The Nonabelian Group of Order Six

S3D3: The Nonabelian Group of Order Six

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 14 December 2010

The nonabelian group of order six

Let 1=100010001,12=010100001,23=100001010,13=001010100,132=010001100,123=001100010.

The groups S3 and D3 are as in the following table.

Set Operation
S3=1,12,23,13,132,123 Ordinary matrix multiplication
D3=1,x,x2,y,xy,x2y xiyjxkyl=xi-kmod3yj+lmod2

The complete multiplication tables for these groups are as follows.

Multiplication tables
S3 1 12 23 13 132 123
1 1 12 23 13 132 123
12 12 1 123 132 13 12
23 23 132 1 123 12 13
13 13 123 132 1 23 12
132 132 23 13 12 123 1
123 123 13 12 23 1 132
D3 1 y x2y xy x2 x
1 1 y x2y xy x2 x
y y 1 x x2 xy x2y
x2y x2y x2 1 x y xy
xy xy x x2 1 x2y y
x2 x2 x2y xy y x 1
x x xy y x2y 1 x2

HW: Prove that the group homomorphism given as in the following table is an isomorphism.

Isomorphism
Φ:D3S3x123y12

Center Abelian Conjugacy classes Subgroups
ZS3=1 No 𝒞13=1 H0=S3
𝒞21=12,23,13 H1=1,132,123
𝒞3=123,132 H2=1,12
H3=1,13
H4=1,23
H5=1

Element g Order οg Centralizer Zg Conjugacy Class 𝒞g
1,1 1 S3 𝒞13
12 2 H2 𝒞21
23 2 H4 𝒞21
13 2 H3 𝒞21
132 3 H1 𝒞3
123 3 H1 𝒞3

Generators Relations Realization
D3 x,y x3=y2=1 x=123
xy2=1 y=12
S3 s1,s2 s12=s22=1 s1=y=12
s1s2s1=s2s1s2 s2=x2y=23

Subgroups Hi Structure Order Hi Index Normal Quotient group
H0=S3 H0=S3 6 S3:S3=1 Yes S3/H01
H1=1,132,123 H1C3A3 3 S3:H1=2 Yes S3/H1C2
H2=1,12 H2C2 2 S3:H2=3 No
H3=1,13 H3C2 2 S3:H3=3 No
H4=1,23 H4C2 2 S3:H4=3 No
H5=1 H5=1 1 S3:H5=6 Yes S3/1S3

Orders Inclusions 6 3 2 1 S3 {1,(123),(132)} {1,(13)} {1,(23)} {1,(13)} {1}

Subgroups Hi Left Cosets Right Cosets
H0=S3 S3 S3
H1=1,132,123 H1=1,132,123 H1=1,132,123
12H1=12,13,23 H112=12,13,23
H2=1,12 H2=1,12 H2=1,12
23H2=23,132 H223=23,123
13H2=13,123 H213=13,132
H3=1,13 H3=1,13 H3=1,13
23H3=23,123 H323=23,132
12H3=12,132 H312=12,123
H4=1,23 H4=1,23 H4=1,23
12H4=12,123 H412=12,132
13H4=13,132 H413=13,123
H5=1 H5=1 H5=1
12H5=12 H512=12
23H5=23 H523=23
13H5=13 H513=13
132H5=132 H5132=132
123H5=123 H5123=123

Subgroups Hi Normalizer NHi Centralizer ZHi
H0=S3 H0=S3 H5=1
H1=1,132,123 H0=S3 H1=1,123,132
H2=1,12 H2=1,12 H2=1,12
H3=1,13 H3=1,13 H3=1,13
H4=1,23 H4=1,23 H4=1,23
H5=1 H0=S3 H0=S3

Homomorphism Kernel Image
φ0:S31s11s21 kerφ0=S3 imφ0=1
ε:S3μ2s1-1s2-1 kerε=A3 imφ0=μ2
φ2:S3O31201010000123100001010 kerφ2=1 imφ2=100010001,010100001,100001010,010001100,001010100,001100010
φ3:S3O212-100123121232-12 kerφ3=1 imφ3=1001,-1001,121232-12,-12-1232-12,-1212-32-12,-12-12-32-12
φ4:S3D312y132x kerφ4=1 imφ4=D3

References

[CM] H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Fourth edition. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], 14. Springer-Verlag, Berlin-New York, 1980. MR0562913 (81a:20001)

[GW1] F. Goodman and H. Wenzl, The Temperly-Lieb algebra at roots of unity, Pacific J. Math. 161 (1993), 307-334. MR1242201 (95c:16020)

page history