Fields and Ordered Fields

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 5 June 2012

Fields and Ordered Fields

A field is a set ๐”ฝ with operations +: ๐”ฝร—๐”ฝ โŸถ ๐”ฝ (a,b) โŸผ a+b and ยท: ๐”ฝร—๐”ฝ โŸถ ๐”ฝ (a,b) โŸผ aยทb=ab such that

  1. If a,b,cโˆˆ๐”ฝ then (a+b)+c =a+(b+c).
  2. If a,bโˆˆ๐”ฝ then a+b=b+a.
  3. There exists 0โˆˆ๐”ฝ such that if aโˆˆ๐”ฝ then 0+a=a+0 =a.
  4. If aโˆˆ๐”ฝ then there exists -aโˆˆ๐”ฝ such that a+(-a) =(-a) +a=0.
  5. If a,b,cโˆˆ๐”ฝ then (ab)c =a(bc).
  6. If a,b,cโˆˆ๐”ฝ then (a+b)c =ac+bc and c(a+b) =ca+cb.
  7. There exists 1โˆˆ๐”ฝ such that if aโˆˆ๐”ฝ then 1ยทa =aยท1=a.
  8. If aโˆˆ๐”ฝ and aโ‰ 0 then there exists a-1โˆˆ๐”ฝ such that aยทa-1 =a-1ยทa =1.
  9. If a,bโˆˆ๐”ฝ then ab=ba.

An ordered field is a field ๐”ฝ with a total order โ‰ค such that

  1. If a,b,c โˆˆ๐”ฝ and aโ‰คb then a+cโ‰คb+c, and
  2. If a,bโˆˆ๐”ฝ and aโ‰ฅ0 and bโ‰ฅ0 then abโ‰ฅ0,
where a<b if aโ‰คb and aโ‰ b, aโ‰ฅb if aโ‰ฎb, and a>b if aโ‰ฐb.

The absolute value on ๐”ฝ is the function |n|: ๐”ฝโ†’ ๐”ฝโ‰ฅ0 given by |x| =sup{x, -x}.

Let ๐”ฝ be an ordered field with order โ‰ค. Then

  1. If aโˆˆ๐”ฝ and a>0 then -a<0.
  2. If aโˆˆ๐”ฝ and a>0 then a-1>0.
  3. If a,bโˆˆ๐”ฝ and a>0 and b>0 then ab>0.
  4. If aโˆˆ๐”ฝ then a2โ‰ฅ0.
  5. If a,bโˆˆ๐”ฝ and aโ‰ฅ0 and bโ‰ฅ0 then aโ‰คb if and only if a2โ‰คb2.
  6. 1โ‰ฅ0.
  7. If xโ‰ฅ0 and yโ‰ฅ0 then x+yโ‰ฅ0.

Notes and References

These fundamental definitions and properties of ordered ordered fields are too often assumed to be true by osmosis. The basic properties of ordered fields appearing in Proposition 1.1??? are used incessantly in working with real numbers.

The definition of ordered fields is given in [Bou, Ch. VI ยง 2 no. 3 Definition 3]. The definition of absolute value is given in [Bou, Alg. Ch. VI ยง 1 no. 11 Definition 4]. These definitions also appear in the intorduction to the real numbers given in [Bou, Top. Ch. 4 ยง 1].

References

[Bou] N. Bourbaki, Algebra, Chapter 6, Masson????? MR?????.

page history