by the subsets ∅, {1}, {2}, {1, 2},

D =


1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 picture of Bruhat graph

and

DtD =


1 0 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 2 1 0
0 1 2 0
0 0 0 1


For I2(5), with rows indexed by

χ+
1 , χ1

2, χ2
2, χ−1 ,

and columns indexed by the subsets ∅, {1}, {2}, {1, 2},

D =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 picture of Bruhat graph
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and

DtD =


1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1




1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

 =


1 0 0 0
0 2 2 0
0 2 2 0
0 0 0 1


For G2, with rows indexed by pairs of partitions

χ++
1 , χ+−

1 , χ1
2, χ2

2, χ−+
1 , χ−−1 ,

and columns indexed by the subsets ∅, {1}, {2}, {1, 2},

D =



1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

 picture of Bruhat graph

and

DtD =


1 0 0 0 0 0
0 1 1 1 0 0
0 0 1 1 1 0
0 0 0 0 0 1




1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 3 2 0
0 2 3 0
0 0 0 1


So, in general,

C =


1 0 0 0
0 bm2 c bm−1

2 c 0
0 bm−1

2 c bm2 c 0
0 0 0 1

 for I2(m),

If m is odd then

C =


1 0 0 0
0 m−1

2
m−1

2 0
0 m−1

2
m−1

2 0
0 0 0 1

 and D =


1 0 0 0
0 1 1 0
...

...
...

...
0 1 1 0
0 0 0 1


with rows indexed by

χ+
1 , χ1

2, χ2
2, . . . , χ

m−1
2

2 , χ−1 ,

and columns indexed by the subsets ∅, {1}, {2}, {1, 2}. If m is even then

C =


1 0 0 0
0 m

2
m
2 − 1 0

0 m
2 − 1 m

2 0
0 0 0 1

 and D =



1 0 0 0
0 1 0 0
0 1 1 0
0 1 1 0
...

...
...

...
0 1 1 0
0 0 1 0
0 0 0 1
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with rows indexed by

χ++
1 , χ+−

1 , χ1
2, χ2

2, . . . , χ
m
2
−1

2 , χ−+
1 , χ−−1 ,

and columns indexed by the subsets ∅, {1}, {2}, {1, 2}.

2 Representations of dihedral Hecke algebras

The dihedral Hecke algebra H = Hm,m,2(p, q) can be given by generators T1, T2 and relations

T 2
1 = (p− 1)T1 + p, T 2

2 = (q − 1)T2 + q, and T1T2T1 · · ·︸ ︷︷ ︸
m factors

= T2T1T2 · · ·︸ ︷︷ ︸
m factors

.

The braid relations give that (T1T2)m ∈ Z(H).
If ρ : H →M2(C) is an irreducible representation of H then

ρ(T1T2)m = c · id and c2 = det(T1T2)m = (−p)m(−q)m = (pq)m.

So c = ±(pq)m/2 and, when p = q = 1, ρ(s1s2)m = 1. So c = (pq)m. So

ρ(T1T2p
− 1

2 q−
1
2 ) has root of unity eigenvalues, and

det(ρ(T1T2p
− 1

2 q−
1
2 )) = (−p)(−q)p−1q−1 = 1,

since, because ρ is irreducible ρ(T1) must have two distinct eigenvalues which must be p and −1
because of the equation (T1 − p)(T1 + 1) = 0, and similarly ρ(T1) has eigenvalues q and −1. So,
with appropriate choice of basis

ρ(T1T2) = p
1
2 q

1
2

(
ξk 0
0 ξ−k

)
, 0 < k < bm2 c.

If

ρ(T2) =
(

a b
c d

)
with a + d = q − 1 and ad− bc = −q,

then we may assume that

ρ(T2) =
(

a q + ad
1 d

)
,

in which case

ρ(T1) = ρ(T1T2T
−1
2 ) = p

1
2 q

1
2

(
ξk 0
0 ξ−k

)(
−d q + ad
1 −a

)
q−1 = p

1
2 q−

1
2

(
−dξk (q + ad)ξk

ξ−k −aξ−k

)
Then a + d = q − 1 and p

1
2 q−

1
2 (−dξk − aξ−k) = p− 1. Solving for a and d gives

a =
(q − 1)ξk + (p− 1)p−

1
2 q

1
2

ξk − ξ−k
and d =

(q − 1)ξ−k + (p− 1)p−
1
2 q

1
2

ξ−k − ξk

If p = q then

a =
(q − 1)(ξk + 1)

ξk − xi−k
and d =

(q − 1)(ξ−k + 1)
ξ−k − ξk

.
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