Schubert classes and products in rank 2

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 16 September 2012

Schubert classes and products in rank 2

In rank 2, W0 is a dihredral group generated by s1 and s2 with si2=1 and

s1α2 = jα1+α2, s2α1 = α1+α2, with j= { 1 , in TypeA2 , 2 , in TypeB2 , 3 , in TypeG2 , and b1 bs1 bs2 bs1s2 bs2s1 bs1s2s1 bs2s1s2 bs1s2s1s2 bs2s1s2s1 bs1s2s1s2s1 bs2s1s2s1s2 bwbasis y-α1 yα1 y-s2α1 ys2α1 y-s1s2α1 ys1s2α1 y-s2s1s2α1 ys2s1s2α1 y-s1s2s1s2α1 ys1s2s1s2α1 y-s2s1s2s1s2α1 x-α1 y-α2 y-s1α2 yα2 y-s2s1α2 ys1α2 y-s1s2s1α2 ys2s1α2 y-s2s1s2s1α2 ys1s2s1α2 y-s1s2s1s2s1α2 ys2s1s2s1α2 x-α2

Let

YR- = αR+ y-α, and Δ121 = yR- y-α1 y-α2 y-s1α2 ( B1y-α2 +p ( yα1, y-α1 ) y-α2 ) , Δ212 = yR- y-α2 y-α1 y-s2α1 ( B2y-α1 +p ( yα2, y-α2 ) y-α1 ) ,

The Schubert and Bott–Samelson cycles for rank 2 and length 1 are given

yR- 00 00 00 00 [X1]= [Zpt] yR-y-α1 yR-y-α10 00 00 00 [Xs1]= [Z1] yR-y-α2 0yR-y-α2 00 00 00 [Xs2]= [Z2]

The remaining Schubert and Bott–Samelson cycles for rank 2 and length 3 are given in Figure 3.

where

Δ212 = yR- ( 1 y-α2 y-α1 y-α2 + 1 y-s2α2 y-s2α1 y-α2 ) = yR- y-α2 ( 1 y-α2 y-α1 - 1-p ( yα2, y-α2 ) y-α2 y-α2 y-s2α1 ) = yR- y2-α2 ( y-s2α1- y-α1+p ( yα2, y-α2 ) y-α1 y-α2 y-α1 y-s2α1 ) = yR- y-α2 y-α1 y-s2α1 ( B2y-α1+p ( yα2, y-α2 ) y-α1 ) ,

and, in HT, B2y-α1+p ( yα2, y-α2 ) y-α1= -(α1+α2) +α1 -α2 +0=1, and, in KT, B2y-α1+p ( yα2, y-α2 ) y-α1= 1- e -(α1+α2) - ( 1- e-α1 ) 1-e-α2 +1-e-α1=1. Then

[Z121] = [Xs1s2s1] + Δ121-N y-α1 [Xs1],

where

Δ121-N y-α1 = yR- y2-α1 y-α2 y-s1α2 ( B1y-α2+p ( yα1, y-α1 ) y-α2-1 ) ,

yR- y-α1 y-α2 yR- y-α1 y-α2 yR- y-α2 y-s2α1 yR- y-α2 y-s2α1 0 00 00 [Xs1s2]= [Z12] yR- y-α1 y-α2 yR- y-α1 y-s1α2 yR- y-α1 y-α2 0 yR- y-α1 y-s1α2 00 00 [Xs2s1]= [Z21] NyR- y-α1 y-α2 y-s1α2 NyR- y-α1 y-α2 y-s1α2 yR- y-α1 y-α2 y-s2α1 yR- y-α1 y-α2 y-s2α1 yR- y-α1 y-s1α2 y-s1s2α1 yR- y-α1 y-s1α2 y-s1s2α1 0 00 [Xs1s2s1] yR- y-α1 y-α2 y-s2α1 yR- y-α1 y-α2 y-s1α2 yR- y-α1 y-α2 y-s2α1 yR- y-α2 y-s1α1 y-s2s1α2 yR- y-α1 y-α2 y-s1α2 0 yR- y-α2 y-s2α1 y-s2s1α2 00 [Xs2s1s2] Δ121 Δ121 yR- y-α1 y-α2 y-s2α1 yR- y-α1 y-α2 y-s2α1 yR- y-α1 y-s1α2 y-s1s2α1 yR- y-α1 y-s1α2 y-s1s2α1 0 00 [Z121] Δ212 yR- y-α1 y-α2 y-s1α2 Δ212 yR- y-α2 y-s1α1 y-s2s1α2 yR- y-α1 y-α2 y-s1α2 0 yR- y-α2 y-s2α1 y-s2s1α2 00 [Z212] Figure 2: Schubert and Bott–Samelson cycles for rank 2 and length3.

CAN WE EXPAND THIS RIGHT HAND SIDE WITH (4.4). IN KT,

N = B1y-α2+p ( yα1, y-α1 ) y-α2= y-s1α2 -y-α2 y-α1 +p ( yα1, y-α1 ) y-α2 = { 1 , in TypeA2 , 1+e(-α1+α2) , in TypeB2 , 1+e-(α1+α2) +e-(2α1+α2) , in TypeG2 ,

Pieri–Chevalley formulas: Using fAi=Ai (sif)+ Bif gives

xλ[X1] = yλ[X1], xλ[Xs1] = xλA1 [Zpt]= ( A1xs1λ+ (B1xλ) ) [Zpt]= ys1λ [Xs1]+ (B1yλ) [X1], xλ[Xs2] = ys2λ [Xs2]+ (B2yλ) [X2], xλ[Xs1s2] = xλA1A2 [Zpt]= ( A1xs1λ+ (B1xλ) ) A2[Zpt], = ( A1A2 xs2s1λ +A1 (B2xs1λ) +A2 (s2B1xλ)+ (B2B1xλ) ) [Zpt], = ys2s1λ [Xs1s2]+ (B2ys1λ) [Xs1]+ (s2B1yλ) [Xs2]+ (B2B1yλ) [Xs1], xλ[Xs2s1] = ys1s2λ [Xs2s1]+ (B1ys2λ) [Xs2]+ (s1B2yλ) [Xs1]+ (B1B2yλ) [Xs1],

and, in Type A2, (CAN WE GET THE REST OF THESE FOR TYPE B2??)

xλ [Xs1s2s1] = xλ·1 = ys1s2s1λ+ (B1ys2s1λ) [Xs1s2]+ (B2ys1s2λ) [Xs2s1] + γ1 y-(α1+α2) y-α2 [Xs1]+ γ2 y-(α1+α2) y-α1 [Xs2] ys1s2s1λ -ys1s2λ- ys2s1λ+ ys1λ+ ys2λ-yλ y-α1 y-α2 y-(α1+α2) [X1],

where α1+α2=s1α2 =s2α1, s1s2s1= s2s1s2 and

γ1= ys1λ- ys1s2λ- ( B1 ys2s1λ ) y-(α1+α2), γ2= ys2λ- ys2s1λ- ( B2 ys1s2λ ) y-(α1+α2).

Schubert products in rank 2

Let

f=wW0 fwbw.

Then

f[Xs1] = f1[Xs1], f[Xs1] = fs1 [Xs1]+ (f1-fs1) [Xs1]1 [X1]1 [X1]= fs1 [Xs1]+ ( f1-fs1 y-α1 ) [X1], f[Xs1s2] = fs1s2 [Xs1s2]+ ( fs1- fs1s2 ) [Xs1s2] s1 [Xs1] s1 [Xs1]+ ( fs2- fs1s2 ) [Xs1s2]s2 [Xs2]s2 [Xs2] + ( ( f1- fs1s2 ) [Xs1s2]1 [X1]1 - ( fs1- fs1s2 ) [Xs1s2]s1 [Xs1]s1 [Xs1]1 [X1]1 - ( fs2- fs1s2 ) [Xs1s2]s2 [Xs1]s2 [Xs2]1 [X1]1 ) [X1], = fs1s2 [Xs1s2] + fs1- fs1s2 y-α2 [Xs1]+ fs2- fs1s2 y-s2α1 [Xs2] + ( f1- fs1s2 y-α1 y-α2 - fs1- fs1s2 y-α1 y-α2 - fs2- fs1s2 y-s2α1 y-α2 ) [X1], = fs1s2 [Xs1s2] + fs1- fs1s2 y-α2 [Xs1] + fs2- fs1s2 y-s2αa [Xs2] + ( f1-fs1 y-α1 y-α2 - fs2- fs1s2 y-s2α1 y-α2 ) [X1] , = fs1s2 [Xs1s2] + fs1- fs1s2 y-α2 [Xs1] + fs2- fs1s2 y-s2α1 [Xs2] +1y-α2 ( (f1-fs1) y-α1 - ( fs2- fs1s2 ) y-s2α1 ) [X1], f[Xs1s2s1] = fs1s2s1 [Xs1s2s1] + ( fs1s2- fs1s2s1 ) [Xs1s2s1] s1s2 [Xs1s2] s1s2 [Xs1s2] + ( fs2s1- fs1s2s1 ) [Xs1s2s1] s2s1 [Xs2s1] s2s1 [Xs1s2] + ( ( fs1- fs1s2s1 ) [Xs1s2s1] s1 [Xs1] s1 - ( fs1s2- fs1s2s1 ) [Xs1s2s1] s1s2 [Xs1s2] s1s2 [Xs1s2] s1 [Xs1] s1 - ( fs2s1- fs1s2s1 ) [Xs1s2s1] s2s1 [Xs2s1] s2s1 [Xs2s1] s1 [Xs1] s1 ) [Xs1] + ( ( fs2- fs1s2s1 ) [Xs1s2s1] s2 [Xs2] s2 - ( fs1s2- fs1s2s1 ) [Xs1s2s1] s1s2 [Xs1s2] s1s2 [Xs1s2] s2 [Xs2] s2 - ( fs2s1- fs1s2s1 ) [Xs1s2s1] s2s1 [Xs2s1] s2s1 [Xs2s1] s2 [Xs2] s2 ) [Xs2] +(STUFF) [X1] = fs1s2s1 [Xs1s2s1] + ( fs1s2- fs1s2s1 ) y-α1 [Xs1s2] + ( fs1s2- fs1s2s1 ) y-s1s2α1 [Xs2s1] + ( N ( fs1- fs1s2s1 ) y-α2 y-s1α2 - ( fs1s2- fs1s2s1 ) y-α1 y-α2 - ( fs2s1- fs1s2s1 ) y-s1s2α1 y-s1α2 ) [Xs1] + ( ( fs2- fs1s2s1 ) y-α1 y-s2α1 - ( fs1s2- fs1s2s1 ) y-α1 y-s2α1 - ( fs2s1- fs1s2s1 ) y-α1 y-s1s2α1 ) [Xs2] +(STUFF)[X1] = fs1s2s1 [Xs1s2s1] + ( fs1s2- fs1s2s1 ) y-α1 [Xs1s2] + ( fs1s2- fs1s2s1 ) y-s1s2α1 [Xs2s1] + ( N ( fs1- fs1s2s1 ) y-α2 y-s1α2 - ( fs1s2- fs1s2s1 ) y-α1 y-α2 - ( fs2s1- fs1s2s1 ) y-s1s2α1 y-s1α2 ) [Xs1] + ( ( fs2- fs1s2 ) y-α1 y-s2α1 - ( fs2s1- fs1s2s1 ) y-α1 y-s1s2α1 ) [Xs2] +(STUFF)[X1]

where STUFF is obtained by multiplying both sides by [X1] and solving.

These formulas allow for quick computation of Schubert products in rank 2. The formulas up to length 3 are below. It is straightforward to check that these generalise the corresponding computations for equivalent cohomology and equivariant K–theory which were given in [GR, §5]. Since [Xs1s2s1s2] = [Xs2s1s2s1] =1 in Type B2, these calculations completely determine all Schubert products generalised equivariant Schubert products for Types A2 and B2. It is interesting to note that the terms in the products above are naturally indexed by chains in the Bruhat order (compare to, for example, see REFERENCE????).

The Schubert products are

[X1]2= yR-[X1], [X1][Xs1]= yR-y-α1 [X1], [X1][Xs2]= yR-y-α2 [X1], [X1] [Xs1s2]= yR- y-α1 y-α2 [X1], [X1] [Xs2s1]= yR- y-α2 y-α1 [X1], [X1] [Xs1s2s1]= NyR- y-α1 y-α2 y-s1α2 [X1], [X1] [Xs2s1s2]= yR- y-α2 y-α1 y-s2α1 [X1],

The Schubert products are

[Xs1]2= yR- y-α1 [Xs1], [Xs1] [Xs1s2]= yR- y-α1 y-α2 [Xs1], [Xs1] [Xs1s2s1] = NyR- y-α1 y-α2 y-s1α2 [Xs1],

[Xs1] [Xs2] = yR- y-α1 y-α2 [X1], [Xs1] [Xs2s1] = yR- y-α1 y-s1α2 [Xs1]+ yR- y-α2 y-α1 y-s1α2 ( y-s1α2 -y-α2 y-α1 ) [X1], [Xs1] [Xs2s1s2] = yR- y-α2 y-α1 y-s1α2 [Xs1]+ yR- y-α1 y-α2 y-s1α2 y-s2α1 ( y-s1α2- y-s2α1 y-α1 ) [X1],

The next Schubert products are

[Xs2]2= yR- y-α2 [Xs2], [Xs2] [Xs2s1]= yR- y-α2 y-α1 [Xs2], [Xs2] [Xs2s1s2]= yR- y-α2 y-α1 y-s2α1 [Xs2],

[Xs2] [Xs1s2] = yR- y-α2 y-s2α1 [Xs2]+ yR- y-α1 y-α2 y-s2α1 ( y-s2α1 -y-α1 y-α2 ) [X1], [Xs2] [Xs1s2s1] = yR- y-α1 y-α2 y-s2α1 [Xs2]+ yR- y-α1 y-α22 ( N y-s1α2 - 1y-s2α1 ) [X1],

The next Schubert products are

[Xs1s2]2 = yR- y-α2 y-s2α1 [Xs1s2]+ yR- y-α2 y-α1 y-s2α1 ( y-s2α1- y-α1 y-α2 ) [Xs1], [Xs1s2] [Xs2s1] = yR- y-α1 y-α2 y-s1α2 [Xs1]+ yR- y-α1 y-α2 y-s2α1 [Xs2] + yR- y-α1 y-α2 y-s1α2 y-s2α1 ( ( y-s2α1 -y-α1 y-α2 ) ( y-s1α2 -y-α2 y-α1 ) -1 ) [X1], [Xs1s2] [Xs1s2s1] = yR- y-α1 y-α2 y-s2α1 [Xs1s2]+ yR- y-α1 y-α22 ( N y-s1α2 - 1 y-s2α1 ) [Xs1] [Xs1s2] [Xs2s1s2] = yR- y-α2 y-s2α1 y-s2s1α2 [Xs1s2]+ yR- y-α22 ( 1 y-α1 y-s1α2 - 1 y-s2α1 y-s2s1α2 ) [Xs1] + yR- y-s2α12 y-α2 ( 1 y-α1 - 1 y-s2s1α2 ) [Xs2] + yR- y-α22 ( 1 y-α12 y-s2α1 - 1 y-s2α12 y-α1 - 1 y-α12 y-s1α2 - 1 y-s2α12 y-s2s1α2 ) [X1],

The next Schubert products are

[Xs2s1]2 = yR- y-α1 y-s1α2 [Xs2s1] + yR- y-α1 y-α2 y-s1α2 ( y-s1α2 -y-α2 y-α1 ) [Xs2], [Xs2s1] [Xs1s2s1] = yR- y-α1 y-s1α2 y-s1s2α1 [Xs2s1]+ yR- y-α1 y-s1α22 ( 1y-α2- 1y-s1s2α1 ) [Xs1] + yR- y-α12 ( 1 y-s2α1 y-α2 - 1 y-s1s2α1 y-s1α2 ) [Xs2]+ (STUFF) [Xs1], [Xs2s1] [Xs2s1s2] = yR- y-α2 y-α1 y-s1α2 [Xs2s1]+ yR- y-α2 y-α12 ( 1 y-s2α1 - 1 y-s1α2 ) [Xs2],

The next Schubert products are

[Xs1s2s1]2 = yR- y-α1 y-s1α2 y-s1s2α1 [Xs1s2s1] + yR- y-α12 ( 1 y-α2 y-s2α1 - 1 y-s1α2 y-s1s2α1 ) [Xs1s2] + yR- y-α1 y-α2 ( N2 y-α2 y-s1α22 - N y-s1α22 y-s1s2α1 - 1 y-α1 y-α2 y-s2α1 + 1 y-α1 y-s1α2 y-s1s2α1 ) [X1], [Xs1s2s1] [Xs2s1s2] = yR- y-α1 y-α2 y-s2α1 y-s2s1α2 [Xs1s2]+ yR- y-α1 y-α2 y-s1α2 y-s1s2α1 [Xs2s1] + yR- y-α1 y-α2 ( N y-α2 y-s1α22 - 1 y-α2 y-s2α1 y-s2s1α2 - 1 y-s1α22 y-s1s2α1 ) [Xs1] + yR- y-α1 y-α2 ( 1 y-α1 y-s2α12 - 1 y-α1 y-s1α2 y-s1s2α1 - 1 y-s2α12 y-s2s1α2 ) [Xs2] [Xs2s1s2]2 = yR- y-α2 y-s2α1 y-s2s1α2 [Xs2s1s2] + yR- y-α22 ( 1 y-α1 y-s1α2 - 1 y-s2α1 y-s2s1α2 ) [Xs2s1] + yR- y-α1 y-α2 ( 1 y-α1 y-s2α12 - 1 y-s2α12 y-s2s1α2 - 1 y-α1 y-α2 y-s1α2 + 1 y-α2 y-s2α1 y-s2s1α2 ) [X1],

page history