Representation Theory Lecture 1

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 26 May 2013

Lecture 1

A vector space is a set of linear combinations of a basis,

V=span{b1,,bn}.

Example: TL3 has basis

, , , , and 3 +4 +2·3 TL3.

An algebra is a vector space A with a product AAA such that

(a) (a1a2)a3= a1(a2a3) for a1,a2,a3A, and
(b) There exists 1A such that 1·a=a·1=a, foraA.

Example: Define

b1b2= (q+q-1) # of internal loops b1 b2

An A-module is a vector space M with an action of A, AMM such that

(a) a1(a2m)= (a1a2)m, for a1,a2A, mM,
(b) 1·m, for all mM.

Note: means that we require the distributive laws.

Example: Let M be the vector space with basis { , , } with bm= b m (q+q-1) # of internal loops .

A representation of A is an A-module M.

Given M define

ρ:A End(M) aaM

where aM is the matrix describing the action of A on M.

The map ρ is a homomorphism of algebras.

Categories

A category 𝒞

objectsM𝒞, morphismsHom(M,N).

Examples:

ObjectsMorphisms
Vector spacesLinear transformations
AlgebrasAlgebra homomorphisms
A-modulesA-module homomorphisms
SetsFunctions

A simple module is a module M such that if N is a submodule of M then

N=MorN=0.

A module is decomposable if

MNP

Definition: NP has basis

{n1,,nr,p1,,p5} with action

binj and bipk determined by N and P. Namely,

A(NP) NP an an ap ap.

Problem 1 Classify the simple modules.

Problem 2 Classify the indecomposable modules.

2 1 22+12=5

Consider - - .

Then

( 2 - - ) = 2 - - = 0 ( 2 - - ) = 2 - - = 0

So

P = span { 2 - - } N = span { , }

are submodules and M=NP.

P is a simple module since dim(P)=1.

Assume QN is a submodule.

Assume Q0. Let a + b Q.

Then

· ( a +b ) = a(q+q-1) +b · ( a +b ) = a +b(q+q-1)

So Q if a(q+q-1)+b0 and Q if a+b(q+q-1)0.

If a(q+q-1)+b0 and a+b(q+q-1)=0 then N= span { , } and P=span{p} with p =p, p =0, p =0, p= 2 - - are simple modules.

If a(q+q-1)+b=0 and a+b(q+q-1)=0 then b=-a(q+q-1) and 1-(q+q-1)2=0.

So that (q+q-1)2=1 or q2+1+q-2=0.

So (q+q-1)=±1 or q=e±2πi/3.

Generators and relations

Let A be the algebra given by generators e1,e2 and relations

e1e2e1=e1, e2e1e2=e2, e12=(q+q-1)e1 and e22=(q+q-1)e2.

Then A contains

1,e1,e2, e1e2, e2e1

and the multiplication is determined.

Then

ATL3 e1 e2

is an algebra isomorphism.

The Regular representation

A is a vector space and A acts on A by multiplication.

A submodule of A is a left ideal of A.

Example:

TL3=span { , , , , } .

The left ideal generated by is I(1)= span { , } and I(2)= span { , } are left ideals. Note: I(1)Q and I(2)Q

Quotients

TL3I(1),I(2) = span { } with

· =0and · =0.

If M is a module and N is a submodule

Nhas basis {n1,,ne} Mhas basis { n1,,n, p1,,pr } .

Then MN has basis { p1,, pr } and action

a=pi= api wheren1= n=0.

The center

Z(A)= { zA|za=az for allaA } .

Example: Suppose

a + b + c + d Z(A).

Then

(a(q+q-1)+b) + (c(q+q-1)+d) = (a(q+q-1)+c) + (b(q+q-1)+d)

so that b=c and c(q+q-1)+d=0.

So that b=c and d=-c(q+q-1).

Similarly a=-b(q+q-1).

The center

Z(A)= { zA|az=za for allaA } .

Example: Suppose

z=a +d +b +c Z(A).

Then

·z = (a(q+q-1)+b) + (d+c(q+q-1)) = z· = (a(q+q-1)+c) +(d+b(q+q-1))

so that b=c and d+c(q+q-1)=0. Also

·z = (a+c(q+q-1)) +(d(q+q-1)+b) z· = (a+b(q+q-1)) +(d(q+q-1)+c)

so that b=c and a+c(q+q-1)=0.

So

z=-(q+q-1) ( + ) + ( + ) .

Then

z2 = ( +(q+q-1)2 -(q+q-1)2 -(q+q-1)2 +1 ) + = (1-(q+q-1)2)z.

So z= 11-(q+q-1)2 z satisfies z2=z, (1-z)2=1-z and z + z =1.

Semisimple algebras

An algebra is split semisimple if

AλA^ Mdλ^()

for some index set A^ and some positive integers dλ. λA^Mdλ() has basis {Eijλ|λA^,1i,jdλ} and multiplication

Eijλ Ersμ= δλμ Eisλ δjr.

Example: Let

e11= ·1q+q-1 and e22=z- e11and e11 = z

so

( e11=1q+q-1 , e22= 11-(q+q-1)2 ( + ) - (q+q-1) 1-(q+q-1)2 + ? ) e12=e11 1q+q-1 e22, e21= e22 1q+q-1 e11.

Claim:

A M2() M1() e11E11 e22E22 e12E12 e21E21 e11 E11

is an isomorphism. Here A^= { , } and d=2, d =1. Alternatively, action of TL3 on N is

( ) = (q+q-1) ( ) = (q+q-1) ( ) = ( ) =

so

( q+q-11 00 ) and ( 00 1q+q-1 ) .

So

A Mr() M1() ( 1001 00 00 1 ) ( q+q-1100 00 00 0 ) ( 001q+q-1 00 00 0 )

is an isomorphism.

Restriction and Inclusion

TL2= span { , } with (q+q-1) = · .

Simple modules: v and v

v= (q+q-1)v and v =0.

Then

z=e11= 1q+q-1 and z =1-z. ( q+q-1100 00 00 0 ) , ( 001q+q-1 00 00 0 ) .

Then

( 1q+q-100 00 00 0 ) , ( 00q+q-11 00 00 0 ) .

So

+ ( 1q+q-1 q+q-11 ) , + ( q+q-11 1q+q-1 ) , + -(q+q-1) ( + ) = ( 1-(q+q-1)20 01-(q+q-1)2 ) .

Notes and References

This is a typed copy of handwritten notes by Arun Ram on 28/7/2008.

page history