This page contains the following errors:

error on line 124 at column 69: Entity 'nbsp' not defined error on line 131 at column 73: Entity 'nbsp' not defined error on line 138 at column 67: Entity 'nbsp' not defined error on line 145 at column 71: Entity 'nbsp' not defined error on line 168 at column 21: Entity 'nbsp' not defined error on line 173 at column 39: Entity 'nbsp' not defined error on line 174 at column 45: Entity 'nbsp' not defined error on line 225 at column 10: Entity 'sum' not defined error on line 227 at column 21: Entity 'isin' not defined error on line 232 at column 11: Entity 'Zopf' not defined error on line 233 at column 12: Entity 'alpha' not defined error on line 240 at column 11: Entity 'hfr' not defined error on line 249 at column 22: Entity 'isin' not defined error on line 254 at column 11: Entity 'Ropf' not defined error on line 255 at column 12: Entity 'alpha' not defined error on line 263 at column 22: Entity 'lang' not defined error on line 270 at column 11: Entity 'hfr' not defined error on line 273 at column 19: Entity 'times' not defined error on line 275 at column 12: Entity 'hfr' not defined error on line 278 at column 19: Entity 'rarr' not defined error on line 279 at column 13: Entity 'Ropf' not defined error on line 284 at column 22: Entity 'lang' not defined error on line 287 at column 13: Entity 'alpha' not defined error on line 293 at column 19: Entity 'isin' not defined error on line 294 at column 12: Entity 'Zopf' not defined

Below is a rendering of the page up to the first error.

Indexings of canonical bases: Lyndon words, MV polytopes and the path model

Indexings of canonical bases: Lyndon words, MV polytopes and the path model

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au
and

Department of Mathematics
University of Wisconsin, Madison
Madison, WI 53706 USA
ram@math.wisc.edu

Last updates: 8 April

Affine Weyl group

Let Q=iIi and*=iIi with a symmetric bilinear form ,:** given by values i, so that A=iji=2iii is the Cartan matrix of a symmetrisable Kac-Moody Lie algebra . Let +=positive roots of.

The Weyl group is W0=si|iIGL* with si:**-ii.

The affine Weyl group is W=W0*Q=wX|wW0,Q with X:**+.

The alcoves are the connected components of *\+,j+jd+jd=*|+j=0.

Example: *=+-,=++- Each alcove has two types of address, wX and si1,sil.

+=+-++- since GL=+-+- if +<-.

W is generated by s0 and si,iI where s0=Xs and Walcoves W0alcoves in the 0-hexagon Qhexagons.

Chevalley groups G

G is generated by "elementary matrices" XfandX-f,f,+ with relations (see Steinberg of Parkinson-Schwer-Ram) where XfX--f-1Xf=hfn and hfhf=h+f,for,Q.

The loop group is Gt where t=a-lt-l+a-l+1t-l+1+|ai,l.

Define X+jdc=X ctjt=ht-1,forQ, n+jd=X+jd1X--jd-1X+jd1.

Let X0c=X-+dc,Xic=Xic, n0=n-+dc,ni=ni.

Let [[t]]=a0+a1t+a2t2+|ai.

Example I =+-,A=2-1-12.

G=SL3 is generated by X+f=1f0010001X-f=10001f001X+-f=10f010001 X-+f=100f10001X--f=100010f01X-+--f=100010f01 Q=m++n-|m,n and t=hm++n-t-1=t-m000tm-n000tn,=m++n-. X0c=X-+dc=X-ct=1000 0ct01, n0=00-t-10 0t01n+=010-1 0001n-=1000 10-10

MV intersections and MV cycles

G=Gt|K=G[[t]]t=0G||I=B=Xchc|+,c,Q

G/K is the loop Grassmannian.

G/I is the affine flag variety.

G=wWIwIG=+KtK G=vWU-vIG=U-tK where U-=X-