Bialgebra structures on Lie algebras with triangular decomposition

Arun Ram
Department of Mathematics and Statistics
University of Melbourne
Parkville, VIC 3010 Australia
aram@unimelb.edu.au

Last updates: 24 March 2011

Lie algebras with triangular decomposition

1.1 Let I be a finite set. Let Q=β„€[I] , Q+=β„•[I] , and Q-=-Q+ .
Let 𝔀 be a Lie algebra that satisfies the following:

  1. 𝔀 is Q-graded, i.e., 𝔀 is a direct sum of spaces 𝔀α,α∈Q , and 𝔀α , 𝔀β βŠ† 𝔀α+Ξ² for all Ξ±,β∈Q .
  2. The Lie algebra 𝔀 has a triangular decomposition with respect to Q, i.e., 𝔀= 𝔫-βŠ•π”₯βŠ•π”«+ where 𝔫+= ⨁ α∈Q+βˆ–{0} 𝔀α, 𝔫-= ⨁ α∈Q-βˆ–{0} 𝔀-Ξ±, π”₯=𝔀0.
  3. For each α∈Q the vector space 𝔀α is finite dimensional.
  4. For each i∈I , dim𝔀i=1 .
  5. The subspaces 𝔀i , i∈I generate 𝔀 as a lie algebra.
  6. There is a nondegenerate invariant symmetric bilinear form ⟨ , ⟩ :𝔀 × 𝔀→k on 𝔀 such that
    1. The restriciton ⟨ , ⟩: 𝔀α ×  𝔀-Ξ±β†’k is nondegenerate for each α∈Q such that 𝔀α≠0 . In particular ⟨ , ⟩ is a nondegenerate form on π”₯.
    2. If Ξ±,β∈Q , Ξ±β‰ Ξ² and xβˆˆπ”€Ξ± and yβˆˆπ”€Ξ² then ⟨ x , y ⟩=0 .
  7. There is a linear map ΞΈ:𝔀→𝔀 called the Chevalley involution, such that
    1. ΞΈ is a Lie algebra automorphism.
    2. ΞΈh=-h for all h∈π”₯ .
    3. θ𝔀α= θ𝔀-Ξ± for all α∈Q.
    4. ⟨ ΞΈx , ΞΈy ⟩ = ⟨ x , y ⟩ for all x,yβˆˆπ”€ .

1.2 For each i∈i let us fix an element Xi∈gi. Let Yiβˆˆπ”€-i be dual to Xi with respect to the form ⟨ , ⟩ and let Hi=⟨ Xi , Yi ⟩ ∈π”₯ .

1.3 We shall let 𝔀+ and π”Ÿ- be the Lie subalgebras of 𝔀 given by π”Ÿ+=π”₯βŠ•π”«+, π”Ÿ-=π”₯βŠ•π”«-.

1.4 Given an element xβˆˆπ”€ we write x=x-+xπ”₯+x+, where x-βˆˆπ”«-, xπ”₯∈π”₯, x+βˆˆπ”«+ .

1.5 The finite dimensional simple Lie algebras over β„‚ and the Kac-Moody Lie algebras 𝔀′A in [Kc] are Lie algebras that satisfy the conditions in (1.1). See Theorems 1.2 and 2.2 of [Kc].

Lie bialgebra structure on π”Ÿ+ and Dπ”Ÿ+

Let 𝔀 be a Lie algebra with invariang form ⟨ , βŸ©π”€ satisfying the conditions of Section 1. Let ⟨ , ⟩π”₯ denote the restriction of the form ⟨ , βŸ©π”€ to π”₯. Given an element xβˆˆπ”€ we write we write x=x-+xπ”₯+x+, where x-βˆˆπ”«-, xπ”₯∈π”₯, x+βˆˆπ”«+ . The triple 𝔀 × π”₯,𝔭1,𝔭2 ,where 𝔭1= x,xπ”₯∣x∈ π”Ÿ+ and 𝔭2= y,-yπ”₯∣ yβˆˆπ”Ÿ- with the scalar product and bracket on 𝔀 × π”₯ given by ⟨ (x,xπ”₯) , (y,yπ”₯) ⟩ = ⟨ x , y βŸ©π”€- ⟨ xπ”₯ , yπ”₯ ⟩ π”₯, and [ ( x,xπ”₯ ) , ( y,yπ”₯ ) ] = ( [ x , y ], [ hπ”₯,yπ”₯ ] ) = ( [ x,y ], 0 ) respectively, is a Manin triple.

Proof:

2.2 If x,yβˆˆπ”Ÿ+ then x , y βˆˆπ”«+ and [ (x,xπ”₯),(y,yπ”₯) ] = ( [x,y],0 )βˆˆπ”­1 So 𝔭1 is a Lie subalgebra of π”€βŠ—π”₯. Using the fact that x,yβˆˆπ”Ÿ+ , so that ⟨ x , y ⟩ = ⟨ xπ”₯ , yπ”₯ ⟩ , We have that ⟨ (x,xπ”₯) , (y,yπ”₯) ⟩= 0. Thus 𝔭1 is isotropic.
Similarly one shows taht 𝔭2 is an isotropic Lie algebra of 𝔀 × π”₯ .

2.3 If (x,y)∈ 𝔀 × π”₯ then (a,h)= a++ aπ”₯+h 2 , aπ”₯+h 2 + a-+ aπ”₯-h 2 , -aπ”₯+h 2 βˆˆπ”­1+𝔭2. So 𝔭1+𝔭2= 𝔀 × π”₯ .
If (a,h)βˆˆπ”­1βˆ©π”­2 then a=aπ”₯ and h=aπ”₯ and h=-aπ”₯ . It follows that a=aπ”₯=h=0 . Thus 𝔭1βˆ©π”­2=0 and we have that 𝔀 × π”₯= 𝔭1βŠ•π”­2 .

2.4 Recall that for (x,h),(y,hβ€²)∈ 𝔀 × π”₯ , ⟨ (x,h) , (y,hβ€²) ⟩ = ⟨ x , y βŸ©π”€- ⟨ h , hβ€² ⟩π”₯ . It follows that ⟨ [ (x,h) , (y,hβ€²) ] , (z,hβ€²β€²) ⟩ = ⟨ [ x , y ] , z βŸ©π”€ - ⟨ [ h , hβ€² ] , hβ€²β€² ⟩ = ⟨ y , [ z , x ] βŸ©π”€ - ⟨ hβ€² , [ hβ€²β€² , h] ⟩π”₯ = ⟨ (y,hβ€²) , ( [ z , x ] , [ hβ€²β€² , h ] ) ⟩ = ⟨ (y,hβ€²) , [ ( z , hβ€²β€² ) , (x,h) ] ⟩. It follows that the form ⟨ , ⟩ is an invariant form on 𝔀 × π”₯ .

2.5 Let x,h)∈ 𝔀 × π”₯ such that x,h)β‰ (0,0) . Since ⟨ , ⟩π”₯ is nondegenerate, if hβ‰ 0, there exists some hβ€²βˆˆπ”₯ such that ⟨ h , hβ€² ⟩π”₯β‰ 0 . Thus if hβ‰ 0, ⟨ (x,h) , (0,hβ€²) ⟩ = - ⟨ h , hβ€² ⟩π”₯ β‰ 0. If h=0 then xβ‰ 0, and by the nondegeneracy of ⟨ , βŸ©π”€ there exists some yβˆˆπ”€ such that ⟨ x , y βŸ©π”€ β‰ 0 . Thus, if h=0, ⟨ (x,0) , (y,0) ⟩ = ⟨ x , y βŸ©π”€ β‰ 0. Thus ⟨ , ⟩ is a nondegenerate form on 𝔀 × π”₯.

2.6 For each i∈I let us fix an element Xβˆˆπ”€i. Let Yiβˆˆπ”€-i be dual to Xiβˆˆπ”€i with respect to the form ⟨ , ⟩ and let Hi= [ Xi , Yi ] ∈π”₯ . The elements Xi,Yi,Hi, i∈I generate 𝔀. The manin triple in (2.1) determines a Lie algebra structure on π”Ÿ+ with cocommututator Ο†:𝔀Aβ†’ β‹€2𝔀A given by Ο†Hi=0, Ο†Xi= 12 Xi∧Hi.

Proof:

The double Dπ”Ÿ+β‰… 𝔀 × π”₯ .

Proof:

Quasitriangular Lie bialgebra structure on 𝔀

Let 𝔀 be a Lie algebra with invariant form ⟨ , ⟩ satisfying the conditions of Section 1.

  1. There is a Lie bialgebras on 𝔀 determined by the Manin triple 𝔭1,𝔭1,𝔭2 given by 𝔭 = 𝔀 × 𝔀, 𝔭1 = x,y∈ 𝔀 × 𝔀A∣ x=y ≅𝔀 𝔭2 = x,y∈ π”Ÿ-β€‰Γ—β€‰π”Ÿ+ ∣ xπ”₯+yπ”₯=0 , and Lie bracket and invariant scalar product [ x1,y1 , x2,y2 ] = [ x1 , x2 ] , [ y1 , y2 ] , ⟨ x1,y1 , x2,y2 ⟩ = ⟨ x1 , x2 ⟩- ⟨ y1 , y2 ⟩, for all x1,x2,y1, y2βˆˆπ”€A respectively.
  2. The Lie bialgebra structure on 𝔀 determined by the Manin triple in 1) is given by the cocommutator Ο†:𝔀Aβ†’ β‹€2𝔀A determined by Ο†Hi = 0, Ο†Xi = 12 Xi∧Hi, Ο†Yi = 12 Yi∧Hi, for all i∈I.
  3. For each α∈Q+βˆ– 0 , let XΞ±j∣ 1≀j≀dim𝔀α X-Ξ±j∣ 1≀j≀dim𝔀α be a basis of 𝔀α and a dual basis in 𝔀-Ξ±. Let H ˜ i be an orthonormal basis of π”₯. The Lie algebra 𝔀 is a quasitriangular Lie bialgebra with r-matrix given by r= βˆ‘ α∈Q+βˆ– 0 βˆ‘ j=1 dim𝔀α XΞ±jβŠ— X-Ξ±j + 12 βˆ‘ H ˜ i βŠ— H ˜ i .

Proof:

3.3 𝔭1 is an isotropic Lie subalgebra of 𝔀 × 𝔀 . THe fact that 𝔭1 is an isotropic Lie subalgebra of 𝔀 × 𝔀 follows from the following computations. ⟨ x,x , y,y ⟩ ⟨ x , y ⟩ - ⟨ x , y ⟩ =0 [ x,x , y,y ]= [ x , y ], [ x , y ] βˆˆπ”­1.

3.3 Let y,x, f,eβˆˆπ”­2 so that y=y-+yπ”₯, f=f-+fπ”₯, and x=x++xπ”₯, e=e++eπ”₯, and xπ”₯=-yπ”₯ and fπ”₯=eπ”₯. Then ⟨ y,x , f,e ⟩= ⟨ y , f ⟩ - ⟨ x , e ⟩ = ⟨ yπ”₯ , fπ”₯ ⟩ - ⟨ xπ”₯ , eπ”₯ ⟩ = ⟨ yπ”₯ , fπ”₯ ⟩ - ⟨ -yπ”₯ , -fπ”₯ ⟩=0. Thus 𝔭2 is isotropic. Note that since [ y , f ] βˆˆπ”«- , and [ x , e ] βˆˆπ”«+ , it follows that [ y , f ]π”₯ = [ x , e ]π”₯ =0 , and thus [ y,x , f,e ]= [ y , f ], [ x , e ] βˆˆπ”­2. Thus 𝔭2 is a Lie subalgebra.

3.4 Let y,x∈ 𝔭1βˆ©π”­2 . It follows that yβˆˆπ”Ÿ-, xβˆˆπ”Ÿ+, y=x and xπ”₯=yπ”₯ and xπ”₯+yπ”₯=0 . Thus x+=0 and y-=0 giving also that xπ”₯=yπ”₯ . Thus if charkβ‰ 2 we have that xπ”₯=yπ”₯= x=y=0 . So 𝔭1βˆ©π”­2=0 . Given two elements x,yβˆˆπ”€ we may write x,y= x+-y++ xπ”₯-yπ”₯ 2 , -x-+ y-- xπ”₯-yπ”₯ 2 + x-+y++ xπ”₯+yπ”₯ 2 , x-+y+- xπ”₯+yπ”₯ 2 to see that x,y∈ 𝔭1+𝔭2 . It follows that 𝔀×𝔀=𝔭1+𝔭2 .

3.5 Recall that ⟨ x1,x2 , x1,y2 ⟩= ⟨ x1 , y1 ⟩ - ⟨ x2 , y2 ⟩ . It follows that ⟨ [ x1,y1 , x2,y2 ] , x3,y3 ⟩ = ⟨ [ x1 , x2 ] , x3 ⟩- ⟨ [ y1 , y2 ] , y3 ⟩ = ⟨ x2 , [ x3 , x1 ] ⟩- ⟨ y2 , [ y3 , y1 ] ⟩ = ⟨ x2,y2 , [ x3 , x1 ], [ y3 , y1 ] ⟩ = ⟨ x2,y2 , [ x3,y3 , x1,y1 ] ⟩. Thus, the form ⟨ , ⟩ is invariant.

3.6 Let x,y∈ 𝔀 × 𝔀 such that x,yβ‰  0,0 . If xβ‰ 0 then, since the form on 𝔀 is nondegenerate there exists some zβˆˆπ”€ such that x,zβ‰ 0 . Thus ⟨ x,y , z,0 ⟩= ⟨ x , 0 ⟩- ⟨ y , 0 ⟩= ⟨ x , z βŸ©β‰ 0. If x=0 then yβ‰ 0 and there exists wβˆˆπ”€ such that ⟨ y , w βŸ©β‰ 0 . It follows that ⟨ x,y,0,w ⟩= ⟨ x , 0 ⟩ - ⟨ y , w ⟩= -⟨ y , w ⟩ β‰ 0. Thus, the form on 𝔀 × 𝔀 is nondegenerate.

3.7 The cobracket on 𝔭1 is determined by ⟨ Ο†z,z , y,xβŠ— f,e ⟩ = ⟨ z,z , [ y,x , f,e ] ⟩ where y,fβˆˆπ”Ÿ- and x,eβˆˆπ”Ÿ+ . We have ⟨ Ο†z,z , y,xβŠ— f,e ⟩= ⟨ z,z , [ y,x , f,e ] ⟩= ⟨ z,z , [ y , f ], [ x , e ] ⟩= ⟨ z , [ y , f ] ⟩ - ⟨ z , [ x , e ] ⟩. Let Hi∈π”₯. Then, since [ y , f ]βˆˆπ”«- and [ x , e ]βˆˆπ”«+ , it follows that ⟨ Ο†Hi,Hi , y,xβŠ— f,e ⟩ = ⟨ Hi , [ y , f ] ⟩- ⟨ Hi , [ x , e ] ⟩=0-0=0 . Thus, Ο†Hi,Hi =0. The computations to determine Ο†Xi are as follows. ⟨ Ο†Xi,Xi , y,xβŠ— f,e ⟩ = ⟨ Xi , [ y , f ] ⟩- ⟨ Xi , [ x , e ] ⟩ = ⟨ Xi , [ y , f ] ⟩ -0 = ⟨ [ Xi , y ] , f ⟩ = ⟨ [ Xi , ⟨ y , Xi ⟩ Yi ] +yπ”₯ ⟩ = ⟨ y , Xi ⟩ ⟨ [ Xi , Yi ] , f ⟩+ ⟨ [ Xi , yπ”₯ ] , f ⟩ = ⟨ y , Xi ⟩ ⟨ Hi , f ⟩- ⟨ [ Xi , f ] , yπ”₯ ⟩ = ⟨ Xi , y ⟩ ⟨ Hi , f ⟩ - ⟨ [ Xi , ⟨ f , Xi ⟩ Yi+fπ”₯ ] , yπ”₯ ⟩ = ⟨ Xi , y ⟩ ⟨ Hi , f ⟩- ⟨ f , Xi ⟩ ⟨ [ Xi , Yi ] , yπ”₯ ⟩+ ⟨ [ Xi , fπ”₯ ] , yπ”₯ ⟩ = ⟨ Xi , y ⟩ ⟨ Hi , f ⟩ - ⟨ f , Xi ⟩⟨ Hi , y ⟩+0. On the other hand, since yπ”₯=-xπ”₯ and fπ”₯=-eπ”₯ it follows that ⟨ Xi,Xi ∧ Hi,Hi , y,xβŠ— f,e ⟩ = ⟨ Xi,XiβŠ— Hi,Hi- Hi,HiβŠ— Xi,XiβŠ— , y,xβŠ— f,e ⟩ = ⟨ Xi , y-x ⟩ ⟨ Hi , f-e ⟩ - ⟨ Hi , y-x ⟩ ⟨ Xi , f-e ⟩ = ⟨ Xi , y-x ⟩ ⟨ Hi , fπ”₯+fπ”₯ ⟩- ⟨ Hi , yπ”₯+yπ”₯ ⟩ ⟨ Xi , f-e ⟩ = 2 ⟨ Xi , y-x ⟩ ⟨ Hi , f ⟩- ⟨ Hi , y ⟩ ⟨ Xi , f-e ⟩ . Since Xiβˆˆπ”«+ and xβˆˆπ”Ÿ+ it follows that ⟨ Xi , x ⟩=0 . Similarly, ⟨ Xi , e ⟩=0 . Thus ⟨ Xi,Xi∧ Hi,Hi , y,xβŠ— f,e ⟩= 2 ⟨ Xi , y ⟩ ⟨ Hi , f ⟩- ⟨ Hi , y ⟩ ⟨ Xi , f ⟩ . It follows that Ο†Xi,Xi = 12 Xi,Xi∧ Hi,Hi . The formula Ο†Yi,Yi = 12 Yi,Yi∧ Hi,Hi . is proved similarly.

3.8 We know that Dπ”Ÿ+β‰… 𝔀 × π”₯ from Corollary (2.7). The set XΞ±j,0 ∣ α∈Q+ βˆ– 0 , 1≀j≀dim𝔀α βˆͺ { 1 2 H ˜ i , H ˜ i } is a basis of 𝔭1 with dual basis (with respect to the form on 𝔀 × π”₯ ) X-Ξ±j,0 ∣ α∈Q+ βˆ– 0 , 1≀j≀dim𝔀α βˆͺ { 1 2 H ˜ i , - H ˜ i } in 𝔭2. The r-matrix r Λ† = βˆ‘ α∈Q+βˆ– 0 βˆ‘ j=1 dim𝔀α XΞ±j,0 βŠ— X-Ξ±j,0 + 12 βˆ‘ H ˜ i βŠ— H ˜ i gives a quasitriangular Lie bialgebra structure on 𝔀 × π”₯ . The subspace 0 × π”₯ of 𝔀 × π”₯ is an ideal of 𝔀 × π”₯ and 𝔀≅ 𝔀 × π”₯ / 0 × π”₯ . Thus the projection r∈ 𝔀 × π”₯ / 0 × π”₯ βŠ— 𝔀 × π”₯ / 0 × π”₯ r= = βˆ‘ α∈Q+βˆ– 0 βˆ‘ j=1 dim𝔀α XΞ±j,0 βŠ— X-Ξ±j,0 + 12 βˆ‘ H i ,0 βŠ— H i ,0 of the r-matrix r Λ† gives a quasitriangular Lie bialgebra structure on 𝔀.
It remains to check that htis bialgebra structure is the same as that given by the Manin triple in 1). By (2.6) we know that the cocommutator determined by r satisfies Ο†Hi=0 Ο†Xi= 12 Xi∧Hi, on the subalgebra π”Ÿ+. We can calculate Ο†Yi by using the Cartan involution ΞΈ. adβŠ—2Yi ΞΈβŠ—ΞΈ r = ΞΈβŠ—ΞΈ adβŠ—2Xi r = θ × θ 12 Xi∧Hi = - 12 Yi∧Hi. Since ΞΈβŠ—ΞΈr = βˆ‘ α∈Q+ βˆ‘ j=1 dim𝔀α ΞΈXΞ±jβŠ— ΞΈX-Ξ±j + 12 βˆ‘ ΞΈHi βŠ— ΞΈHi = βˆ‘ α∈Q+βˆ– 0 βˆ‘ j=1 dim𝔀α XΞ±jβŠ— X-Ξ±j + 12 βˆ‘ H i βŠ— H i = r21, and r21+r12 is invariant, it follows that adβŠ—2 Yi r= - adβŠ—2 Yi r21= 12 Yi∧Hi. Thus we have shown that the bialgbera structure on 𝔀 determined by the r-matrix and the bialgebra structure on 𝔀 determined by the Manin triple given in 1) are identical.

References

The definitions and proofs of the fact that Kac-Moody Lie algebras satisfy the properties given in Section 1 are contained in the first few pages of the following standard book.

[Kc] V. Kac, Infinite dimensional Lie algebras, Third Ed., Cambridge University Press 1990. MR1104219

The examples of bialgebra structures geven here appear in example 3.2 of the following paper by Drinfel'd.

[D] V.G. Drinfeld, Quantum Groups, Vol. 1 of Proccedings of the International Congress of Mathematicians (Berkeley, Calif., 1986). Amer. Math. Soc., Providence, RI, 1987, pp. 198–820. MR0934283

[DHL] H.-D. Doebner, Hennig, J. D. and W. LΓΌcke, Mathematical guide to quantum groups, Quantum groups (Clausthal, 1989), Lecture Notes in Phys., 370, Springer, Berlin, 1990, pp. 29–63. MR1201823

[J] N. Jacobson, Lie algebras, Interscience Publishers, New York, 1962.

page history