The group Sp4 and the Lie algebra 𝔰𝔭4

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 12 May 2012

The group Sp4

The symplectic group Sp4() is Sp4() = {g GL4() | gtJg=J }, where J= ( 0 I2 -I2 0 ) and I2 = ( 1 0 0 1 ) . Let 𝔤= 𝔰𝔭4() be the Kac-Moody algebra with generalised Cartan matrix A= ( 2-2 -12 ) . Then 𝔤= 𝔰𝔭4() ={ xMat4() | Jx+xtJ =0 } is the span of the elements Xα1 =E12-E43 , Xα2 =E24, Xα1 +α2 = E14+E23, X2α1+α2 =E13, X-α1 =E21-E34 , X-α2 =E42, X-α1-α2 =E41+E32 , X-2α1-α2 =E31, Hα1 = E11-E22 -E33+E44 , and Hα2 =E22-E44 , where Eij is the 4×4 matrix with a 1 in the ij-entry and zeros elsewhere. Here the root system R is of typeC2, with R+ ={ α1= e1-e2, α2= 2e2, α1+α2, 2α1+α2 }. Let V be the 4-dimensional representation of 𝔰𝔭4() on column vectors. Therefore xα1(f) = ( 1f00 0100 0010 00-f1 ) , xα2(f) = ( 1000 010f 0010 0001 ) , xα1 +α2 (f) = ( 100f 01f0 0010 0001 ) , and x2 α1+α2 (f) = ( 10f0 0100 0010 0001 ) . We compute nα1(f) = ( 0f00 -f-1 000 000 f-10 0-f0 ), and nα2(f) = ( 1000 000f 0010 0 -f-10 0 ), and therefore hα1 (f) = ( f000 0f-1 0000 f-10 000f ), and hα2 (f) = ( 1000 0f00 0010 000 f-1 ), and G=Sp4. The nontrivial commutator relations are xα1 (f1) xα2 (f2) = xα2 (f2) xα1 (f1) xα1+α2 (f1 f2) x2α1 +α2 (-f12 f2) xα1 (f1)x α1 +α2 (f2) = xα1 +α2 (f2) xα1 (f1) x2α1 +α2 (2f1 f2).

Notes and References

These notes are adapted from the lecture notes of Arun Ram on representation theory, from 2008.

References

References?

page history