Geometry of Type G2

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last update: 21 March 2013

Geometry of Type G2

Let 𝔤 denote the Lie algebra of the group of type G2. Then 𝔤 is generated by ei=eαi, fi=fαi, and hi=hαi, for i=1 or 2, subject to the Serre relations (see [Hum1994] for one discussion of these relations). The relations are:

[hi,hj]=0 (3.10) [xi,yi]= hi, [xi,yi]= 0forij (3.11) [hi,xj]= cijxj, [hi,yj]= -cijyj (3.12) ad(xi)-cij+1 (xj)=0,ij (3.13) ad(yi)-cij+1 (yj)=0,ij (3.14)

where cij=αj,αi. Specifically, c11=c22=2, c12=-3, and c21=-1, so that the Cartan matrix for type G2 is

C=[cij]= [ 2-3 -12 ] .

Then the smallest faithful representation of 𝔤 is the 7-dimensional representation ϕ, given by:

ϕ(e1)= [ 0100000 0000000 000-2000 0000100 0000000 0000001 0000000 ] , ϕ(e2)= [ 0000000 0010000 0000000 0000000 0000010 0000000 0000000 ] , ϕ(f1)= [ 0000000 1000000 0000000 00-10000 0002000 0000000 0000010 ] , ϕ(f2)= [ 0000000 0000000 0100000 0000000 0000000 0000100 0000000 ] , ϕ(h1)= [ 1000000 0-100000 0020000 0000000 0000-200 0000010 000000-1 ] ,and ϕ(h2)= [ 0000000 0100000 00-10000 0000000 0000100 00000-10 0000000 ] .

For any positive root α, the root space 𝔤α is 1-dimensional. We choose a distinguished basis vector eα for each one: eα1+α2=[e1,e2], e2α1+α2= 12 [ e1, eα1+α2 ] , e3α1+α2= 13 [ e1, e2α1+α2 ] , and e3α1+2α2= [ e2, e3α1+α2 ] . We also choose, for each positive root α, basis vectors fα for the root spaces 𝔤-α: fα1+α2= [f1,f2], f2α1+α2=12 [f1,fα1+α2], f3α1+α2=13 [f1,f2α1+α2], and f3α1+2α2= [f2,f3α1+α2].

Then

ϕ(eα1+α2)= [ 0010000 0002000 0000000 0000010 000000-1 0000000 0000000 ] , ϕ(e2α1+α2)= [ 0002000 0000-100 00000-10 000000-1 0000000 0000000 0000000 ] , ϕ(e3α1+α2)= [ 0000-100 0000000 0000000 0000000 0000000 0000000 0000000 ] ,and ϕ(e3α1+2α2)= [ 0000010 0000001 0000000 0000000 0000000 0000000 0000000 ] .

Also,

ϕ(fα1+α2)= [ 0000000 0000000 -1000000 0-100000 0000000 000-2000 0000010 ] , ϕ(f2α1+α2)= [ 0000000 0000000 0000000 1000000 0-100000 00-10000 000-2000 ] , ϕ(f3α1+α2)= [ 0000000 0000000 0000000 0000000 1000000 0000000 00-10000 ] ,and ϕ(f3α1+2α2)= [ 0000000 0000000 0000000 0000000 0000000 1000000 0100000 ] .

Let G be the corresponding Lie group of type G2, the group generated by all the xα(c)=expceα for αR and c. Define

wi(c)=xαi (c)x-αi (-c-1)xαi (c),

and

Hαi(c)= wi(c) wi(1)-1.

We use the exponentiated matrices to compute the following relations in G. (These relations are described in [Ste1967].)

The first relations are commutator relations between unipotent elements.

xα1(c) xα2(d) = xα2(d) xα1(c) xα1+α2(cd) x2α1+α2(-c2d) x3α1+α2(c3d) x3α1+2α2(-2c3d2) xα1(c) xα1+α2(d) = xα1+α2(d) xα1(c) x2α1+α2(2cd) x3α1+α2(-3c2d) x3α1+2α2(3cd2) xα1(c) xα1+α2(d) = x2α1+α2(d) xα1(c) x3α1+α2(3cd) xα1(c) x3α1+α2(d) = x3α1+α2(d) xα1(c) xα1(c) x3α1+2α2(d) = x3α1+2α2(d) xα1(c) xα2(c) xα1+α2(d) = xα1+α2(d) xα2(c) xα2(c) x2α1+α2(d) = x2α1+α2(d) xα2(c) xα2(c) x3α1+α2(d) = x3α1+α2(d) xα2(c) x3α1+2α2(cd) xα2(c) x3α1+2α2(d) = x3α1+2α2(d) xα2(c) xα1+α2(c) x2α1+α2(d) = x2α1+α2(d) xα1+α2(c) x3α1+2α2(-3cd) xα1+α2(c) x3α1+α2(c) = x3α1+α2(c) xα1+α2(c) xα1+α2(c) x3α1+2α2(c) = x3α1+2α2(c) xα1+α2(c) x2α1+α2(c) x3α1+α2(c) = x3α1+α2(c) x2α1+α2(c) x2α1+α2(c) x3α1+2α2(c) = x3α1+2α2(c) x2α1+α2(c) x3α1+α2(c) x3α1+2α2(c) = x3α1+2α2(c) x3α1+α2(c)

The other needed relations describe how the Weyl group acts on the unipotent elements of G.

w1(a) e1 (w1(a))-1 = -a-2f1 w1(a) e2 (w1(a))-1 = a3 e3α1+α2 w1(a) eα1+α2 (w1(a))-1 = -a e2α1+α2 w1(a) e2α1+α2 (w1(a))-1 = a-1 eα1+α2 w1(a) e3α1+α2 (w1(a))-1 = -a-3 eα2 w1(a) e3α1+2α2 (w1(a))-1 = e3α1+2α2 w2(b) e2 (w2(b))-1 = -b-2f2 w2(b) e1 (w2(b))-1 = -b eα1+α2 w2(b) eα1+α2 (w2(b))-1 = b-1eα1 w2(b) e2α1+α2 (w2(b))-1 = e2α1+α2 w2(b) e3α1+α2 (w2(b))-1 = b e3α1+2α2 w2(b) e3α1+2α2 (w2(b))-1 = -b-1 e3α1+α2

Let Gss be the set of semisimple elements of G and let 𝒩 be the set of nilpotent elements of 𝔤. Then G acts on the set

Λ= { (s,n) sGss,n 𝒩qs } ,where 𝒩qs= { n𝒩 Ads(n)=q2n } ,

by

g·(s,n)= ( gsg-1, Adg(n) ) .

Let T be the group of weights of H, the affine Hecke algebra of type G2. Let tz,wT be given by

t(Xα1) = z t(Xα2) = w.

There is a bijection between T and DG, given by

ϕ:T D (3.15) tz,w stz,w= Hα1 (z3w2) Hα2 (z2w), (3.16)

satisfying

st·xα(c)= xα(t(Xα)c)

for αR. Since W0=N(D)/D, W0 acts on D, and two diagonal elements s and s are in the same G-orbit if and only if they are in the same W0-orbit. The map ϕ is W0-equivariant, giving a bijection

θ: {W0-orbits onT} {G-orbits onGss} t st.

Define

dα1(z) = stz,1and dα2(z)= st1,z,

for z, so that

dαi(z) ·eαi=z eαiand dαi(z) ·eαj= eαj,

for i,j=1,2 and ij.

Nilpotent Orbits and Λ/G

The relations in the previous subsection, along with 3.15, allow us to determine the G-orbits on Λ.

Proposition 3.24. If q2 is not a root of unity of order 6, then the following is a set of representatives of Λ/G.

(st1,1,0) (st1,-1,0) (st11/3,-1,0) (st1,q2,0) (st1,q2,eα2) ( st1,q2, eα2+ e3α1+α2 ) ( st1,q2, eα1+α2 ) ( st1,q ,0 ) ( st1,q , e3α1+2α2 ) ( st1,-q , 0 ) ( st1,-q , e3α1+2α2 ) ( st1,z , 0 ) ,forz±1 ,±q±1, q±2 ( stq2,1 , 0 ) ( stq2,1 , eα1 ) ( stq,1 , 0 ) ( stq,1 , e2α1+α2 ) ( st-q,1 , 0 ) ( st-q,1 , e2α1+α2 ) ( stq2/3,1 , 0 ) ( stq2/3,1 , e3α1+α2 ) ( stz,1 , 0 ) ,for zq±2, ±q±1,± 11/3, q±2/3 ( stq2,-q-2 , 0 ) ( stq2,-q-2 , eα1 ) ( stq2,-q-2 , e3α1+2α2 ) ( stq2,-q-2 , eα1+ e3α1+2α2 ) ( st11/3,q2 , 0 ) ( st11/3,q2 , eα2 ) ( st11/3,q2 , e3α1+α2 ) ( st11/3,q2 , eα2+ e3α1+α2 ) ( stq2,q2 , 0 ) ( stq2,q2 , eα1 ) ( stq2,q2 , eα2 ) ( stq2,q2 , eα1+eα2 ) ( stq2,z , 0 ) ,where P(t)={α1} ( stq2,z , eα1 ) ,where P(t)={α1} ( stz,q2 , 0 ) ,where P(t)={α2} ( stz,q2 , eα2 ) ,where P(t)={α2} ( stz,w , 0 ) ,tz,wgeneric

Proof.

Given an element (s,n)Λ, by 3.15, there is an element (s,n) in the G-orbit of (s,n) such that s is diagonal and that s=st for some tz,w such that tz,w is in the set of W0-orbit representatives listed in (2.6). Then by Lemma 3.9, it is sufficient to describe the CG(st)-orbits in 𝔤qs for a set of representatives of possible central characters t. Also, Theorem 3.6 shows that 𝔤qs is spanned by {eαt(Xα)=q2}.

Case 1: P(t)=

If P(t)=, then 𝔤qs={0}, so that st must be paired with 0. This includes t1,1, t1,-1, t11/3,1, t1,z, tz,1, and tz,w.

Case 2: P(t)=1

If P(t)=1, then 𝔤qs is 1-dimensional. Assume αP(t). Since dα(a-1) ·aeα =eα, any non-zero element of 𝔤qs is in the same orbit as eα. This case includes t1,±q, tq2,z, tz,q2, and t±q,1.

Case 3: Z(t)=, P(t)=2

If Z(t)= then CG(s)=D. and 𝔤qs is 2-dimensional, spanned by eα and eβ for some α and β. However, the action of any element D has both eα and eβ as eigenvectors. (Specifically, st·eα=t(Xα)eα.) Thus the non-zero CG(s)-robits in 𝔤qs are represented by eα,eβ and eα+eβ. This case includes tq2,q2, tq2,-q-2, and t11/3,q2.

Case 4: t1,q2

If t=t1,q2, then 𝔤qs is spanned by eα2, eα1+α2, e2α1+α2, and e3α1+α2, while CG(s) contains xα1(c) and xα2(c) for c×.

Let n =aeα2 +beα1+α2 +ce2α1+α2 +de3α1+α2 𝔤qs. We claim that n is in the CG(s)-orbit of either eα1+α2, or some element in the span of eα2 and e3α1+α2.

If a=0 but b0, then

x-α1(1)·n= (3b+3c+d)eα2+ (b+2c+d)eα1+α2 +(c+d)e2α1+α2 +de3α1+α2,

so we can assume a0. Then if a0, then

xα1(-b/a)·n= aeα2+ (c-b2a) e2α1+α2+ ( d- 2b3a2- 3bca ) e3α1+α2.

Then we may assume that b=0. If c=0, then n is in the span of eα2 and e3α1+α2, so we assume c0.

Then

x-α1 ( az2+c -3cz-d- z3a ) xα1(z)·n = ( -a2z3d +2c3+ 3acdz+6 c2az2+ ad2 (3cz+d+z3a) 2 ) eα2 + ( acz2+adz- c2 3cz+dz3a ) eα1+α2+ (3cz+d+z3a) e3α1+α2.

Hence if we choose z to be a root of acz2+adz-c2, then x-α1 ( az2+c -3cz-d-z3a ) xα1(z)·n will be in the span of eα2 and e3α1+α2. This calculation can fail only if both acz2+adz-c2 and 3cz+d+z3a are zero for the same value of z. In this case, though, the GCD of these two polynomials will be non-trivial.

However,

az3+3cz+d= (zc-dc2) (acz2+adz-c2) +4c3+ad2c2z.

Hence GCD ( az3+3cz+d, -3cz-d-z3a ) =a exactly if 4c3+ad20. Assume that this is the case, so that n is conjugate to an element in the span of eα2 and e3α1+α2. Then we note that

dα1 (a1/3d-1/3) dα2(a-1)· aeα2+d e3α1+α2= eα2+ e3α1+α2,

while

w1·a e3α1+α2= aeα2

and

dα2(a-1)· aeα2=eα2.

Hence any element in the span of eα2 and e3α1+α2 is in the CG(s)-orbit of either eα2 or eα2+e3α1+α2.

Finally, assume that 4c3+ad2=0. (Recall that we are assuming c0, so that neither a or d is zero.) Then a=-4c3d2. But,

dα1 (-2c3d)· -4c3d2 eα2+c e2α1+α2+ de3α1+α2= -4c3d2 eα2+ 4c39d2 e2α1+α2- 8c327d2 e3α1+α2.

But then

dα1 (3d2-4c3) x-α1(-1) xα1(1/3)· -4c3d2 eα2+ 4c39d2 e2α1+α2- 8c327d2 e3α1+α2= eα1+α2.

Hence every non-zero n𝔤qs is CG(s)-conjugate to either eα2, eα1+α2, or eα2+e3α1+α2. These three elements cannot be conjugate to each other since in the basic representation of 𝔤, they have different Jordan forms.

Case 5: tq2,1

If t=tq2,1 then 𝔤qs is spanned by eα1 and eα1+α2. Also, CG(s) contains xα2(c) and x-α2(c) for c×, so in particular w2CG(s).

If ab0, then

x-α2(a/b)· ( aeα1+b eα1+α2 ) =beα1+α2.

But

w2·beα1+α2 =beα1,

and

dα1(b-1) ·beα1=eα1.

Hence every non-zero element of 𝔤qs is CG(s)-conjugate to eα1.

Case 6: tq2/3,1

If t=tq2/3,1, then 𝔤qs is spanned by e3α1+α2 and e3α1+2α2. Also, CG(s) contains xα2(c) and x-α2(c), so in particular w2CG(s).

If ab0, then

x-α2(-a/b)· ( ae3α1+α2+ be3α1+2α2 ) =be3α1+2α2.

But

w2·b e3α1+2α2 =b e3α1+α2,

and

dα2(b-1) ·b e3α1+α2= e3α1+α2.

Hence every non-zero element of 𝔤qs is CG(s)-conjugate to e3α1+α2.

Proposition 3.25. If q2 is a primitive sixth root of unity, then the following is a set of representatives of Λ/G. (The notation 11/3 is taken to mean a cube root of 1 besides q4.)

(st1,1,0) (st1,-1,0) (st11/3,-1,0) (st1,q2,0) (st1,q2,eα2) ( st1,q2, eα2+ e3α1+α2 ) ( st1,q2, eα1+α2 ) (st1,q,0) ( st1,q, e3α1+2α2 ) (st1,-q,0) ( st1,-q, e3α1+2α2 ) (st1,z,0), forz±1, ±q±1,q±2 (stq2,1,0) (stq2,1,eα1) (stq,1,0) ( stq,1, e2α1+α2 ) (st-q,1,0) ( st-q,1, e2α1+α2 ) (stq2/3,1,0) ( stq2/3,1, e3α1+α2 ) (stz,1,0) forzq±2, ±q±1,± 11/3, q±2/3 (stq2,-q-2,0) ( stq2,-q-2, eα1 ) ( stq2,-q-2, e3α1+2α2 ) ( stq2,-q-2, eα1+ e3α1+2α2 ) ( st11/3,q2 ,0 ) ( st11/3,q2 ,eα2 ) ( st11/3,q2 ,e3α1+α2 ) ( st11/3,q2 ,eα2+ e3α1+α2 ) ( stq2,q2,0 ) ( stq2,q2, eα1 ) ( stq2,q2, eα2 ) ( ss2s1s2tq2,q2 ,eα2 ) ( stq2,q2, eα1+eα2 ) ( ss2s1s2tq2,q2 ,e2α1+α2+ eα2 ) ( ss2s1s2s1tq2,q2 ,eα2+e3α1+α2 ) (stq2,z,0) ,whereP(t)= {α1} (stq2,z,eα1) ,whereP(t)= {α1} (stz,q2,0) ,whereP(t)= {α2} (stz,q2,eα2) ,whereP(t)= {α2} (stz,w,0), tz,wgeneric

Proof.

The proof differs from the proof of proposition 3.24 only for the central character tq2,22.

Case 3a: tq2,q2

If t=tq2,q2, then P(t)={α1,α2,3α1+2α2}, and 𝔤qs is spanned by eα1, eα2, and e-3α1-2α2. However, if n =aeα1 +beα2 +ce-3α1-2α2, then n is only nilpotent when at least one of a,b, and c is zero.

However, the action of D shows that there are 3 orbits of elements aeα1 +beα2 +ce-3α1-2α2 with exactly one of a,b, and c equal to zero:

dα1(a-1) dα2(b-1)· ( aeα1+ beα2 ) =eα1+eα2, dα1(q-1) dα2(a32c12) · ( aeα1+c e-3α1-2α2 ) =eα1+ e-3α1-2α2, and dα1(b23c13) dα2(b-1)· ( ce-3α1-2α2 +beα2 ) = e-3α1-2α2 +eα2.

If exactly one of a,b, and c is non-zero, then n =aeα1 +beα2 +ce-3α1-2α2 is in the same CG(s)-orbit as eα1, eα2, or e-3α1-2α2.

For ease of later computations, we choose an element in the G-orbit of each pair (s,n) so that n is in the span of {eααR+}. Specifically, s2s1s2 ·e-3α1-2α2 =eα2, s2s1s2 ·(eα1 +e-3α1-2α2) =e2α1+α2 +eα2, and s2s1s2s1 ·(eα2 +e-3α1-2α2) =eα2 +e3α1+α2.

Proposition 3.26. If q2 is a primitive fifth root of unity, then the following is a set of representatives of Λ/G. (The notation q2/3 is taken to mean a cube root of q2 not equal to q4.)

( st1,1,0 ) ( st1,-1,0 ) ( st11/3,1 ,0 ) ( st1,q2, 0 ) ( st1,q2, eα2 ) ( st1,q2, eα2+ e3α1+α2 ) ( st1,q2, eα1+α2 ) ( st1,q,0 ) ( st1,q, e3α1+2α2 ) ( st1,-q,0 ) ( st1,-q, e3α1+2α2 ) ( st1,z,0 ) ,forz ±1,±q±1 ,q±2 ( stq2,1,0 ) ( stq2,1, eα1 ) ( stq2/3,1 ,0 ) ( stq2/3,1, e3α1+α2 ) ( stz,1,0 ) ,forz q±2,± q±1,± 11/3, q±2/3 ( stq2,-q-2,0 ) ( stq2,-q-2, eα1 ) ( stq2,-q-2, e3α1+2α2 ) ( stq2,-q-2, eα1+ e3α1+2α2 ) ( st11/3,q2 ,0 ) ( st11/3,q2 ,eα2 ) ( st11/3,q2 ,e3α1+α2 ) ( st11/3,q2 ,eα2+ e3α1+α2 ) ( st-q-4,1 , 0 ) ( st-q-4,1 , e2α1+α2 ) ( stq-4,1 , 0 ) ( stq-4,1 , e2α1+α2 ) ( stq-4,1 , e-3α1-α2 ) ( stq-4,1 , e2α1+α2+ e-3α1-α2 ) ( stq2,z,0 ) ,where P(t)={α1} ( stq2,z, eα1 ) ,where P(t)={α1} ( stz,q2,0 ) ,where P(t)={α2} ( stz,q2, eα2 ) ,where P(t)={α2} (stz,w,0) ,tz,wgeneric

Proof.

The proof in this case differs from that of proposition 3.24 for the central characters tq2,q2 and tq-4,1. Note that tq-4,1 =tq6,1, and s2s1tq6,1 =tq2,q2. One notational note is also helpful - when q2 is a primitive fifth root of unity, the central characters t±q,1 are equal to t±q-4,1 in some order. That order, however, depends on whether q5 is 1 or -1. Calling the characters t±q-4,1 allows us to treat the two cases at once.

The weight t-q-4,1 has P(t)={2α1+α2}, so that the argument given in Case 2 of 3.24 classifies the orbits of pairs (st-q-4,1,n).

Case 3a: tq-4,1

If t=tq-4,1 then 𝔤qs is spanned by e2α1+α2, e-3α1-α2, and e-3α1-2α2. Also, CG(s) contains x±(α2)(c) for c, as well as w2(1). Let n =ae2α1+α2 +be-3α1-α2 +ce-3α1-2α2.

If b=0, then

w2·n=a e2α1+α2-c e-3α1-α2,

so we can assume b0. Then

x-α2(-c/b)· ae2α1+α2+b e-3α1-α2+c e-3α1-2α2= ae2α1+α2+b e-3α1-α2.

Hence every element of 𝔤qs is in the orbit of an element in the span of e2α1+α2 and e-3α1-α2.

However, x±α2(c) stabilizes e2α1+α2, so that the orbits in 𝔤qs are represented by 0, e2α1+α2, e-3α1-α2, and e2α1+α2 +e-3α1-α2.

Proposition 3.27. If q2 is a primitive fourth root of unity, then the following is a set of representatives of Λ/G. (The notation q2/3 is taken to mean a cube root of q2 which is not equal to q-2.)

(st1,1,0) (st1,-1,0) (st11/3,1,0) (st1,q2,0) (st1,q2,eα2) (st1,q2,eα2+e3α1+α2) (st1,q2,eα1+α2) (st1,q,0) (st1,q,e3α1+2α2) (st1,-q,0) (st1,-q,e3α1+2α2) (st1,z,0),forz±1,±q±1,q±2 (st-q,1,0) (st-q,1,e2α1+α2) (stq,1,0) (stq,1,e2α1+α2) (stq2/3,1,0) (stq2/3,1,e3α1+α2) (stz,1,0),forzq±2,±q±1,±11/3,q±2/3 (st11/3,q2,0) (st11/3,q2,eα2) (st11/3,q2,e3α1+α2) (st11/3,q2,eα2+e3α1+α2) (stq2,q2,0) (stq2,q2,eα1) (stq2,q2,eα2) (stq2,q2,eα1+eα2) (stq2,q2,eα1+e3α1+2α2) (stq2,z,0),whereP(t)={α1} (stq2,z,eα1),whereP(t)={α1} (stz,q2,0),whereP(t)={α2} (stz,q2,eα2),whereP(t)={α2} (stz,w,0),tz,wgeneric

Proof.

The proof differs from that of 3.24 for the central characters tq,1, tq2,-q-2, and tq2,q2. Since s2s1s2s1tq2,1 =tq2,q2 and -q-2=q2, all three of these central characters are in the same orbit.

Case 5: tq2,q2

If t=tq2,q2, then P = { α1,α2,2α1 +α2,3α1+2α2 } , and 𝔤qs is spanned by eα1, eα2, e-2α1-α2, and e3α1+2α2. Also, CG(s) contains x±(3α1+α2)(c) for c, and s1s2s1 = x3α1+α2(1) x-3α1-α2(-1) x3α1+α2(1).

Let n =aeα1 +beα2 +ce-2α1-α2 +de3α1+2α2. Assume n is generic. Then

dα1(a-1) dα2(aab+cd) x3α1+α2 (adab+cd) x-3α1-α2 (ca)·n= eα1+eα2.

The above calculation fails if either a=0 or if ab+cd=0. Assume now that a=0, but ab+cd0. Then c0 and d0, so that

x-3α1-α2(-b/d)· ( beα2+c e-2α1-α2+d e3α1+2α2 ) =ce-2α1-α2+ de3α1+2α2,

and then

dα1(c-1) dα2(d-1) s1s2s1· ( ce-2α1-α2 +de3α1+2α2 ) =eα1+eα2.

Next, assume ab+cd=0 and a=0, so that cd=0.

If a=c=d=0 but n0 then

dα2(b-1) ·beα2=eα2.

If a=c=0 but d0 then

dα1(d-1) s1s2s1 x-3α1-α2 (-b/d)· ( beα2+ de3α1+2α2 ) =eα2.

If a=d=0 but c0 then

s1s2s1·b eα2+c e-2α1-α2 =be3α1+2α2 +ceα1,

a case we will treat below.

If ab+cd=0 and a0, then b=-cd/a. Then

x-3α1-α2 (cd)· ( aeα1+ -cdaeα2 +ce-2α1-α2 +de3α1+2α2 ) =aeα1+d e3α1+2α2.

But

dα1(a-1) dα2(a-3d) ·aeα1+d e3α1+2α2= eα1+ e3α1+2α2.

Hence every non-zero element of 𝔤qs is in the same orbit as either eα1, eα2, eα1+eα2, or eα1+e3α1+2α2.

Proposition 3.28. If q2 is a primitive third root of unity, then the following is a set of representatives of Λ/G.

(st1,1,0) (st1,-1,0) (st1,q2,0) (st1,q2,eα2) (st1,q2,eα2+e3α1+α2) (st1,q2,eα1+α2) (st1,q2,e-3α1-2α2) (st1,q2,eα2+e-3α1-2α2) (st1,q2,eα1+α2+e-3α1-2α2) (st1,-q-2,0) (st1,-q-2,e3α1+2α2) (st1,z,0),forz±1,±q±1,q±2 (st-q-2,1,0) (st-q-2,1,e2α1+α2) (stq2,1,0) (stq2,1,eα1) (stq2/3,1,0) (stq2/3,1,e3α1+α2) (stz,1,0),forzq±2,±q±1,±11/3,q±2/3 (stq2,-q-2,0) (stq2,-q-2,eα1) (stq2,-q-2,e3α1+2α2) (stq2,-q-2,eα1+e3α1+2α2) (stq2,z,0),whereP(t)={α1} (stq2,z,α1),whereP(t)={α1} (stz,q2,0),whereP(t)={α2} (stz,q2,eα2),whereP(t)={α2} (stz,w,0),tz,wgeneric

Proof.

The proof differs from that of 3.24 for the central characters t11/3,1, t1,±q, t±q,1, t11/3,q2, tq2,q2, tq2,1, and t1,q2. We note that t11/3,1 =tq±2,1, and tq-2,1 is in the same orbit as tq2,1. Also, t1,-q =t1,q4 =w0t1,q2, and t-q,1 =tq4,1 =w0tq2,1. Finally, t11/3,q2 =tq±2,q2, but s1tq2,q2 =tq-2,q2 =s2t1,q-2 and so both are in the same orbit as t1,q2.

Note also that the central characters t±q,1 are the same as t±q-2,1 in some order, but the order depends on whether q3 is 1 or -1. We call these characters t-q-2,1 and tq2,1= w0tq-2,1, so that we can treat both cases at once. Similarly, the central characters t1,±q, are the same as tq,±q-2, but the order depends on whether q3 is 1 or -1. So we call these characters t1,-q-2 and t1,q2.

Thus it suffices to consider t1,q2 and tq2,1.

Case 4: t1,q2

If t=t1,q2, then 𝔤qs is spanned by eα2, eα1+α2, e2α1+α2, e3α1+α2, and e-(3α1+2α1). However, the subspace e-3α1-2α2 is fixed by the action of CG(s), and

𝔤qs= eα2, eα1+α2, e2α1+α2, e3α1+α2 e-3α1-2α2

as CG(s)-modules. But the CG(s) orbits in the first summand are represented by 0, eα2, eα1+α2, and eα2 +e3α1+α2, while the CG(s)-orbits in e-3α1-2α1 are represented by 0 and e-3α1-2α1. Then the CG(s)-orbits in 𝔤qs are represented by 0, eα2, eα1+α2, eα2 +e3α1+α2, e-3α1-2α2, eα2 +e-3α1-2α2, eα1+α2 +e-3α1-2α2, and eα2 +e3α1+α2 +ce-3α1-2α2, for c×. However, eα2 +e3α1+α2 +ce-3α1-2α2 is not nilpotent unless c=0.

Case 5: tq2,1

If t=tq2,1, then 𝔤qst is spanned by eα1, eα1+α2, and e-2α1-α2. CG(s) contains, in particular, x3α1+α2(1) x-3α1-α2(-1) x3α1+α2(1) =s1s2s1. Let n =aeα1 +beα1+α2 +ce-2α1-α2. By Case 5 of Proposition 3.24, we may assume that b=0.

If a0, then

dα1(a-1) x-3α1-α2 (-c/a)·aeα1 +ce-2α1-α2 =eα1.

If a=0 and c0, then

dα1(c-1) s1s2s1·c e-2α1-α2= eα1.

If a=c=0, then n=0. So, every non-zero element of 𝔤qs is CG(s)-conjugate to eα1.

Proposition 3.29. If q2=-1, then the following is a set of representatives of Λ/G. (The notation -11/3 is taken to mean a cube root of -1 besides -1 itself.)

(st1,1,0) (st1,q2,0) (st1,q2,eα2) (st1,q2,eα2+e3α1+α2) (st1,q2,eα1+α2) (st1,q2,eα2+e-α1-α2) (st1,q2,eα2+e-2α1-α2) (st11/3,1,0) (st1,q,0) (st1,q,e3α1+2α2) (st1,q,e-3α1-2α2) (st1,z,0),forz±1,±q,q2 (stq,1,0) (stq,1,e2α1+α2) (stq,1,e-2α1-α2) (st-11/3,1,0) (st-11/3,1,e3α1+α2) (st-11/3,1,e-3α1-α2) (st-11/3,1,e3α1+α2+e-3α1-2α2) (stz,1,0),forzq2,±q,-1,q2/3,11/3 (stq2,z,0),whereP(t)={α1} (stq2,z,eα1),whereP(t)={α1} (stq2,z,e-α1),whereP(t)={α1} (stz,q2,0),whereP(t)={α2} (stz,q2,eα2),whereP(t)={α2} (stz,q2,e-α2),whereP(t)={α2} (stz,w,0),tz,wgeneric

Proof.

Since q2=q-2, e-α𝔤qs exactly when eα𝔤qs. Note that t11/3,q2 =t11/3,-1 is in the same orbit as t-11/3,1.

Case 1: P(t)=

If P(t)=, then 𝔤qst=0 and 0 is the only orbit in 𝔤qst. This applies to t1,1, t11/3,1, t1,z, tz,1, and tz,w.

Case 2: P(t)=1

If P(t)=1, then 𝔤qst is spanned by eα and e-α, where αP(t). However, aeα+be-α is nilpotent exactly when ab=0.

For the central characters tq2,z and tz,q2, Z(t)=, and CG(s)=D. Then the nilpotent orbits in 𝔤qst are represented by eα and e-α, since

dα(a-1)· aeα=eα

and

dα(b)·b e-α=e-α.

For the central characters t1,q and tq,1, Z(t) contains β, the positive root perpendicular to α. Thus x±β(c) fixes the subspace of 𝔤qst spanned by eα, and the subspace spanned by e-α. Then again

dα(a-1)· aeα=eα

and

dα(b)·b e-α=e-α

and the nilpotent orbits are represented by eα and e-α.

Case 3: t1,q2

If t=t1,q2, then 𝔤qst is spanned by e±α2, e±(α1+α2), e±(2α1+α2), and e±(3α1+α2). Also, CG(s) contains x±α1(c) and x±(3α1+2α2)(c) for c. In particular, CG(s) contains w1 and w3α1+2α2 =w2w1w2w1w2.

Let n𝔤qst. Note that the action of x±α1 on 𝔤qst fixes the subspace spanned by the {eααP(t)} and the subspace spanned by {e-ααP(t)}. Then Case 4 of Proposition 3.24 shows that n is conjugate to an element with positive part 0, eα2, eα1+α2, or eα2 +e3α1+α2.

Case 3a: eα2

First, assume n =eα2 +we-α2 +xe-α1-α2 +ye-2α1-α2 +ze-3α1-α2. Then if n is nilpotent, w=0.

However, if x0,

x-3α1-2α2 (-y2x) x-α1 ( 3y2-4xz 4ax ) · ( eα2+x e-α1-α2 +ye-2α1-α2 +ze-3α1-α2 ) =eα2+x e-α1-α2,

and

dα1(x)·eα2 +xe-α1-α2= eα2+e-α1-α2.

If x=0, then

dα1(y) x-3α1-2α2 (za)·eα2+ ye-2α1-α2 +ze-3α1-α2 =eα2+e-2α1-α2.

Hence n is CG(s)-conjugate to either eα2, eα2 +e-α1-α2, or eα2 +e-2α1-α2.

Case 3b: eα1+α2

If n =eα1+α2 +we-α2 +xe-α1-α2 +ye-2α1-α2 +ze-3α1-α2, then for n to be nilpotent, x must equal zero and either w or z is zero as well. In either case,

x-3α1-2α2 (y)· eα1+α2+w e-α2+y e-2α1-α2+ ze-3α1-α2 =we-α2+z e-3α1-α2.

However,

dα1(w-1) dα2(w)· eα1+α2+ we-α2= eα1+α2+ e-α2,

and

dα1(z-1) dα2(z)· eα1+α2+z e-3α1-α2= eα1+α2+ e-3α1-α2.

Hence n is CG(s)-conjugate to either eα1+α2, eα1+α2 +e-α2, or eα1+α2 +e-3α1-α2.

Case 3c: eα2+e3α1+α2

If n =eα2 +e3α1+α2 +we-α2 +xe-α1-α2 +ye-2α1-α2 +ze-3α1-α2, then the minimal polynomial of n in the basic representation of 𝔤 is X7 +2(z-w)X5 +(z-w)2X3 +4(y3-x3-xyz+wxy)X. Then for n to be nilpotent, z=w and x3=y3. By conjugating by dα1(11/3) if necessary, we can assume that y=x. If w=x=0, then n =eα2 +e3α1+α2.

Assume w0 and x0. If wx, then

xα1(1/2)w1 xα1(1) x3α1+2α2 ( 2wx+w2-3x24x ) w3α1+2α2 x3α1+2α2 (-1/(x-w))·n = 1/2(x-w) e2α1+α2- 8xx-w e-3α1-α2.

But then,

dα1(-14x) dα2(w-x8x) w3α1+2α2· ( 1/2(x-w) e2α1+α2- 8xx-w e-3α1-α2 ) = eα2+ e-α1-α2.

If w=x0, then

xα1(1/2)w1 xα1(1) w3α1+2α2 x3α1+2α2 (-1/(4x))·n = (8x)eα2- (1/2) e-α1-α2.

But then,

dα1(-4x) dα2(1/(8x))· ( (8x)eα2- (1/2) e-α1-α2 ) =eα2+ e-α1-α2.

Finally, assume w=0 and x0. Then, we compute that

xα1(1/2)w1 xα1(1) x3α1+2α2 (-3x/4) w3α1+2α2 x3α1+2α2 (-1/x) · ( eα2+e3α1+α2 +x ( eα1+α2+ e2α1+α2 ) ) = xα1(1/2)w1 xα1(1) x3α1+2α2 (-3x/4) w3α1+2α2 · ( eα2+eα1+α2 +e2α1+α2+ e3α1+α2+x e-α1-α2+x e-2α1-α2 ) = xα1(1/2)w1 xα1(1) x3α1+2α2 (-3x/4) · ( e-3α1-α2+ e-2α1-α2+ e-α1-α2+ e-α2-x e2α1+α2-x eα1+α2 ) = xα1(1/2)w1 xα1(1)· ( e-3α1-α2+ e-2α1-α2+ e-α1-α2+ e-α2 +( 3x/4) e3α1+α2+ (-x/4)e2α1+α2 +(-x/4) eα1+α2+ (3x/4)eα2 ) = xα1(1/2)w1· ( e-3α1-α2+ 2e-2α1-α2+ de-α1-α2+ 8e-α2+ (x/2)eα1+α2 +(3x/4)eα2 ) = xα1(1/2)· ( e-α2-2 e-α1-α2+d e-2α1-α2- 8e-3α1-α2- (x/2) e2α1+α2+ (3x/4) e3α1+α2 ) = -(x/2) e2α1+α2- 8e-3α1-α2

But then,

dα1(x/4) dα2(-32/x3) · ( -(x/2) e2α1+α2- 8e-3α1-α2 ) = e2α1+α2+ e-3α1-α2.

Thus we have seen that nilpotent elements in 𝔤qs are CG(s)-conjugate to either eα2, eα2 +e-α1-α2, eα2 +e-2α1-α2, eα1+α2, eα1+α2 +e-α2, eα1+α2 +e-3α1-α2, eα2 +e3α1+α2, or e2α1+α2 +e-3α1-α2.

However, we note that

w1 w3α1+α2· ( eα1+α2+ e-α2 ) =eα2+ e-α1-α2, w3α1+α2· ( eα1+α2+ e-3α1-α2 ) =eα2+ e-2α1-α2,

and

w3α1+α2· ( e-3α1-α2+ e2α1+α2 ) =eα2+ e-α1-α2.

Then a set of orbit representatives of nilpotent elements in 𝔤qs is eα2, eα2 +e-α1-α2, eα2 +e-2α1-α2, eα1+α2, and eα2 +e3α1+α2. Of these elements, the only two that are conjugate under the action of G are eα2 +e3α1+α2 and eα2 +e-2α1-α2, since all the others have distinct Jordan forms in the basic representations of 𝔤. However, eα2 +e3α1+α2 and eα2 +e-2α1-α2 are not conjugate since the corresponding varieties s,n are nonisomorphic (see section 3.5.4). Thus these elements are in distinct CG(s)-orbits.

Case 4: t-11/3,1

If t=t-11/3,1, then P(t)={3α1+α2,3α1+2α2}. Also, CG(s) contains x±α2(c) for c, and thus contains w2(1).

Let n =ae3α1+α2 +be-3α1-α2 +ce3α1+2α2 +de-3α1-2α2. Then n is nilpotent exactly when ab-cd=0, so we assume ab-cd=0.

If a0, then

xα2(-c/a)·n =ae3α1+α2+ de-3α1-2α2.

If c0, then

w2x-α2(-a/c) ·n=c e3α1+α2+b e-3α1-2α2,

so if either a or c is non-zero, we can assume n =ae3α1+α2 +de-3α1-2α2, with a0. If d=0 then

dα2(a-1)· ae3α1+α2= e3α1+α2.

If d0 then

dα2(a3/2d1/2) dα1(a-1/3)· ae3α1+α2+d e-3α1-2α2= e3α1+α2+ e-3α1-2α2.

Then assume a=c=0. If b0, then

dα2(b)x-α2 (-d/b)·b e-3α1-α2+d e-3α1-2α2= e-3α1-α2.

If b=0 but d0, then

dα2(d)w2· de-3α1-2α2 =e-3α1-α2.

Hence in either case n is CG(s)-orbit of e-3α1-α2.

Thus the CG(s)-orbits in 𝔤qst are represented by 0, e3α1+α2, e-3α1-α2, and e3α1+α2 +e-3α1-2α2.

Proposition 3.30. If q=-1, then the following is a set of representatives of Λ/G.

(st1,1,0) (st1,1,eα1) (st1,1,eα2) (st1,1,eα1+e3α1+2α2) (st1,1,eα1+eα2) (st1,-1,0) (st1,-1,eα1) (st1,-1,eα1+e3α1+2α2) (st11/3,1,0) (st11/3,1eα2) (st11/3,1,eα2+e3α1+α2) (st1,z,0),forz±1,q,q2 (st1,z,eα1),forz±1,q,q2 (stz,1,0),forzq2,-1,q2/3 (stz,1,eα2),forzq2,-1,q2/3 (stz,w,0)

Proof.

For each t, 𝔤qst is a Lie subalgebra of 𝔤, since for x,y𝔤qst, st·[x,y] =[x,y] and thus [x,y]𝔤qst. Also, CG(s) contains exp(x) for all x𝔤qst. Also, since the Lie algebra 𝔤qst is generated for each t by a root subsystem of the root system of type G2, it is isomorphic to some rank two semisimple Lie algebra. Thus the nilpotent orbits in 𝔤qst are the same as those in the corresponding Lie algebra. (See [CMc1993] for a more thorough discussion of these nilpotent orbits.)

If t=t1,1, the corresponding Lie algebra has type G2, and the nilpotent orbits in 𝔤qs are represented by 0, eα1, eα2, eα1+eα2, and eα1 +e3α1+2α2.

If t=t1,-1, then the corresponding Lie algebra has type A1×A1, and the nilpotent orbits in 𝔤qs are represented by 0, eα1, e3α1+2α2, and eα1 +e3α1+2α2.

If t=t1/3,1, the corresponding Lie Algebra has type A2, and the nilpotent orbits in 𝔤qs are represented by 0, eα2, e3α1+α2, and eα2 +e3α1+α2.

If t=t1,z or tz,1, the corresponding Lie algebra has type A1, and the nilpotent orbits in 𝔤qs are represented by 0 and either eα1 or eα2, respectively.

If t=tz,w, 𝔤qst=0.

Cosets

We can also use the relations on G to compute the action of elements of G on cosets in G/B. Specifically, we want to determine which cosets gB are fixed by exp(n) for a nilpotent element n of 𝔤, since these are in bijection with the Borel subalgebras containing n.

Case: expceα1=xα1(c):

The action of xα1(c) on cosets starting with xα1(d) is straightforward to compute:

xα1(c)· B = B xα1(c)· xα1(d)w1 B = xα1(c+d)w1 B xα1(c)· xα1(d)w1 xα2(e)w2 B = xα1(c+d)w1 xα2(e)w2 B xα1(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 B = xα1(c+d)w1 xα2(e)w2 xα1(f)w1 B xα1(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B = xα1(c+d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B xα1(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B = xα1(c+d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B xα1(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2 B = xα1(c+d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2 B

The action of xα1(c) on cosets starting with xα2(d) requires extensive use of the relations given above.

xα1(c)· xα2(d)w2 B = xα2(d) xα1(c) xα1+α2(cd) x2α1+α2(-c2d) x3α1+α2(c3d) x3α1+2α2(-2c3d2) w2B = xα2(d)w2 xα1+α2(-c) xα1(cd) x2α1+α2 (-c2d) x3α1+2α2 (c3d) x3α1+α2 (2c3d2)B =xα2(d) w2B xα1(c)· xα2(d)w2 xα1(e)w1B = xα2(d)w2 xα1+α2(-c) xα1(cd) x2α1+α2 (-c2d) x3α1+2α2 (c3d) x3α1+α2 (2c3d2) xα1(e)w1B = xα2(d)w2 xα1+α2(-c) xα1(cd) x2α1+α2 (-c2d) xα1(e) x3α1+2α2 (c3d) x3α1+α2 (2c3d2)w1B = xα2(d)w2 xα1+α2(-c) xα1(e+cd) x2α1+α2 (-c2d) x3α1+2α2 (c3d) · x3α1+α2 (2c3d2+3c2de) w1B = xα2(d)w2 xα1(e+cd) xα1+α2(-c) x2α1+α2 (2(c2d+ce)) x3α1+α2 (-3c(e+cd)2) · x3α1+2α2 (-3c2(e+cd)) x2α1+α2 (-c2d) x3α1+2α2 (c3s) x3α1+α2 (2c3d2+3c2de) w1B = xα2(d)w2 xα1(e+cd) xα1+α2 (-c) x2α1+α2 (c2d+2c) x3α1+α2 (-3ce2-3c2de-c3d2) x3α1+2α2 (-3c2e+2c3d) w1B =xα2(d)w2 xα1(e+cd) w1x2α1+α2 (c) xα1+α2 (c2d+2c) xα2 (3ce2+3c2de+c3d2) x3α1+2α2 (-3c2e+2c3d) B =xα2(d)w2 xα1(e+cd)w1B xα1(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2B = xα2(d)w2 xα1(e+cd)w1 x2α1+α2(c) xα1+α2 (c2d+2ce) xα2 (3ce2+3c2de+c3s2) x3α1+2α2 (-3c2e+2c3d) xα2(f)w2B = xα2(d)w2 xα1(e+cd)w1 x2α1+α2(c) xα1+α2 (c2d+2ce) xα2 (3ce2+3c2de+c3s2+f) x3α1+2α2 (-3c2e+2c3d) w2B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce2+3c2de+c3s2+f) x2α1+α2(c) xα1+α2 (c2d+2ce) x3α1+2α2 (-3c2e+2c3d) w2B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce2+3c2de+c3s2+f) w2 x2α1+α2(c) xα1 (c2d+2ce) x3α1+α2 (3c2e-2c3d) B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce2+3c2de+c3s2+f) w2B xα1(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 xα1(e+cd)w1 xα2(3ce2+3c2de+c3d2+f)w2 x2α1+α2(c) xα1(c2d+2ce) x3α1+α2(3c2e-2c3d) xα1(g)w1 B = xα2(d)w2 xα1(e+cd)w1 xα2(3ce2+3c2de+c3d2+f)w2 x2α1+α2(c) xα1(c2d+2ce+g) x3α1+α2(3c2e-2c3d) w1 B = xα2(d)w2 xα1(e+cd)w1 xα2(3ce2+3c2de+c3d2+f)w2 xα1(c2d+2ce+g) x2α1+α2(c) x3α1+α2 (-3(c3d+2c2e+cg)) x3α1+α2 (3c2e-2c3d) w1B = xα2(d)w2 xα1(e+cd)w1 xα2(3ce2+3c2de+c3d2+f)w2 xα1(c2d+2ce+g) x2α1+α2(c) x3α1+α2 (-3c2e-5c3d-3cg) w1B = xα2(d)w2 xα1(e+cd)w1 xα2(3ce2+3c2de+c3d2+f)w2 xα1(c2d+2ce+g) w1 xα1+α2(c) xα2(3c2e+5c3d+3cg) B = xα2(d)w2 xα1(e+cd)w1 xα2(3ce2+3c2de+c3d2+f)w2 xα1(c2d+2ce+g) w1B xα1(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce23c2de+c3d2+f) w2xα1 (c2d+2ce+g)w1 xα1+α2(c) xα2(3c2e+5c3d+3cg) xα2(h) w2B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce23c2de+c3d2+f) w2xα1 (c2d+2ce+g)w1 xα1+α2(c) xα2(3c2e+5c3d+3cg+h) w2B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce23c2de+c3d2+f) w2xα1 (c2d+2ce+g)w1 xα2(3c2e+5c3d+3cg+h) xα1+α2(c) w2B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce23c2de+c3d2+f) w2xα1 (c2d+2ce+g)w1 xα2(3c2e+5c3d+3cg+h) w2xα1(c)B = xα2(d)w2 xα1(e+cd)w1 xα2 (3ce23c2de+c3d2+f) w2xα1 (c2d+2ce+g)w1 xα2(3c2e+5c3d+3cg+h) w2B

Case: expceα2=xα2(c):

Cosets starting with xα2(d):

xα2(c)· xα2(d)w2 B = xα2(c+d)w2 B xα2(c)· xα2(d)w2 xα1(e)w1 B = xα2(c+d)w2 xα1(e)w1 B xα2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα2(c+d)w2 xα1(e)w1 xα2(f)w2 B xα2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(c+d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B xα2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(c+d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B xα2(c)· xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 xα1(j)w1 B = xα2(c+d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 xα1(j)w1 B

Cosets starting with xα1(d):

xα2(c)· xα1(d) w1B = xα1(d) xα2(c) x3α1+2α2 (2c2d3) x3α1+α2 (-cd3) x2α1+α2 (cd2) xα1+α2 (-cd) w1B = xα1(d)w1 x3α1+α2 (c) x3α1+2α2 (2c2d3) xα2(cd3) xα1+α2 (cd2) x2α1+α2 (cd)B = xα1(d)w1B xα2(c)· xα1(d)w1 w2B = xα1(d) xα2(c) x3α1+2α2 (2c2d3) x3α1+α2 (-cd3) x2α1+α2 (cd2) xα1+α2 (-cd)w1 xα2(e)w2B = xα1(d)w1 x3α1+α2 (c) x3α1+2α2 (2c2d3) xα2(cd3) xα1+α2 (cd2) x2α1+α2 (cd)xα2 (e)w2B = xα1(d)w1 x3α1+α2 (c) x3α1+2α2 (2c2d3) xα2(cd3+e) xα1+α2 (cd2) x2α1+α2 (cd)xα2 w2B = xα1(d)w1 xα2(cd3+e) x3α1+α2(c) x3α1+2α2 (-c2d3-ce) x3α1+2α2 (2c2d3) xα1+α2 (cd2) x2α1+α2 (cd)w2B = xα1(d)w1 xα2(cd3+e)w2 x3α1+2α2(c) x3α1+α2 (c-c2d3) xα1(cd2) x2α1+α2 (cd)B = xα1(d)w1 xα2(cd3+e)w2B xα2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 B = xα1(d)w1 xα2(cd3+e) w2x3α1+2α2 (c) x3α1+α2 (ce-c2d3) xα1(cd2) x2α1+α2 (cd)xα1(f) w1B = xα1(d)w1 xα2(cd3+e) w2x3α1+2α2 (c) x3α1+α2 (ce-c2d3) xα1(cd2+g) x2α1+α2(cd) x3α1+α2 (-3cdf)w1B =xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 x3α1+2α2 (c)xα2 (c2d3-ce) xα1+α2 (cd)xα2 (3cdf)B =xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1B xα2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 x3α1+2α2 (c)xα2 (c2d3-ce) xα1+α2 (cd)xα2 (3cdf)xα2 (g)w2B xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) x3α1+2α2 (cxα1+α2 (cd))w2B xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) w2 x3α1+α2 (-c)xα1 (cd)B xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) w2B xα2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B = xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) w2 x3α1+α2 (-c)xα1 (cd)xα1(h) w1B = xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) w2 xα1(cd+h) x3α1+α2 (-c)w1B = xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) w2 xα1(cd+h) w1xα2(c)B = xα1(d)w1 xα2(cd3+e) w2xα1 (cd2+f)w1 xα2 (c2d3-ce+3cdf+g) w2 xα1(cd+h) w1B

Case: expceα1+α2=xα1+α2(c):

Coset starting with xα1(d):

xα1+α2(c) ·xα1(d)w1B = xα1(d) xα1+α2(c) x3α1+2α2 (-3c2d) x3α1+α2 (3cd2) x2α1+α2 (-2cd)w1B =xα1(d)w1 x2α1+α2 (-c) x3α1+2α2 (-3c2d)xα2 (-3cd2) xα1+α2 (-2cd)B = xα1(d)w1B xα1+α2(c) ·xα1(d)w1 xα2(e)e2B =xα1(d)w1 x2α1+α2 (-c) x3α1+2α2 (-3c2d)xα2 (-3cd2) xα1+α2 (-2cd)xα2 (e)w2B =xα1(d)w1 x2α1+α2 (-c) x3α1+2α2 (-3c2d)xα2 (e-3cd2) xα1+α2 (-2cd)w2B = xα1(d)w1 xα2(e-3cd2) x2α1+α2 (-c) x3α1+2α2 (-3c2d) xα1+α2 (-2cd)w2B = xα1(d)w1 xα2(e-3cd2) w2x2α1+α2 (-c) x3α1+α2 (3c2d)xα1 (-2cd)B = xα1(d)w1 xα2(e-3cd2) w2B xα1+α2(c) ·xα1(d)w1 xα2(e)w2 xα1(f)w1B = xα1(d)w1 xα2(e-3cd2) w2x2α1+α2 (-c) x3α1+α2 (3c2d) xα1(-2cd) xα1(f)w1B = xα1(d)w1 xα2(e-3cd2) w2x2α1+α2 (-c) x3α1+α2 (3c2d) xα1(f-2cd) w1B = xα1(d)w1 xα2(e-3cd2) w2xα1 (f-2cd) x2α1+α2 (-c) ·x3α1+α2 (3c(f-2cd)) x3α1+α2 (3c2d)w1B = xα1(d)w1 xα2(e-3cd2) w2xα1 (f-2cd)w1 x2α1+α2 (-c)xα2 (3c2d-3cf)B = xα1(d)w1 xα2(e-3cd2) w2xα1 (f-2cd)w1B xα1+α2(c) ·xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2B = xα1(d)w1 xα2(e-3cd2)w2 xα1(f-2cd)w1 xα1+α2(-c) xα2(3c2d-3cf) xα2(g)w2B = xα1(d)w1 xα2(e-3cd2)w2 xα1(f-2cd)w1 xα2(3c2d-3cf+g) xα1+α2(-c)w2B = xα1(d)w1 xα2(e-3cd2)w2 xα1(f-2cd)w1 xα2(3c2d-3cf+g) w2xα1(-c)B = xα1(d)w1 xα2(e-3cd2)w2 xα1(f-2cd)w1 xα2(3c2d-3cf+g) w2B xα1+α2(c) ·xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1B =xα1(d)w1 xα2(e-3cd2) w2xα1 (f-2cd)w1 xα2 (3c2d-3cf+g)w2 xα1(-c) xα1(h)w1B =xα1(d)w1 xα2(e-3cd2) w2xα1 (f-2cd)w1 xα2 (3c2d-3cf+g)w2 xα1(h-c)w1B xα1+α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2B =xα1(d)w1 xα2(e-3cd2) w1xα1 (f-2cd)w1 xα2 (3c2d-3cf+g)w2 xα1(h-c)w1 xα2(j)B

Cosets starting with xα2(d):

xα1+α2(c) ·xα2(d)w2B = xα2(d)w2 xα1(c)B = xα2(d)w2B xα1+α2(c) · xα2(d)w2 xα1(e)w1 B = xα2(d)w2 xα1(c) xα1(e)w1 B = xα2(d)w2 xα1(c+e) w1B xα1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα2(d)w2 xα1(c+e) w1xα2(f) w2B xα1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 xα1(c+e)w1 xα2(f)w2 xα1(g)w1B xα1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2B = xα2(d)w2 xα1(c+e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2B

Case: expc e2α1+α2 =x2α1+α2 (c):

Cosets starting with xα1(d):

x2α1+α2(c) · xα1(d)w1 B = xα1(d) x2α1+α2(c) x3α1+α2(-3cd) w1 B = xα1(d)w1 x2α1+α2(c) xα2(3cd) B = xα1(d)w1 B x2α1+α2(c) · xα1(d)w1 xα2(e)w2 B = xα1(d)w1 xα1+α2(c) xα2(3cd+e) w2 B = xα1(d)w1 xα2(3cd+e)w2 xα1(c) B = xα1(d)w1 xα2(3cd+e)w2 B x2α1+α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 B = xα1(d)w1 xα2(3cd+e)w2 xα1(c+f)w1 B x2α1+α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2B = xα1(d)w1 xα2(3cd+e)w2 xα1(c+f)w1 xα2(g)w2B x2α1+α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1B = xα1(d)w1 xα2(3cd+e)w2 xα1(c+f)w1 xα2(g)w2 xα1(h)w1B x2α1+α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2B = xα1(d)w1 xα2(3cd+e)w2 xα1(c+f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2B

Cosets starting with xα2(d):

x2α1+α2(c) · xα2(d)w2 B = xα2(d)w2 x2α1+α2(c) B x2α1+α2(c) · xα2(d)w2 xα1(e)w1 B = xα2(d)w2 xα1(e)w1 B x2α1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα2(d)w2 x2α1+α2(c) xα1(e)w1 xα2(f)w2 B = xα2(d)w2 xα1(e)w1 xα2(3ce+f)w2 B x2α1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 x2α1+α2(c) xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 xα1(e)w1 xα2(3ce+f)w2 xα1(c+g)w1 B x2α1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(d)w2 x2α1+α2(c) xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(d)w2 xα1(e)w1 xα2(3ce+f)w2 xα1(c+g)w1 xα2(h)w2 B

Case: exp e3α1+α2= x3α1+α2:

Cosets starting with xα1(d):

x3α1+α2(c)· xα1(d)w1 B = xα1(d)w1 xα2(-c) B = xα1(d)w1 B x3α1+α2(c)· xα1(d)w1 xα2(e)w2 B = xα1(d)w1 xα2(-c) xα2(e)w2 B = xα1(d)w1 xα2(e-c)w2 B x3α1+α2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 B = xα1(d)w1 xα2(-c) xα2(e)w2 xα1(f)w1 B = xα1(d)w1 xα2(e-c)w2 xα1(f)w1 B x3α1+α2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B = xα1(d)w1 xα2(-c) xα2(e)w2 xα1(f)w1 xα2(g)w2 B = xα1(d)w1 xα2(e-c)w2 xα1(f)w1 xα2(g)w2 B x3α1+α2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B = xα1(d)w1 xα2(-c) xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B = xα1(d)w1 xα2(e-c)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B x3α1+α2(c)· xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2 B = xα1(d)w1 xα2(-c) xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2 B = xα1(d)w1 xα2(e-c)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 xα2(j)w2 B

Cosets starting with xα2(d):

x3α1+α2(c) · xα2(d)w2 B = xα2(d) x3α1+α2(c) x3α1+2α2(-cd) w2 B = xα2(d)w2 x3α1+2α2(c) x3α1+α2(cd) B = xα2(d)w2 B x3α1+α2(c) · xα2(d)w2 xα1(e)w1 B = xα2(d)w2 x3α1+2α2(c) x3α1+α2(cd) xα1(e)w1 B = xα2(d)w2 xα1(e)w1 x3α1+2α2(c) xα2(-cd) B = xα2(d)w2 xα1(e)w1 B x3α1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα2(d)w2 xα1(e)w1 x3α1+2α2(c) xα2(-cd) xα2(f)w2 B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 x3α1+α2(-c) B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 B x3α1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 x3α1+α2(-c) xα1(g)w1 B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 xα1(g)w1 xα2(c) B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 xα1(g)w1 B x3α1+α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 xα1(g)w1 xα2(c) xα2(h)w2 B = xα2(d)w2 xα1(e)w1 xα2(f-cd)w2 xα1(g)w1 xα2(c+h)w2 B

Case: exp ce3α1+2α2 =e3α1+2α2 :

Cosets starting with xα2(d):

x3α1+2α2(c) · xα2(d)w2 B = xα2(d)w2 x3α1+α2(-c) B = xα2(d)w2 B x3α1+2α2(c) · xα2(d)w2 xα1(e)w1 B = xα2(d)w2 x3α1+α2(-c) xα1(e)w1 B = xα2(d)w2 xα1(e)w1 B x3α1+2α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 B = xα2(d)w2 x3α1+α2(-c) xα1(e)w1 xα2(f)w2 B = xα2(d)w2 xα1(e)w1 xα2(f+c)w2 B x3α1+2α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 x3α1+α2(-c) xα1(e)w1 xα2(f)w2 xα1(g)w1 B = xα2(d)w2 xα1(e)w1 xα2(f+c)w2 xα1(g)w1 B x3α1+2α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(d)w2 x3α1+α2(-c) xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 B = xα2(d)w2 xα1(e)w1 xα2(f+c)w2 xα1(g)w1 xα2(h)w2 B x3α1+2α2(c) · xα2(d)w2 xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 xα1(j)w1 B = xα2(d)w2 x3α1+α2(-c) xα1(e)w1 xα2(f)w2 xα1(g)w1 xα2(h)w2 xα1(j)w1 B = xα2(d)w2 xα1(e)w1 xα2(f+c)w2 xα1(g)w1 xα2(h)w2 xα1(j)w1 B

Cosets starting with xα1(d):

x3α1+2α2(c) · xα1(d)w1 B = xα1(d)w1 x3α1+2α2(c) B = xα1(d)w1 B x3α1+2α2(c) · xα1(d)w1 xα2(e)w2 B = xα1(d)w1 x3α1+2α2(c) xα2(e)w2 B = xα1(d)w1 xα2(e)w2 B x3α1+2α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 B = xα1(d)w1 x3α1+2α2(c) xα2(e)w2 xα1(f)w1 B = xα1(d)w1 xα2(e)w2 xα1(f)w1 B x3α1+2α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 B = xα1(d)w1 x3α1+2α2(c) xα2(e)w2 xα1(f)w1 xα2(g)w2 B = xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g+c)w2 B x3α1+2α2(c) · xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B = xα1(d)w1 x3α1+2α2(c) xα2(e)w2 xα1(f)w1 xα2(g)w2 xα1(h)w1 B = xα1(d)w1 xα2(e)w2 xα1(f)w1 xα2(g+c)w2 xα1(h)w1 B

The Varieties s

The varieties s of Borel subgroups containing a fixed semisimple element s can be determined using Theorem 3.8.

Generic q

If t=t1,1, then s=.

If t=t1,-1, then st=Hα1(-1)Hα2(1). Then s contains B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, xα1(c)w1w2w1xα2(d)w2B, xα1(c)w1w2w1xα2(d)w2w1B, xα1(c)w1w2w1xα2(d)w2w1w2B, w2B, w2w1B, w2w1xα2(c)w2B, w2w1xα2(c)w2w1B, and w2w1xα2(c)w2w1w2B.

If t=t11/3,1, then st=Hα1(12/3)Hα2(1). Then s contains B, w1B, w1xα2(c)w2B, w1xα2(c)w2w1B, w1xα2(c)w2w1xα2(d)w2B, w1xα2(c)w2w1xα2(d)w2w1B, w1xα2(c)w2w1xα2(d)w2w1xα2(e)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1xα2(d)w2B, xα2(c)w2w1xα2(d)w2w1B, and xα2(c)w2w1xα2(d)w2w1xα2(e)w2B.

If t=t1,q2, then st=Hα1(q2)Hα2(q4). Then s contains B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, xα1(c)w1w2w1w2B, xα1(c)w1w2w1w2w1B, xα1(c)w1w2w1w2w1B, w2B, w2w1, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

If t=t1,±q, then st=Hα1(±1)Hα2(q2). Then s contains B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, xα1(c)w1w2w1w2B, xα1(c)w1w2w1w2w1B, xα1(c)w1w2w1w2w1w2B, w2B, w2w1, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

If t=t1,z, then st=Hα1(z)Hα2(z2). Then s contains B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, xα1(c)w1w2w1w2B, xα1(c)w1w2w1w2w1B, xα1(c)w1w2w1w2w1w2B, w2B, w2w1, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

If t=tq2,1, then st=Hα1(q4)Hα2(q6). Then s contains B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, w1w2w1w2w1B, w1w2w1w2w1xα2(c)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1w2B, xα2(c)w2w1w2w1B, and xα2(c)w2w1w2w1w2B.

If t=t±q,1, then st=Hα1(q2)Hα2(-q3). Then s contains B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, w1w2w1w2w1B, w1w2w1w2w1xα2(c)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1w2B, xα2(c)w2w1w2w1B, and xα2(c)w2w1w2w1w2B.

If t=tq2/3,1, then st=Hα1(q4/3)Hα2(q2). Then s contains B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, w1w2w1w2w1B, w1w2w1w2w1α2(c)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1w2B, xα2(c)w2w1w2w1B, and xα2(c)w2w1w2w1w2B.

If t=tz,1, then st=Hα1(z2)Hα2(z3). Then s contains B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, w1w2w1w2w1B, w1w2w1w2w1xα2(c)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1w2B, xα2(c)w2w1w2w1B, and xα2(c)w2w1w2w1w2B.

If t=tq2,-q-2, t11/3,q2, tq2,q2, tq2,z, tz,q2, or tz,w for generic z,w, then Z(t)=. In that case, s consists of wB for wW0.

For specific values of q, we note that the sets s change only if Z(t) differs from the generic case.

q12=1

None of the varieties s are different when q2 is a primitive sixth root of unity.

q10=1

When q2 is a primitive fifth root of unity, tq2,q2 and tq-4,1 are in the same orbit. The central characters t±q,1 are the same as t±q-4,1.

For s=st±q-4,1, s contains B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, w1w2w1w2w1B, w1w2w1w2w1xα2(c)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1w2B, xα2(c)w2w1w2w1B, and xα2(c)w2w1w2w1w2B.

For ease of calculation later, it is also useful to note that for s=stq2,q2, s consists of B, w1B, w2w1B, w1w2w1B, w2w1xα2(c)w2w1B, w1w2w1xα2(c)w2w1B, w2B, w1w2B, w2w1xα2(c)w2B, w1w2w1xα2(c)w2B, w2w1xα2(c)w2w1w2B, and w2w1xα1(c)w2w1w2w1B.

q8=1

If q2 is a primitive fourth root of unity, tq2,-q-2=tq2,q2, and both of these central characters are in the same orbits as tq2,1.

For s=stq2,q2, s contains B, w1B, w1xα2(c)w2B, w1xα2(c)w2w1B, w1xα2(c)w2w1w2B, w1xα2(c)w2w1w2w1B, w1xα2(c)w2w1w2w1w2B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1xα2(c)w2B. Geometrically, this is six copies of 1.

q6=1

If q2 is a primitive third root of unity, then t11/3 and t-q,1 are in the same orbit as tq2,1, while t1,-q, tq2,q2, and t11/3,q2 are all in the same orbit as tq2,q2.

The variety st changes only for t=tq2,1=t11/3,1. Then st=Hα1(12/3)Hα2(1). Hence s contains B, w1B, w1xα2(c)w2B, w1xα2(c)w2w1B, w1xα2(c)w2w1xα2(d)w2B, w1xα2(c)w2w1xα2(d)w2w1B, w1xα2(c)w2w1xα2(d)w2w1xα2(e)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1xα2(d)w2B, xα2(c)w2w1xα2(d)w2w1B, and xα2(c)w2w1xα2(d)w2w1xα2(e)w2B.

q4=1

If q2=-1, then the central characters are represented by t1,1, t1,q2=t1,-1, t11/3,1, t1,q, t1,z, tq2,1, tq,1, t-11/3,1, tz,1, tq2,z, tz,q2, and tz,w.

The varieties s are the same as in the generic case for t1,1, t1,-1, t11/3,1, t1,q, t1,z, tq,1, tq2/3,1=t-11/3,1 tz,1, tq2,z, tz,q2, and tz,w.

If t=tq2,1, then st=Hα1(1)Hα2(q2). Then s contains B, w1B, w1w2B, w1w2xα1(c)w1B, w1w2xα1(c)w1w2B, w1w2xα1(c)w1w2w1B, w1w2xα1(c)w1w2w1xα2(d)w2B, xα2(c)w2B, xα2(c)w2w1B, xα2(c)w2w1w2B, xα2(c)w2w1w2xα1(d)w1B, and xα2(c)w2w1w2xα1(d)w2B.

q2=1

When q2=1, the possible central characters are represented by t1,1, t1,-1, t11/3,1, t1,z, tz,1, and tz,w. The varieties s are the same as in the generic case for all these st.

The Varieties s,n

We describe the varieties s,n for each representative of an orbit in Λ/G. However, we note that s,0=s, so we only describe s,n for n0.

Generic q

If (s,n) =(st1,q2,eα2), then s,n contains B, xα1(c)w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w1w2w1w2w1B. This is a 1 and four points.

If (s,n) =(st1,q2,eα2+e3α1+α2), then we note that

exp(eα2+e3α1+α2) =xα2(1) x3α1+α2(1) x3α1+2α2 (-1/2).

Then s,n consists of B, xα1(c)w1B and xα1(ζi)w1w2B, where ζ is a primitve third root of unity and i=0,1, or 2. Geometrically, this is 1 and three points.

The centralizer CG(s,n) is generated by Hα1((-1)1/3)Hα2(-1)w1, which has order 2, as well as Hα1(11/3), for some choice of a cube root of 1. Then CG(s,n) is isomorphic to S3. This group acts trivially on the 1 in s,n, and permutes the three points via the natural action of S3. Then if H is spanned by α,β, and γ, the span of α+β+γ is a copy of the trivial representation of S3 in H(s,n). Thus H(s,n)triv is 3-dimensional, and as a H-module, has a 2-dimensional generalized t weight space, and a 1-dimensional s2t weight space. The remaining two dimensions of H are α,β,γ/α+β+γ, a copy of the 2-dimensional representation χ of S3. As a H-module, it has a 2-dimensional s2t weight space.

If (s,n) =(st1,q2,eα1+α2) then s,n contains B, w2B, xα1(c)w1B, w1w2B, w1w2w1B, and w1w2w1w2B. This is a 1 and 4 points.

B,xα1(c)w1B w1w2B w1w2w1B w1w2w1w2B w1w2w1w2w1B B,xα1(c)w1B w2B,w1w2B w1w2w1B w1w2w1w2B (st1,q2,eα2) (st1,q2,eα1+α2) B,xα1(c)w1B xα1(ζi)w1w2B (st1,q2,eα2+e3α1+α2)

If (s,n) =(st1,±q,e3α1+2α2), then s,n consists of B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, w2B, and w2w1B. This is three 1s.

If (s,n) =(stq2,1,eα1), then s,n contains B, xα2(c)w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B. This is a 1 and four points.

If (s,n) =(st±q,1,e2α1+α2), then s,n contains B, w1B, w1w2B, xα2(c)w2B, xα2(c)w2w1B, and xα2(c)w2w1w2B. This is three disjoint copies of 1.

B,xα2(c)w2B w2w1B w2w1w2B w2w1w2w1B w2w1w2w1w2B B,xα1(c)w1B w2B,xα1(c)w1w2B w2w1B,xα1(c)w1w2w1B (stq2,1,eα1) (st1,±q,e3α1+α2) B,xα2(c)w2B w1B,xα2(c)w2w1B w1w2B,xα2(c)w2w1w2B (st1,±q,eα2+e3α1+α2)

If (s,n) = ( stq2/3,1, e3α1+α2 ) , then s,n consists of B, w1B, xα2(c)w2B, xα2(c)w2w1B, w2w1w2B, and w2w1w2w1B. This is two copies of 1 and two points.

B,xα2(c)w2B w1B,xα2(c)w2w1B w2w1w2B w2w1w2w1B (stq2/3,1,eα2)

If (s,n) = ( stq2,-q-2 ,eα1 ) , then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

If (s,n) = ( stq2,-q-2, e3α1+2α2 ) , then s,n consists of B, w2B, w2w1B, w1B, w1w2B, and w1w2w1B.

If (s,n) = ( stq2,-q-2, eα1+ e3α1+2α2 ) , then exp(eα1+e3α1+2α2) =xα1(1)x3α1+2α2(1). Then s,n consists of B, w2B, and w2w1B.

B w2B w2w1B w2w1w2B w2w1w2w1B w2w1w2w1w2B w1w2w1B w1w2B w1B B w2B w2w1B (stq2,-q-2,eα1) (stq2,-q-2,e3α1+2α2) B w2B w2w1B (stq2,-q-2,eα1+e3α1+2α2)

If (s,n) = ( st11/3,q2 ,eα2 ) , then s,n consists of B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w1w2w1w2w1B.

If (s,n) = ( st11/3,q2 ,e3α1+α2 ) , then s,n consists of B, w1B, w2B, w2w1B, w2w1w2B, and w2w1w2w1B.

If (s,n) = ( st11/3,q2, eα2+ e3α1+α2 ) , then exp(n) =xα2(1) x3α1+α2 (1) x3α1+2α2 (-12). Then s,n consists of B, and w1B.

w1w2w1w2w1B w1w2w1w2B w1w2w1B w1w2B w1B B w1B B w2B w2w1B w2w1w2B w2w1w2w1B (st11/3,q2,eα2) (st11/3,q2,e3α1+α2) w1B B ( st11/3,q2, eα2+ e3α1+α2 )

If (s,n) = (stq2,q2,eα1) , then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

If (s,n) = (stq2,q2,eα2) , then s,n consists of B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w1w2w1w2w1B.

If (s,n) = (stq2,q2,eα1+eα2) , then note that

exp(eα1+eα2) =xα1(1) xα2(1) xα1+α2 (-1/2) x2α1+α2 (1/3) x3α1+α2 (-1/4) x3α1+2α2 (-1/10).

Then s,n consists only of B.

w1w2w1w2w1B w1w2w1w2B w1w2w1B w1w2B w1B B B w2B w2w1B w2w1w2B w2w1w2w1B w2w1w2w1w2B (stq2,q2,eα2) (stq2,q2,eα1) B (stq2,q2,eα1+eα2)

If (s,n) =(stq2,z,eα1), then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

If (s,n) =(stz,q2,eα2), then s,n consists of B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w1w2w1w2w1B.

w1w2w1w2w1B w1w2w1w2B w1w2w1B w1w2B w1B B B w2B w2w1B w2w1w2B w2w1w2w1B w2w1w2w1w2B (stz,q2,eα2) (stz,q2,eα1)

The generic case will differ from a specialized q only if Z(t) increases so that st is larger for that value of q, or if 𝔤qs is larger leading to new orbits that were not present before.

q12=1

The only orbits that differ from the generic case when q12=1 are those involving the semisimples in the orbit of stq2,q2. The nilpotent orbits in 𝔤qs are represented by eα1, eα2, eα1+eα2, e-3α1-2α2, eα1+e-3α1-2α2, and eα2+e-3α1-2α2. However, computations become easier if we choose these orbit representatives in Λ:

w2w1w2· ( stq2,q2, e-3α1-2α2 ) = ( sw2w1w2tq2,q2 ,eα2 ) , w2w1w2· ( stq2,q2, eα1+ e-3α1-2α2 ) = ( sw2w1w2tq2,q2 ,eα2+ e2α1+α2 ) , and w2w1w2w1· ( stq2,q2, eα2+ e-3α1-2α2 ) = ( sw2w1w2w1tq2,q2 ,eα2+ e3α1+α2 ) .

If (s,n) = ( ss2s1s2tq2,q2 ,eα2 ) , then s,n consists of B, w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w1w2w1w2w1B.

If (s,n) = ( ss2s1s2tq2,q2, eα2+ e2α1+α2 ) , then s,n consists of B, w1B, and w1w2B.

If (s,n) = ( ss2s1s2s1tq2,q2, eα2+ e3α1+α2 ) , then s,n consists of B w1B.

w1w2w1B w1w2w1w2B w1w2w1w2w1B B w1B w1w2B B w1B w1w2B ( stq2,q2, e-3α1-2α2 ) ,q12=1 ( stq2,q2, eα1+ e-3α1-2α2 ) ,q12=1 B w2B w2w1B w2w1w2B w2w1w2w1B w2w1w2w1w2B B w1B ( stq2,q2, eα1 ) ,q12=1 ( stq2,q2, eα2+ e-3α1-2α2 ) ,q12=1 w1w2w1w2w1B w1w2w1w2B w1w2w1B w1w2B w1B B B ( stq2,q2, eα2 ) ,q12=1 ( stq2,q2, eα1+eα2 ) ,q12=1

q10=1

If q10=1, then tq2,q2 is in the same orbit as tq-4,1, and Z(tq2,q2) now contains 3α1+2α2.

If (s,n) = ( st-q-4,1, e2α1+α2 ) , then s,n consists of B, w1B, w1w2B, xα2(c)w2B, xα2(c)w2w1B, and xα2(c)w2w1w2B.

If (s,n) = ( stq-4,1, e-3α1-α2 ) , then we choose a different orbit representative. Specifically, we use the pair ( ss2s1tq-4,1, eα2 ) = ( stq2,q2, eα2 ) . Then s,n contains B, w1B, w1w2B, w1w2w1B, w1w2w1xα2(c)w2B, and w1w2w1xα2(c)w2w1B. Geometrically, this is two copies of 1 and two points.

If (s,n) = ( stq-4,1, e2α1+α2+ e-3α1-α2 ) , then we choose a different orbit representative. Specifically, we use ( ss2s1tq-4,1, eα2+eα1 ) = ( stq2,q2, eα1+eα2 ) . Then note that exp(eα1+eα2) = xα1(1) xα2(1) xα1+α2(-1/2) x2α1+α2(1/3) x3α1+α2(-1/4) x3α1+2α2(-1/10). However, s,n consists only of B.

w1w2w1xα2(c)w2B w1w2w1B, w1w2w1xα2(c)w2w1B w1w2B, w1B B B,xα2(c)w2B w1B,xα2(c)w2w1B w2w1w2B w2w1w2w1B ( stq-4,1, e-3α1-α2 ) ,q10=1 ( stq-4,1, e2α1+α2 ) ,q10=1 B ( stq-4,1, e2α1+α2+ e-3α1-α2 ) ,q10=1

q8=1

If q is a primitive eighth root of unity, then tq2,q2 =tq2,q-2, and both of these central characters are in the same orbit as tq2,1.

If (s,n) =(stq2,q2,eα1), then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1xα2(c)w2B.

If (s,n) =(stq2,q2,eα2), then s,n consists of B, w1B, w1xα2(c)w2B, w1xα2(c)w2w1B, w1w2w1w2B, and w1w2w1w2w1B.

If (s,n) =(stq2,q2,eα1+eα2), then s,n consists only of B.

If (s,n) =(stq2,q2,eα1+e3α1+2α2), then note that exp(eα1+e3α1+2α2) =xα1(1)x3α1+2α2(1). Then s,n consists of B, w2B, and w2w1B.

B w2B w2w1B w2w1w2B w2w1w2w1B, w2w1w2w1xα2(c)w2B w1B,w1xα2(c)w2B B,w1w2w1B w1w2w1w2B w1w2w1w2w1B (stq2,q2,eα1) ,q8=1 (stq2,q2,eα2) ,q8=1 B B w2B w2w1B (stq2,q2,eα1+eα2) ,q8=1 (stq2,q2,eα1+e3α1+2α2) ,q8=1

q6=1

If q2 is a primitive third root of unity, then t11/3 and t-q,1 are in the same orbit as tq2,1, while t1,-q, tq2,q2, and t11/3,q2 are all in the same orbit as tq2,q2.

It suffices to consider t1,q2 and tq2,1. The other weights are in the same orbit as these or the varieties s,n are the same as in the generic case.

Case: t=tq2,1

If s=stq2,1, then the CG(s)-orbits of nilpotents in 𝔤qs are represented by 0 and eα1.

If (s,n) =(stq2,1,eα1), then s,n contains B, xα2(c)w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

e-3α1-2α2,q6=1

Case: t=t1,q2

In the case that t=t1,q2, the correspondence between the combinatorial and geometric classifications is unclear. We will give the details of the geometric classification here and describe the issues that arise.

First, we note that if s=st1,q2, then the nilpotent orbits in 𝔤qs are represented by 0, eα2, eα2 +e3α1+α2, eα1+α2, e-3α1-2α2, eα2 +e-3α1-2α2, and eα1+α2 +e-3α1-2α2. However, since eα2 +e3α1+α2 +e-3α1-2α2, an element of 𝔤qs, is not nilpotent, the pair (s,0) does not satisfy Grojnowski’s condition (3.1), and so is excluded from the indexing.

To check that the other nilpotent orbits do satisfy condition 3.1, we note that an element of 𝔤qst1,q2 takes the form g =aeα2 +beα1+α2 +ce2α1+α2 +de3α1+α2 +fe-3α1-2α2. We check condition 3.1 for n by first finding a 𝔰𝔩2-triple (n,y,h). By computing [y,g] (using the basic representation of 𝔤,) we determine necessary and sufficient conditions on the coefficients of g for g to be in Z𝔤(y). If all g satisfying these conditions are again nilpotent, then condition 3.1 is satisfied. The following table summarizes this check.

n y Condition onZ𝔤(y) Z𝔤(y)𝔤qs𝒩 00noneno eα2 e-α2 a=b=0 yes eα1+α2 e-α1-α2 a=b=c=0 yes eα2+e3α1+α2 2e-α2-2e-3α1-α2 a=b=c=d=0 yes e-3α1-2α2 e3α1+2α2 f=0 yes eα2+e-3α1-2α2 2e-α2+2e3α1+2α2 a=b=f=0 yes eα1+α2+e-3α1-2α2 -6e-α1-α2+10e3α1+2α2 a=b=c=f=0 yes

If (s,n)=(st1,q2,eα2), then s,n contains B, xα1(c)w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w1w2w1w2w1B. This is a 1 and four points. The corresponding module has weights t, s2t, s1s2t, s2s1s2t, s1s2s1s2t, and s2s1s2s1s2t, and the t weight space has dimension 2.

If (s,n) =(st1,q2,eα2+e3α1+α2), then we note that

exp(eα2+e3α1+α2) =xα2(1) x3α1+α2(1) x3α1+2α2(-1/2).

Then s,n consists of B, xα1(c)w1B and xα1(ζi)w1w2B, where ζ is a primitve third root of unity and i=0,1, or 2. Geometrically, this is 1 and three points.

The centralizer CG(s,n) is generated by Hα1((-1)1/3) Hα2(-1)w1, which has order 2, as well as Hα1(11/3), for some choice of a cube root of 1. Then CG(s,n) is isomorphic to S3. This group acts trivially on the 1 in s,n, and permutes the three points via the natural action of S3. Then if H is spanned by α,β, and γ, the span of α+β+γ is a copy of the trivial representation of S3 in H(s,n). Thus H(s,n)triv is 3-dimensional, and as a H-module, has a 2-dimensional generalized t weight space, and a 1-dimensional s2t weight space. The remaining two dimensions of H are α,β,γ/α+β+γ, a copy of the 2-dimensional representation χ of S3. As a H-module, it has a 2-dimensional s2t weight space.

If (s,n)=(st1,q2,eα1+α2), then s,n consists of B, xα1(c)w1B, w1w2B, w1w2w1B, w1w2w1w2B, and w2B. This is a 1 and 4 points. The corresponding module has weights t, s2t, s1s2t, s2s1s2t, and s1s2s1s2t, and the t and s2t weight spaces have dimension 2.

We note that w2w1w2 ·(st1,q2,e-3α1-2α2) =(stq2,q2,eα2). Then if (s,n)=(stq2,q2,eα2), then s,n consists of B, w1B, w1w2B, w1w2w1B, w1w2w1xα2(c)w2B, and w1w2w1xα2(c)w2w1B. This is two copies of 1 and two points. If t=t1,q2, then the corresponding module has weights s2s1s2t, s1s2s1s2t, and s2s1s2s1s2t, and each weight space has dimension 2.

If (s,n) =(stq2,q2,eα1+eα2) =w2w1w2w1 · ( st1,q2, eα1+α2+ e-3α1-2α2 ) , then we note that exp(eα2+eα1) = xα1(1) xα2(1) xα1+α2(-1/2) x2α1+α2(1/3) x3α1+α2(-1/4) x3α1+2α2(-1/10). Then s,n consists of the single point B. The module has a single weight space Ms2s1s2t

If (s,n) = ( stq2,q2, eα2+ e3α1+α2 ) =w2w1w2w1 · ( st1,q2, eα2+ e-3α1-2α2 ) , then we note that exp(eα2+e3α1+2α2) =xα2(1) x3α1+α2(1) x3α1+2α2(-1/2). Then s,n consists of the points B and w1B. The corresponding module has weights s2s1s2t and s1s2s1s2t.

These pictures show the weight space structure of H(s,n). The nilpotent orbit of n must index a module which is a composition factors of H(s,n), which is what allows us to determine the correspondence.

triv sign triv sign triv sign eα2,q6=1 eα1+α2,q6=1 eα2+e3α1+α2,q6=1 sign sign sign eα2+e-3α1-2α2,q6=1 eα1+α2+e-3α1-2α2,q6=1 e-3α1-2α2,q6=1

The nilpotent orbit of eα1+α2 +e-3α1-2α2 must correspond to the 1-dimensional module with weight s2s1s2t, since H(s,n) is only 1-dimensional and must be precisely that module. The composition factors of H ( s,eα2+ e-3α1-2α2 ) are 1-dimensional modules with weights s2s1s2t and s1s2s1s2t, so that eα2+e-3α1-2α2 must correspond to the 1-dimensional module with weight s1s2s1s2t. Similarly, e-3α1-2α2 must correspond to the 3-dimensional module with weights w0t and s2w0t.

For n=eα2+e3α1+α2, C(s,n)S3 as noted above. The module H(s,n) contains the trivial representation of S3 and the 2-dimensional representation χ of S3. Thus H(s,n) contributes two modules, indexed by (st,n,triv) and (st,n,χ). The module corresponding to (st,n,χ) is 1-dimensional with weight s2t, while the module corresponding to (st,n,triv) is 3-dimensional with weights t and s1t.

This leaves only one simple module left - a 1-dimensional module with weight s2s1t. However, there are two nilpotent orbits remaining - eα2 and eα1+α2. Moreover, H(s,n) has this module as a composition factor if n is either eα2 or eα1+α2. In short, even after considering condition 3.1, the indexing set for the H-modules is too large. If we were to remove either the triple (s,eα2+e3α1+α2,χ) or one of (s,eα2,1) or (s,eα1+α2,1), from the indexing set, the correspondence would be clear. However, Theorem 3.2 as stated says to include all of those triples in the indexing.

It seems (although this is merely a conjecture) that the problem lies with the representations of C(s,n) which are part of the indexing. Grojnowski’s combinatorial statement of the indexing set for the H-modules (Theorem 3.2 above) does not seem to mention the representation χ of C(s,n). Thus the indexing set must include all possible (s,n,χ) or exclude all possible (s,n,χ) for a fixed s and n. Again, conjecturally, it seems that (s,eα2+e3α1+α2) is the correct triple to exclude from the indexing, partly because doing so would solve a similar issue in the q2=-1 case to follow. More importantly, the geometric statement of Grojnowski’s indexing([Gro1994-2], Theorem 1) seems to depend on the element χ in the triple (s,n,χ), so it seems strange that χ does not appear in the combinatorial statement.

q4=1

Case: t=t1,q2:

For the central character t1,q2, Grojnowski’s condition (3.1) rules out several nilpotent orbits from the indexing. The pair (st1,q2,0) is excluded since 𝔤qs is not contained in 𝒩. The orbits of eα2 and eα1+α2 are excluded since e3α1+α2+e-3α1-α2, a non-nilpotent element of 𝔤qs, commutes with fα2 and fα1+α2, respectively.

To check that the other nilpotent orbits do satisfy condition 3.1, we note that an element of 𝔤qst1,q2 takes the form x =aeα2 +beα1+α2 +ce2α1+α2 +de3α1+α2 +fe-α2 +ge-α1-α2 +he-2α1-α2 +je-3α1-α2. We check condition 3.1 for n by first finding a 𝔰𝔩2-triple (n,y,h). By computing [y,g] (using the basic representation of 𝔤,) we determine necessary and sufficient conditions on the coefficients of g for g to be in Z𝔤(y). If all g satisfying these conditions are again nilpotent, then condition 3.1 is satisfied. The following table summarizes this check.

n y Condition onZ𝔤(y) Z𝔤(y)𝔤qs𝒩 00noneno eα2 e-α2 a=b=0 no eα1+α2 e-α1-α2 a=b=c=h=0 no eα2+e3α1+α2 2e-α2-2e-3α1-α2 a=b=c=d=0=f+j yes eα2+e-α1-2α2 10e-α2-6eα1+α2 a=c=g=h=j=0=3e+5b yes eα2+e-2α1-α2 e-α2+e2α1+α2 a=b=g=h=j=0 yes

If (s,n)=(st1,q2,eα2+e3α1+α2), then we note that

exp(eα2+e3α1+α2) =eα2(1) e3α1+α2(1) e3α1+2α2(-1/2).

Then s,n consists of B, xα1(c)w1B, and xα1(ζ)w1w2B, where ζ3=1. This is a 1 and three points.

The centralizer CG(s,n) is generated by x3α1+2α2(c), Hα1((-1)1/3)Hα2(-1)w1, which has order 2, and Hα1(11/3), for some choice of a cube root of 1. The elements x3α1+2α2(c) are central in CG(s,n), so that the component group of CG(s,n) is isomorphic to S3. This group acts trivially on the 1 in s,n, and permutes the three points via the natural action of S3. Then if H is spanned by α,β, and γ, the span of α+β+γ is a copy of the trivial representation of S3 in H(s,n). Thus H(s,n)triv is 3-dimensional, and as a H-module, has a 2-dimensional generalized t weight space, and a 1-dimensional s2t weight space. The remaining two dimensions of H are α,β,γ/α+β+γ, a copy of the 2-dimensional representation χ of S3. As a H-module, it has a 2-dimensional s2t weight space.

If (s,n) =(st1,q2,eα2+e-α1-α2), then we note that w1w2w1w2w1 ·(st1,q2,eα2+e-α1-α2) =(stq2,q2,eα1+eα2), which we choose as our orbit representative. Then s,n consists only of the point B. The corresponding module has weight s2t.

If (s,n) =(st1,q2,eα2+e-2α1-α2), then we note that w1w2w1 · ( st1,q2, eα2+ e-2α1-α2 ) = ( stq2,1,eα1 +e3α1+2α2 ) , which we choose as our orbit representative. Then note that exp(eα1+e3α1+2α2) =xα1(1)x3α1+2α2(1). Then s,n consists of B, xα2(c)w2B, and w2w1B. The resulting module has a 2-dimensional s1s2t weight space and a 1-dimensional s2t weight space.

B,xα1(c)w1B xα2(ζi)w1w2B B ( st1,q2, eα2+ e3α1+α2 ) ,q2=-1 ( st1,q2, eα2+ e-α1-α2 ) ,q2=-1 w1w2B B,xα2(c)w2B ( st1,q2, eα2+ e-2α1-α2 ) ,q2=-1

As in the case t1,q2 when q6=-1 it is unclear exactly how the combinatorial and geometric classifications match up in this case. The nilpotent eα2 +e-α1-α2 must correspond to the 1-dimensional module with weight s2t since H(s,eα2+e-α1-α2) is 1-dimensional. The 2-dimensional module with weight s1s2t only appears in s,n if n =eα2 +e-2α1-α2, so it must correspond to eα2 +e-2α1-α2. But, H(s,eα2) contains two representations of C(s,n)S3 - the trivial and 2-dimensional representations.

As in the q6=1 case, the indexing set for these modules is too large. However, eliminating either the triple (s,eα2,χ) or (s,eα2+e-α1-α2,1) would make the correspondence clear.

Other Cases:

We note that for any t with P(t)={α}, 𝔤qs is spanned by eα and e-α, and the nilpotent orbits in 𝔤qs are represented by 0, eα, and e-α. However, eα+e-αZ𝔤(0), but eα+e-α is not nilpotent. Hence, Grojnowski’s condition (3.1) shows that the pair (st,0) should be excluded from the indexing.

If (s,n)=(st1,q,e3α1+2α2), then s,n consists of B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, w2B, and w2w1B.

Next, note that (st1,q,e-3α1-2α2) =w0 ·(st1,q-1,e3α1+2α2). If (s,n) =(st1,q-1,e3α1+2α2), then s,n consists of B, xα1(c)w1B, xα1(c)w1w2B, xα1(c)w1w2w1B, w2B, and w2w1B.

B,xα1(c)w1B w2B,xα1(c)w1w2B w2w1B,xα1(c)w1w2w1B w2w1B, xα1(c)w1w2w1B w2B, xα1(c)w1w2B B,xα1(c)w1B (st1,q,e3α1+2α2) ,q2=-1 (st1,q,e-3α1-2α2) ,q2=-1

If (s,n)=(stq,1,e2α1+α2), then s,n consists of B, w1B, w1w2B, xα2(c)w2B, xα2(c)w2w1B, and xα2(c)w2w1w2B.

Next, note that (stq,1,e-2α1-α2) =w0 · ( stq-1,1, e2α1+α2 ) . Then if (s,n)=(stq-1,1,e2α1+α2), then s,n consists of B, w1B, w1w2B, xα2(c)w2B, xα2(c)w2w1B, and xα2(c)w2w1w2B.

B,xα2(c)w2B w1B, xα2(c)w2w1B w1w2B, xα2(c)w2w1w2B w1w2B, xα2(c)w2w1w2B w1B, xα2(c)w2w1B B,xα2(c)w2B (stq,1,e2α1+α2) ,q2=-1 (stq,1,e-2α1-α2) ,q2=-1

If (s,n)=(st-11/3,1,e3α1+α2), then s,n consists of B, w1B, xα2(c)w2B, xα2(c)w2w1B, w2w1w2B, and w2w1w2w1B.

Next, note that (st-11/3,1,e-3α1-α2) =w0 · ( st-11/3,1, e3α1+α2 ) . Then for the pair (s,n) =(st-11/3,1,e3α1+α2), s,n consists of B, w1B, xα2(c)w2B, xα2(c)w2w1B, w2w1w2B, and w2w1w2w1B.

Then, w2w1w2 · ( st-11/3,1, e3α1+α2+ e-3α1-2α2 ) = ( st11/3,-1, eα2+ e3α1+α2 ) , which we use as our orbit representative. Then exp(eα2+e3α1+α2) =xα2(1)x3α1+α2(1)x3α1+2α2(-1/2). Then s,n consists of B and w1B.

B,xα2(c)w2B w1B, xα2(c)w2w1B w2w1w2B w2w1w2w1B w2w1w2w1B w2w1w2B w1B, xα2(c)w2w1B B,xα2(c)w2B (st-11/3,1,e3α1+α2) ,q2=-1 (st-11/3,1,e-3α1-α2) ,q2=-1

If (s,n)=(stq2,z,eα1), then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

Then, note that w0 ·(stq2,z,e-α1) -(stq2,z-1,eα1), so we use this latter pair as our orbit representative. Then if (s,n)=(stq2,z-1,eα1), then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

B w2B w2w1B w2w1w2B w1w2w2w1B w2w1w2w1w2B B w2B w2w1B w2w1w2B w2w1w2w1B w2w1w2w1w2B (stq2,z,e-α1) ,q2=-1 (stq2,z,eα1) ,q2=-1

If (s,n)=(stz,q2,eα1), then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

Then, note that w0 ·(stz,q2,e-α1) =(stz-1,q2,eα1), so we use this latter pair as our orbit representative. Then if (s,n)=(stz-1,q2,eα1), then s,n consists of B, w2B, w2w1B, w2w1w2B, w2w1w2w1B, and w2w1w2w1w2B.

w1w2w1w2w1B w1w2w1w2B w1w2w1B w1w2B w1B B w1w2w1w2w1B w1w2w1w2B w1w2w1B w1w2B w1B B (stz,q2,eα2) ,q2=-1 (stz,q2,e-α2) ,q2=-1

q2=1

When q2=1, Z(t)=P(t) for any t, and CG(s) is the Lie group generated by D and { xα(c) α𝔤qs, c } . In fact, if eα and eβ are elements of 𝔤qs, then eα+β𝔤qs as well. Then 𝔤qs is a Lie subalgebra of 𝔤 and CG(s) is its associated Lie Group. Then the CG(s) orbits of 𝒩qs are exactly the (adjoint) nilpotent orbits of 𝔤qs. In addition, the set of Borel subgroups of CG(s) is precisely s, and the Weyl group of CG(s) is Wt, the stabilizer of t in W0.

Then, the Springer correspondence gives a bijection between irreducible representations of Wt and CG(st)-orbits of pairs (n,χ), where n is a nilpotent element of 𝔤 and χ is a simple representation of the component group of CG(st,n) that appears in H(s,n). But these are exactly the G-orbits of triples (st,n,χ) where χ is a simple representation of C(s,n) that appears in H(s,n). Then the orbits of such triples are in bijection with the irreducible representations of Wt. In turn, the results of section 1.2.9 show that the irreducible representations of Wt are in bijection with the irreducible representations of H with central character t. Thus, if q2=1, using the Springer correspondences for all the potential groups Wt gives a geometric indexing of the irreducible representations of H.

Bijections

We give explicitly the bijections between irreducible representations of H and orbits in { (s,n) sGss,n 𝔤qs } paired with representations of C(s,n) appearing in H(s,n).

If q12=1, note that the pair (stq2,q2,0) does not satisfy the condition to be included in the indexing set, since eα1 +eα2 +e-3α1-2α2 is not nilpotent.

If q10=1, then note that the central characters t±q,1 are replaced by t±q-4,1 in some order.

If q8=1, then only the central characters tq2,1, tq2,-q-2, and tq2,q2 change from the generic case.

If q6=1, then we note that t11/3,1 =tq±2,1, and tq-2,1 is in the same orbit as tq2,1. Also, t1,q-2 =w0t1,q2, and tq-2,1 =w0tq2,1. Finally, t11/3,q2 =tq±2,q2, but s1tq2,q2 =tq-2,q2 =s2t1,q-2 and so both are in the same orbit as t1,q2. For the central character t1,q2, the correspondence is unclear. We give our best guess at what the correspondence should be, which involves eliminating the only triple with a non-trivial representation χ of C(s,n).

When q4=1, then we note that the correspondence for the central character t1,q2 is unclear. We have given here our best guess at what the correspondence should be, which involves eliminating the only triple with a non-trivial representation of C(s,n).

In the table for the case q2=1, we use the notation of Carter ([Car1985], p. 412) to denote representations of W0.

(s,n,χ) Dimension weights ( st1,1,0,1 ) 12 Wt ( st1,-1,0,1 ) 12 Wt ( st11/3,1 ,0,1 ) 12 Wt ( st1,q2,0,1 ) 3 s2w0t,w0t ( st1,q2, eα2,1 ) 1 s2w0t ( st1,q2, eα2+ e3α1+α2, 1 ) 3 t,s2t ( st1,q2, eα2+ e3α1+α2, χ ) 1 s2t ( st1,q2, eα1+α2,1 ) 2 s1s2t,s2s1s2t ( st1,±q,0,1 ) 6 s2s1s2t, s2s1s2s1s2t ( st1,±q, e3α1+2α2,1 ) 6 t,s2t,s1s2t ( st1,z,0,1 ) 12 Wt ( stq2,1,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,1,eα1,1 ) 6 t,s1t,s2s1t, s1s2s1t,s2 s1s2s1t ( st±q,1,0,1 ) 6 s1s2s1t, s1s2s1s2 s1t ( st±q,1, e2α1+α2,1 ) 6 t,s1t,s2s1t ( stq2/3,1 ,0,1 ) 6 s2s1t,s1s2 s1t,s2w0t ( stq2/3,1 e3α1+α2,1 ) 6 t,s1t,s2s1t ,s1s2s1t ( stz,1,0,1 ) 12 Wt ( stq2,-q-2 ,0,1 ) 3 s2s1s2s1t, s2w0t, w0t ( stq2,-q-2, eα1,1 ) 3 s2s1s2t, s1s2s1s2t, s1w0t ( stq2,-q-2, e3α1+2α2,1 ) 3 s1t, s2s1t, s1s2s1t ( stq2,-q-2, eα1+ e3α1+2α2,1 ) 3 t,s2t,s1s2t ( st11/3,q2 ,0,1 ) 2 w0t,s1w0t ( st11/3,q2, eα2,1 ) 4 s1s2t,s1s2 s1t,s1s2s1 s2t,s2w0t ( st11/3,q2, e3α1+α2,1 ) 4 s2t,s2s1t, s2s1s2t, s2s1s2s1t ( st11/3,q2, eα2+ e3α1+α2,1 ) 2 t,s1t ( stq2,q2, 0,1 ) 1 w0t ( stq2,q2, eα1,1 ) 5 s2t,s1w0t ( stq2,q2, eα2,1 ) 5 s1t,s2w0t ( stq2,q2, eα1+eα2,1 ) 1 t ( stq2,z,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,z, eα1,1 ) 6 t,s2t, s1w0t ( stz,q2,0,1 ) 6 s2t,s1s2t ,w0t ( stz,q2, eα2,1 ) 6 t,s1t, s2w0t ( stz,w,0,1 ) 12 Wt Table 32: Geometric Indexing in TypeG2, with genericq. (s,n,χ) Dimension weights ( st1,1,0,1 ) 12 Wt ( st1,-1,0,1 ) 12 Wt ( st11/3,1 ,0,1 ) 12 Wt ( st1,q2,0,1 ) 3 s2w0t,w0t ( st1,q2, eα2,1 ) 1 s2w0t ( st1,q2, eα2+ e3α1+α2, 1 ) 3 t,s2t ( st1,q2, eα2+ e3α1+α2, χ ) 1 s2t ( st1,q2, eα1+α2,1 ) 2 s1s2t,s2s1s2t ( st1,±q,0,1 ) 6 s2s1s2t, s1s2s1s2t, s2s1s2s1s2t ( st1,±q, e3α1+2α2,1 ) 6 t,s2t,s1s2t ( st1,z,0,1 ) 12 Wt ( stq2,1,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,1,eα1,1 ) 6 t,s1t,,s2 s1s2s1t ( st±q,1,0,1 ) 6 s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( st±q,1, e2α1+α2,1 ) 6 t,s1t,s2s1t ( stq2/3,1 ,0,1 ) 6 s2s1t, s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( stq2/3,1 e3α1+α2,1 ) 6 t,s1t,s2s1t ,s1s2s1t ( stz,1,0,1 ) 12 Wt ( stq2,-q-2 ,0,1 ) 3 s2s1s2s1t, s2w0t, w0t ( stq2,-q-2, eα1,1 ) 3 s2s1s2t, s1s2s1s2t, s1w0t ( stq2,-q-2, e3α1+2α2,1 ) 3 s1t, s2s1t, s1s2s1t ( stq2,-q-2, eα1+ e3α1+2α2,1 ) 3 t,s2t,s1s2t ( st11/3,q2 ,0,1 ) 2 w0t,s1w0t ( st11/3,q2, eα2,1 ) 4 s1s2t,s1s2 s1t,s1s2s1 s2t,s2w0t ( st11/3,q2, e3α1+α2,1 ) 4 s2t,s2s1t, s2s1s2t, s2s1s2s1t ( st11/3,q2, eα2+ e3α1+α2,1 ) 2 t,s1t ( stq2,q2, eα1,1 ) 2 s2t,s1s2t ( stq2,q2, eα2,1 ) 3 s1t,s2s1t,s1s2s1t ( stq2,q2, eα1+eα2,1 ) 1 t ( ss2s1s2tq2,q2, eα2,1 ) 1 w0t ( ss2s1s2tq2,q2, eα2+ e2α1+α2,1 ) 3 s2s1s2t,s1w0t ( ss2s1s2s1tq2,q2, e3α1+α2 +eα2,1 ) 2 s2s1s2s1t,s2w0t ( stq2,z,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,z, eα1,1 ) 6 t,s2t, s2s1s2s1s2t ( stz,q2,0,1 ) 6 s2t,s1s2t ,w0t ( stz,q2, eα2,1 ) 6 t,s1t, s2s1t, s1s2s1s2s1t ( stz,w,0,1 ) 12 Wt Table 33: Geometric Indexing in TypeG2, withq12=1. (s,n,χ) Dimension weights ( st1,1,0,1 ) 12 Wt ( st1,-1,0,1 ) 12 Wt ( st11/3,1 ,0,1 ) 12 Wt ( st1,q2,0,1 ) 3 s2w0t,w0t ( st1,q2, eα2,1 ) 1 s2w0t ( st1,q2, eα2+ e3α1+α2, 1 ) 3 t,s2t ( st1,q2, eα2+ e3α1+α2, χ ) 1 s2t ( st1,q2, eα1+α2,1 ) 2 s1s2t,s2s1s2t ( st1,±q,0,1 ) 6 s2s1s2t, s1s2s1s2t, s2s1s2s1s2t ( st1,±q, e3α1+2α2,1 ) 6 t,s2t,s1s2t ( st1,z,0,1 ) 12 Wt ( stq2,1,0,1 ) 6 s1t, s2s1t, s1s2s1s2s1t ( stq2,1,eα1,1 ) 6 t,s1t,,s2 s1s2s1t ( stq-4,1, 0, 1 ) 1 s1s2s1t ( stq-4,1, e2α1+α2, 1 ) 5 t, s1t, s2s1t ( stq-4,1, e-3α1-α2, 1 ) 5 s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( stq-4,1, e2α1+α2+ e-3α1-α2, 1 ) 1 s2s1t ( st-q-4,1, 0, 1 ) 6 s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( st-q-4,1, e2α1+α2, 1 ) 6 t, s1t, s2s1t ( stq2/3,1 ,0,1 ) 6 s2s1t, s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( stq2/3,1 e3α1+α2,1 ) 6 t,s1t,s2s1t ,s1s2s1t ( stz,1,0,1 ) 12 Wt ( stq2,-q-2 ,0,1 ) 3 s2s1s2s1t, s2w0t, w0t ( stq2,-q-2, eα1,1 ) 3 s2s1s2t, s1s2s1s2t, s1w0t ( stq2,-q-2, e3α1+2α2,1 ) 3 s1t, s2s1t, s1s2s1t ( stq2,-q-2, eα1+ e3α1+2α2,1 ) 3 t,s2t,s1s2t ( st11/3,q2 ,0,1 ) 2 w0t,s1w0t ( st11/3,q2, eα2,1 ) 4 s1s2t,s1s2 s1t,s1s2s1 s2t,s2w0t ( st11/3,q2, e3α1+α2,1 ) 4 s2t,s2s1t, s2s1s2t, s2s1s2s1t ( st11/3,q2, eα2+ e3α1+α2,1 ) 2 t,s1t ( stq2,z,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,z, eα1,1 ) 6 t, s2t, s1s2t, s2s1s2s1s2t ( stz,q2,0,1 ) 6 s2t,s1s2t ,w0t ( stz,q2, eα2,1 ) 6 t,s1t, s2s1t, s1s2s1s2s1t ( stz,w,0,1 ) 12 Wt Table 34: Geometric Indexing in TypeG2, withq10=1. (s,n,χ) Dimension weights ( st1,1,0,1 ) 12 Wt ( st1,-1,0,1 ) 12 Wt ( st11/3,1 ,0,1 ) 12 Wt ( st1,q2,0,1 ) 3 s2w0t,w0t ( st1,q2, eα2,1 ) 1 s2w0t ( st1,q2, eα2+ e3α1+α2, 1 ) 3 t,s2t ( st1,q2, eα2+ e3α1+α2, χ ) 1 s2t ( st1,q2, eα1+α2,1 ) 2 s1s2t,s2s1s2t ( st1,±q,0,1 ) 6 s2s1s2t, s1s2s1s2t, s2s1s2s1s2t ( st1,±q, e3α1+2α2,1 ) 6 t,s2t,s1s2t ( st1,z,0,1 ) 12 Wt ( st±q,1, 0,1 ) 6 s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( st±q,1, e2α1+α2,1 ) 6 t,s1t,s2s1t ( stq2/3,1 ,0,1 ) 6 s2s1t, s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( stq2/3,1 e3α1+α2,1 ) 6 t,s1t,s2s1t ,s1s2s1t ( stz,1,0,1 ) 12 Wt ( st11/3,q2 ,0,1 ) 2 w0t,s1w0t ( st11/3,q2, eα2,1 ) 4 s1s2t,s1s2 s1t,s1s2s1 s2t,s2w0t ( st11/3,q2, e3α1+α2,1 ) 4 s2t,s2s1t, s2s1s2t, s2s1s2s1t ( st11/3,q2, eα2+ e3α1+α2,1 ) 2 t,s1t ( stq2,q2, 0,1 ) 1 w0t ( stq2,q2, eα1,1 ) 3 s2s1s2t, s1s2s1s2t ( stq2,q2, eα2,1 ) 3 t, s1t ( stq2,q2, eα1+eα2,1 ) 1 t ( stq2,q2, eα1+ e3α1+2α2,1 ) 2 s2t, s1s2t ( stq2,z,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,z, eα1,1 ) 6 t, s2t, s1s2t, s2s1s2s1s2t ( stz,q2,0,1 ) 6 s2t,s1s2t ,w0t ( stz,q2, eα2,1 ) 6 t,s1t, s2s1t, s1s2s1s2s1t ( stz,w,0,1 ) 12 Wt Table 35: Geometric Indexing in TypeG2, withq8=1. (s,n,χ) Dimension weights ( st1,1,0,1 ) 12 Wt ( st1,-1,0,1 ) 12 Wt ( st1,q2, eα2,1 ) 1 s1s2t ( st1,q2, eα2+ e3α1+α2, 1 ) 3 t,s2t ( st1,q2, eα2+ e3α1+α2, χ ) ? ? ( st1,q2, eα1+α2,1 ) 1 s2t ( st1,q2, e-3α1-2α2,1 ) 3 s1s2s1s2t, s2s1s2s1s2t ( st1,q2, eα2- e-3α1-2α2,1 ) 1 s1s2s1s2t ( st1,q2, eα1+α2+ e-3α1-2α2,1 ) 1 s2s1s2t ( st1,-q-2,0,1 ) 6 s2s1s2t, s1s2s1s2t, s2s1s2s1s2t ( st1,-q-2, e3α1+2α2,1 ) 6 t,s2t,s1s2t ( st1,z,0,1 ) 12 Wt ( stq2,1, 0,1 ) 6 t, t, s1t, s1t, s1t, s1t ( stq2,1, eα1,1 ) 6 t, t, t, t, s1t, s1t ( st-q-2,1, 0, 1 ) 6 s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( st-q-2,1, e2α1+α2,1 ) 6 t,s1t,s2s1t ( stq2/3,1 ,0,1 ) 6 s2s1t, s1s2s1t, s2s1s2s1t, s1s2s1s2s1t ( stq2/3,1 e3α1+α2,1 ) 6 t,s1t,s2s1t ,s1s2s1t ( stz,1,0,1 ) 12 Wt ( stq2,-q-2 ,0,1 ) 3 s2s1s2s1t, s2w0t, w0t ( stq2,-q-2, eα1,1 ) 3 s2s1s2t, s1s2s1s2t, s1w0t ( stq2,-q-2, e3α1+2α2,1 ) 3 s1t, s2s1t, s1s2s1t ( stq2,-q-2, eα1+ e3α1+2α2,1 ) 3 t,s2t,s1s2t ( stq2,z,0,1 ) 6 s1t,s2s1t ,w0t ( stq2,z, eα1,1 ) 6 t, s2t, s1s2t, s2s1s2s1s2t ( stz,q2,0,1 ) 6 s2t,s1s2t ,w0t ( stz,q2, eα2,1 ) 6 t,s1t, s2s1t, s1s2s1s2s1t ( stz,w,0,1 ) 12 Wt Table 36: Geometric Indexing in TypeG2, withq6=1. (s,n,χ) Dimension weights ( st1,1,0,1 ) 12 Wt ( st1,q2, eα2+ e3α1+α2, 1 ) 2 t ( st1,q2, eα2+ e3α1+α2, χ ) ? ? ( st1,q2, eα2+ e-α1-α2, 1 ) 1 s2t ( st1,q2, eα2+ e-2α1-α2, 1 ) 2 s1s2t ( st11/3,1, 0, 1 ) 12 Wt ( st1,q, e3α1+2α2, 1 ) 6 t, s1t, s1s2s1s2s1t ( st1,q, e-3α1-2α2, 1 ) 6 s2t, s1s2t, w0t ( st1,z,0,1 ) 12 Wt ( stq,1, e2α1+α2, 1 ) 6 t, s1t, s2s1t, s1s2s1s2s1t ( stq,1, e-2α1-α2, 1 ) 6 s2t, s1s2t, w0t ( stq2/3,1, e3α1+α2, 1 ) 4 t, s1t ( stq2/3,1 e-3α1-α2, 1 ) 4 w0t, s1w0t ( stq2/3,1 e3α1+α2+ e-3α1-2α2, 1 ) 2 s2s1t, s1s2s1t ( stz,1,0,1 ) 12 Wt ( stq2,z, eα1,1 ) 6 t, s2t, s1s2t, s2s1s2s1s2t ( stq2,z, e-α1,1 ) 6 s1t,s2s1t ,w0t ( stz,q2, eα2,1 ) 6 t,s1t, s2s1t, s1s2s1s2s1t ( stz,q2, e-α2,1 ) 6 s2t,s1s2t ,w0t ( stz,w,0,1 ) 12 Wt Table 37: Geometric Indexing in TypeG2, withq4=1. (s,n,χ) Dimension Wtrepresentation ( st1,1,0,1 ) 1 sign ( st1,1 , eα1 , 1 ) 2 ϕ2,2 ( st1,1 , eα2 , 1 ) 1 ϕ1,3 ( st1,1 , eα1+eα2 , 1 ) 1 triv ( st1,1 , eα1+ e3α1+2α2 , 1 ) 2 ϕ2,1 ( st1,1 , eα1+ e3α1+2α2 , χ ) 2 ϕ1,3 ( st1,-1 , 0 , 1 ) 3 signsign ( st1,-1 , eα1 , 1 ) 3 signtriv ( st1,-1 , e3α1+2α2 , 1 ) 3 trivsign ( st1,-1 , eα1+ e3α1+2α2 , 1 ) 3 trivtriv ( st11/3,1 , 0 , 1 ) 3 sign ( st11/3,1 , eα2 , 1 ) 6 χ ( st11/3,1 , eα2+ e3α1+α2 , 1 ) 3 triv ( st1,z , 0 , 1 ) 6 sign ( st1,z , eα1 , 1 ) 6 triv ( stz,1 , 0 , 1 ) 6 sign ( stz,1 , eα2 , 1 ) 6 triv ( stz,w , 0 , 1 ) 12 triv Table 38: Geometric Indexing in TypeG2, withq=-1.

Notes and References

This is an excerpt from Matt Davis' Ph.D Thesis entitled Representations of Rank Two Affine Hecke Algebras at Roots of Unity, University of Wisconsin, 2010.

page history