Quantum SL2

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 25 September 2012

Review

The Lie algebra

𝔰𝔩2= { ( a b c d ) a+d=0 }

with bracket [x,y]=xy-yx, for x,y𝔰𝔩2 is presented by generators

e= ( 01 00 ) , f= ( 00 10 ) , h= ( 10 0-1 )

and relations

[e,f]=h, [h,e]=2e, [h,f]=-2f.

The enveloping algebra U𝔰𝔩2 is generated by e,f,h with relations

ef=fe+h,eh=he -2e,hf=fh-2f

and has basis

{ fm1hm2 em3 m1,m2,m3 0 } .

If M=span{m1,,mr} and N={n1,,ns} are U𝔰𝔩2–modules, then

MN=span { minj 1ir,1js }

is a U𝔰𝔩2–module, with

e(minj) = eminj+mi enj f(minj) = fminj+mi fnj h(minj) = hminj+mi hnj.

The quantum group Uq𝔰𝔩2

Uq𝔰𝔩2 is generated by E,F,K±1 with relations

KEK-1=q2E, KFK-1=q-2F, EF=FE+ K-K-1 q-q-1 .

The map Δ:UUU given by

Δ(E) = EK+1E, Δ(F) = F1+K-1F, Δ(K) = KK,

is a coproduct.

U=Uq𝔰𝔩2 at q=1 is U𝔰𝔩2.

U=Uq𝔰𝔩2 has a 2-dimensional simple module

V=L()=span {v1,v-1}

with

Kv1=qv1, Ev1=0, Fv1=v-1, Kv-1=q-1v-1, Ev-1=v1, Fv-1=0.

So ρ:U End(L()) has

ρ(K)= ( q0 0q-1 ) , ρ(E)= ( 01 00 ) , ρ(F)= ( 00 10 )

Computing VV=L()L()=V2

V2=VV= span { v1v1, v1v-1, v-1v1, v-1v-1 }

with

E(v1v1) = 0, E(v1v-1) = v1v1, K(v1v1) = q2v1v1, K(v1v-1) = v1v-1, F(v1v1) = v-1v1+ q-1v1v-1, F(v1v-1) = v-1v-1, E(v-1v1) = qv1v1, E(v-1v-1) = q-1v1v-1 +v-1v1, K(v-1v-1) = q-2v-1 v-1, K(v-1v1) = v-1v1, F(v-1v1) = qv-1v-1, F(v-1v-1) = 0,

or, equivalently,

( ρ ρ ) (E) = ρ(E) ρ(K)+ ρ(1) ρ(E) = ( 01 00 ) ( q0 0q-1 ) + ( 10 01 ) ( 01 00 ) = ( 0· ( q q-1 ) 1· ( q q-1 ) 0· ( q q-1 ) 0· ( q q-1 ) ) + ( 1· ( 01 00 ) 0· ( 01 00 ) 0· ( 01 00 ) 1· ( 01 00 ) ) = ( aa aa-1 qa aq-1 aa aa aa aa ) + ( 01 00 aa aa aa aa 01 00 ) = ( 01q0 000q-1 0001 0000 )

In general, if A= ( a11 a1r ar1 arr ) and B= ( b11 b1s bs1 bss ) acting on M=span {m1,,mr} and N=span {n1,,ns} respectively then, if

(AB) (minj)= AmiBnj,

then the matrix of AB in the basis

m1n1,, m1ns, m2n1,, m2ns,, mrn1,, mrns

is

AB= ( a11B a12B a1rB ar1B arrB )

Decomposing V2

v1v+1 F F(v1v1)= v-1v1+ q-1v1 v-1 v-1v1+ q-1v1v-1 F F ( v-1v1+ q-1v1v-1 ) =[2]v-1v-1. [2]v-1v-1. v-1v1-q v1v-1 E ( v-1v1-q v1v-1 ) =0 F ( v-1v1-q v1v-1 ) =0

Let

b1=v1v1, b2=v-1v1 +q-1v1v-1, b3=v-1 v-1,b4= v-1v1-q v1v-1.

Then

V2=L() L()=L ( ) L()

where

L ( ) =span{b1,b2,b3} andL()= span{b4}

In the basis b1,b2,b3,b4 the matrices for the action of E,F,K on VV are

ρ (E)= ( 0[2] 01 0 0 ) , ρ (F)= ( 0 10 [2]0 0 ) , ρ (K)= ( q2 q0 q-2 1 )

Decomposing V3=L()L()L().

L() L() L()= span { v1v1v1, v1v1 v-1 v1v-1 v1, v1v-1 v-1 v-1v1 v1, v-1v1 v-1 v-1v-1 v1, v-1v-1 v-1 }

Another basis of V3 is

{ b1v1, b1v-1, b2v1, b2v-1, b3v1, b3v-1, b4v1, b4v-1 } ,

i.e.

V3= ( L ( ) L() ) V= ( L ( ) V ) ( L()V )

L()V=span {b4v1,b4v-1} with

E(b4v1)=0, F(b4v1)= b4v-1, K(b4v1)= qb4v1 E(b4v-1)= b4v1, F(b4v-1) =0, K(b4v-1) =q-1b4v-1,

So

L()V L() b4v1 v1 b4v-1 v-1

Then

L ( ) V=span { b1v1, b1v-1, b2v1, b2v-1, b3v1, b3v-1 }

with

b1v1 F F(b1v1)= b2v1+ q-2b1 v-1 b2v1+q-2 b1v-1 F [2]b3v1+ b2v-1+ q-2b2 v-1+q-4b2 0=[2] ( b3v1+ q-1b2v-1 ) F 0+[2]q2b3 v-1+[2]b3 v-1+0+q-2 [2]b3v-1 +0=[2][3]b3 v-1

So, if

c1=b1v1, c2=b2v1+ q-2b1v-1, c3=b3v1 +q-1b2v-1 ,c4=b3v-1

then the action of F on

L ( ) =span {c1,c2,c3,c4} is given by ρ (F)= ( 0 10 [2]0 [3]0 ) , ρ (E)= ( 01 1[2] 1[3] 0 ) , ρ (K)= ( q3 q1 q-1 q-3 )

Note that

0 E b2v1-qb1v-1 F [2]b3v1 +b2v-1- q[2]b2 v-1=[2] b3v-1- q2b2v-1 F [2]q2b3 v-1-q2 [2]b3v-1 =0

So that, if

c5=b2v1- qb1v-1, c6=[2]b3 v-1-q2b2 v-1and L()=span {c5,c6}

then

L() L()

So

V3 = L() L() L() ( L ( ) L() ) L() = ( L ( ) V ) (L()V) L ( ) L() L() 1·2=2 1·1+1·3=4 2·2+1·4=8 2·1+3·3+1·5=16 5·2+4·4+1·6=32 1 2 1 2 5 1 3 1 4 1 1

What is the connection between TLk and Vk for Uq𝔰𝔩2?

Define an action of TL2=span { , } on

V2=span { v1v1, v1v-1, v-1v1, v-1v-1 }

by

(v1v1)=0, (v-1v-1)=0, (v1v-1)=qv1 -v-1v1, (v-1v1)=q-1 v-1v1-v1v-1

In matrices we have

ρ2 () = ( 0000 0q-10 0-1q-10 0000 ) .

Note that

( ρ2 () ) 2 = ( 0000 0q2+1-(q+q-1)0 0-(q+q-1)1-q-20 0000 ) =[2]ρ2 ()

so that this is an action of TL2 on V2.

The TL2 action commutes with the Uq𝔰𝔩2 action on Vk, i.e.

ρ2 (TL2)EndU (V2)

The Temperley-Lieb algebra TLk is generated by

ej= 1 2 j j+1 k , 1jk-1.

Define an action of TLk on

Vk=span { vi1 Vik i1,,ik {±1} }

by

ej ( vi1 vik ) =vi1 vij-1 ( vij vij+1 ) vij+2 vik

Claim

  1. This defines a TLk–action on Vk
  2. This TLk–action commutes with the Uq𝔰𝔩2–action on Vk.

Let A be an algebra and let M be a semisimple A module,

M=λA^ (Aλ)mλ .

Let Z=EndA(M). Then

Z=λM^ Mmλ(),and MλM^ AλZλ

as an (A,Z) bimodule, where M^A^ is an index set for the simple A–modules appearing in M.

Proof.
Z = HomA(M,M)= HomA ( λM^ i=1mλ Aiλ, μM^ j=1mλ Ajμ ) = λM^ i,j=1mλ HomA ( Aiλ,Ajλ ) ,

by Schur's Lemma. Hence

Z=span { eijλ λM^,1 i,jmλ } whereeijλ :Aiλ Ajλ

(choose eiiλ so that (eiiλ)2= eiiλ and eijλ and ejiλ so that eijλ ejiλ= eiiλ ).

page history