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Abstract.

Spaces

A topological space is a set X with a specified collection of open subsets of X which is closed
under unions, finite intersections, complements and contains ∅ and X. A continuous function
f :X → Y is a map such that f−1(V ) is open in X for all open subsets V ⊆ Y . The morphisms in
the category of topological spaces are continuous functions.
(a) A closed subset of X is the complement of an open set of X.
(b) The space X is compact if every open cover has a finite subcover.
(c) The space X is locally compact if every point has a neighborhood with compact closure.
(d) The space X is totally disconnected if there is no connected subset with more than one element.
(e) The space X is Hausdorff if ∆X = {(x, x) | x ∈ X} is a closed subspace of X × X, where

X ×X has the product topolgy.
The topological spaceX is Hausdorff if and only if for any two points inX there exist neighborhoods
of each of them that do not intersect.

A metric space is a set X with a metric d:X ×X → R≥0 such that A Cauchy sequence is a
sequence (pi ∈ V | i ∈ Z>0) such that, for every positive real number ε there is a positive integer
N such that d(pn, pm) < ε for all m,n > N . A sequence (pi ∈ V | i ∈ Z>0) converges if there is a
p ∈ V such that, for every ε ∈ R>0, there is an N ∈ Z>0 such that d(pn, p) < ε for all n > N . A
metric space is complete if all Cauchy sequences converge.

Sheaves

Let X be a topological space. A sheaf on X is a contravariant functor

OX : {open sets of X} −→ {rings}
U 7−→ OX(U)

such that if {Uα} is an open cover of U and fα ∈ OX(Uα) are such that

fα
∣∣
Uα∩Uβ

= fβ
∣∣
Uα∩Uβ

, for all α, β,
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then there is a unique f ∈ OX(U) such that fα = f |Uα for all α. A ringed space is a pair (X,OX)
where X is a topological space and OX is a sheaf on X. The stalk of OX at x ∈ X is

OX,x = ind lim
U
OX(U),

where the limit is over all neighborhoods U of x.
Note: an alternate way of stating the condition in the definition of a sheaf is to say that the

sequence
O → Ox(U) i−→

∏
α

Ox(Uα)
j−→
−→
k

∏
α,β

Ox(Uα ∩ Uβ)

is exact where
i is the map induced by the inclusions Uα ↪→ U ,
j is the map induced by the inclusions Uα ∩ Uβ ↪→ Uα,
k is the map induced by the inclusions Uα ∩ Uβ ↪→ Uβ ,

and exactness of the sequence means imi = ker(j − k).

Smooth manifolds

A manifold is a topological space X which is locally homeomorphic to Rn. Locally homeo-
morphic to Rn means that for each x ∈ X there is an open neighborhood U of x, an open set V in
Rn and a homeomorphism φ:U → V . The map φ:U → V is a chart. An atlas is an open covering
(Uα) of X, a set of open sets (Vα) of Rn and a collection of charts φα:Uα → Vα. Examples of
manifolds are

PICTURE OF SPHERE PICTURE OF TORUS
sphere torus

A smooth manifold is a manifold with an atlas (φα) such that for each pair of charts φα, φβ the
maps

φβ ◦ φ−1
α :φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

are smooth (i.e. C∞). Let M be a smooth manifold and let U be an open subset of M . The ring
of smooth functions on U is the set of functions f :U → R that are smooth at every point of U , i.e.

If x ∈ U then there is a chart φα:Uα → Vα such that x ∈ Uα and

f ◦ φ−1
α :Vα → R, is C∞.

Let Vα be an open set of Rn. For each open set V of Vα let C∞(V ) be the set of functions
f :V → R that are C∞ at every point of V . If V ↪→ V ′ then we have a map

C∞(V ′) −→ C∞(V )
f 7−→ f

∣∣
V
.

Thus
C∞: {open sets of Vα} −→ {rings}

V 7−→ C∞(V )

is a sheaf on Vα and (Vα, C∞) is a ringed space.
A smooth manifold is a Hausdorff topological space which is locally isomorphic to Rn, i.e. a

Hausdorff ringed space (M,C∞) with an open cover (Uα) such that each (Uα, C∞) is isomorphic
(as a ringed space) to an open set (Vα, C∞) of Rn.

Varieties
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A affine algebraic variety over F̄ is a set

X = {(x1, . . . , xn) | fα(x1, . . . , xn) = 0 for all fα ∈ S}

where S is a set of polynomials in F̄[t1, t2, . . . , tn]. By definition, these are the closed sets in the
Zariski topology on F̄n. Let U be an open set of X and define OX(U) to be the set of functions
f :U → F̄ that are regular at every point of x ∈ U , i.e.

For each x ∈ U there is a neigborhood Uα ⊆ U of x and functions g, h ∈ F̄ [t1, . . . , tn]
such that h(y) 6= 0 and f(y) = g(y)/h(y) for all y ∈ Uα.

Then OX is a sheaf on X and (X,OX) is a ringed space. The sheaf OX is the structure sheaf of
the affine algebraic variety X.

A variety is a ringed space (X,O) such that
(a) X has a finite open covering {Uα} such that each (Uα,O|Uα) is isomorphic to an affine algebriac

variety,
(b) (X,O) satisfies the separation axiom, i.e.

∆X = {(x, x) | x ∈ X} is closed in X ×X,

where the topology on X × X is the Zariski topology. (Note that the Zariski topology on
X ×X is, in general, finer than the product topology on X ×X.)

A prevariety is a ringed space which satisfies (a).

Schemes

Let A be a finitely generated commutative F̄-algebra and let

X = HomF̄alg(A, F̄).

By definition, the closed sets of X in the Zariski topology are the sets

CJ = {M ∈ X | J ⊆M} for J ⊆ A,

where we identify the points of X with the maximal ideals in A. Let U be an open set of X and
let

OX(U) = {g/h | g, h ∈ A, x(h) 6= 0 for all x ∈ U}.

Then OX is a sheaf on X and (X,OX) is a ringed space. The space X is an affine F̄-scheme.
An F̄-variety is a ringed space (X,OX) such that

(a) For each x ∈ X the stalk OX,x is a local ring,
(b) X has a finite open covering {Uα} such that each (Uα,OX |Uα) is isomorphic to an affine

F̄-scheme,
(c) (X,OX) is reduced, i.e. for each x ∈ X the local ring OX,x has no nonzero nilpotent elements,
(d) (X,OX) satisfies the separation axiom, i.e.

∆X = {(x, x) | x ∈ X} is closed in X ×X.

A prevariety is a ringed space which satisfies (a),(b) and (c). An F̄-scheme is a ringed space which
satisfies (a) and (b). An F̄-space is a ringed space which satisfies (a).

Groups
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A group is a set G with a mulitplication such that
(a) (ab)c = a(bc), for all a, b, c ∈ G,
(b) There is an identity 1 ∈ G,
(c) Every element of G is invertible. Let

[x, y] = xyx−1y−1, for x, y ∈ G.

The lower central series of G is the sequence

C1(G) ⊇ C2(G) ⊇ · · · , where C1(G) = G and Ci+1(G) = [G,Ci(G)].

The derived series of G is the sequence

D0(G) ⊇ D2(G) ⊇ · · · , where D0(G) = G and Di+1(G) = [Di(G), Di(g)].

Let G be a group.
(a) G is abelian if [G,G] = {1}.
(b) G is nilpotent if Cn(G) = {1} for all sufficiently large n.
(c) G is solvable if Dn(G) = {1} for all sufficiently large n.
The radical R(G) of a Lie group G is the largest connected solvable normal subgroup of G.

A topological group is a topological space G which is also a group such that multiplication and
inversion

G×G −→ G
(g, h) 7−→ gh

G −→ G
g 7−→ g−1

are morphisms of topological spaces, i.e. continuous maps.
A Lie group is a smooth manifold with a group structure such that multiplication and inversion
are morphisms of smooth manifolds, i.e. smooth maps.
A complex Lie group is a complex analytic manifold which is also a group such that multipli-
cation and inversion are morphisms of complex analytic manifolds, i.e. holomorphic maps.
A linear algebraic group is an affine algebraic variety which is also a group such that multipli-
cation and inversion are morphisms of affine algebraic varieties.
A group scheme is a scheme which is also a group such that multiplication and inversion are
morphisms of schemes.

Lie groups

The Lie group S1 = R/Z = U1(C). A torus is a Lie group G is isomorphic to S1 × · · ·S1 (k
factors), for some k ∈ Z>0.

A connected Lie group is semisimple if R(G) = {1}.
Let G be a Lie group and let x ∈ G. A tangent vector at x is a linear map ξx:C∞(G) → R

such that
ξx(f1f2) = ξx(f1)f2(x) + f1(x)ξx(f2), for all f1, f2 ∈ C∞(G).

A vector field is a linear map ξ:C∞(G)→ C∞(G) such that

ξ(f1f2) = ξ(f1)f2 + f1ξ(f2), for f1, f2 ∈ C∞(G).

A left invariant vector field on G is a vector field ξ:C∞(G)→ C∞(G) such that

Lgξ = ξLg, for all g ∈ G.
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A one parameter subgroup of G is a smooth group homomorphism γ: R→ G. If γ is a one parameter
subgroup of G define

d

dt
f(γ(t)) = lim

h→0

f(γ(t+ h))− f(γ(t))
h

.

The following proposition says that we can identify the three vector spaces
(1) {left invariant vector fields on G},
(2) {one parameter subgroups of G},
(3) {tangent vectors at 1 ∈ G}.

Proposition 0.1. The maps

{left invariant vector fields} −→ {tangent vectors at 1}
ξ 7−→ ξ1

and
{one paramemeter subgroups} −→ {tangent vectors at 1}

γ 7−→ γ1

where

ξ1f = (ξf)(1), and γ1 =
(
d

dt
f(γ(t))

) ∣∣
t=0

,

are vector space isomorphisms.

The Lie algebra g = Lie(G) of the Lie group G is the tangent space to G at the identity with
the bracket [, ]: g× g→ g given by

[ξ1, xi2] = ξ1ξ2 − ξ2ξ1, for ξ1, ξ2 ∈ g.

Let φ:G→ H be a Lie group homomorphism and let g = Lie(G) and h = Lie(H). Then

C∞(H)
φ∗−→ C∞(G)

f 7−→ f ◦ φ

and the differential of φ is the Lie group homomorphism g
dφ−→h given by

dφ(ξ1) = ξ1 ◦ φ∗, if ξ1 is a tangent vectors at the identity,
dφ(ξ) = ξ ◦ φ∗, if ξ is a left invariant vector field,
dφ(γ) = φ ◦ γ, if γ is a one parameter subgroup.

(Note: It should be checked that (a) the map dφ is well defined, (b) the three definitions of dφ are
the same, and (c) that dφ is a Lie algebra homorphisms. These checks are not immediate, but are
straightforward manipulations of the definitions.) The map

the category of Lie groups −→ the category of Lie algebras
G 7−→ Lie(G)
φ 7−→ dφ

is a functor. This functor is not one-to-one; for example, the Lie groups On(R) and SOn(R) have
the same Lie algebra. On the other hand, the Lie algebra contains the structure of the Lie groups
in a neighborhood of the identity. The exponential map is

g −→ G
tX 7−→ etX ,

where etX = γ(t)
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is the one parameter subgroup corresponding to X ∈ g. This map is a homeomorphism from a
neighborhood of 0 in g to a neighborhood of 1 in G.

Theorem 0.2. (Lie’s theorem) The functor

Lie: {connected simply connected Lie groups} −→ {Lie algebras}
G 7−→ g = Lie(G) = T1(G)

is an equivalence of categories.

If g is a Lie subalgebra of gln then the matrices

{etX | t ∈ R, X ∈ gln}, where etX =
∑
k≥0

tkXk

k!
,

form a group with Lie algebra g.

etXetY = et(X+Y )+(t2/2)[X,Y ]+···,

etXetY e−tX = etY+t2[X,Y ]+···,

etXetY e−tXe−tY = et
2[X,Y ]+···,

Let G be a Lie group and let g = Lie(G). Let x ∈ G. Then the differential of the Lie group
homomorphism

Intx: G −→ G
g 7−→ xgx−1

is a Lie algebra homomorphism
Adx: g −→ g.

Since there is a map Adx for each x ∈ G, there is a map

Ad: G −→ GL(g)
x 7−→ Adx

and AdxAdy = Adxy, for x, y ∈ G,

since IntxInty = Intxy. The differential of Ad is

ad: g −→ End(g)
X 7−→ adX

, where adX : g −→ g
Y 7−→ [X,Y ] ,

since
d

dt

d

ds
etXesY e−tX

∣∣
s=0,t=0

= [X,Y ], for X,Y ∈ g.

Define a (right) action of G on C∞(G) by

(Rxf)(g) = f(gx), for x ∈ G, f ∈ C∞(G), g ∈ G.

Then
Adxξ = RxξRx−1 , for all x ∈ G, ξ ∈ g,

since, for x ∈ G, Int∗x(Adxξ) = ξ◦Int∗x = ξLx−1Rx−1 = Lx−1ξRx−1Lx−1Rx−1RxξRx−1 = Int∗x(RxξRx−1).
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Recall that the adjoint representation of G is

Ad: G −→ GL(g)
x 7−→ Adx

where Adx: g −→ fg
ξ 7−→ RxξRx−1

is the differential of
Intx: G −→ G

g 7−→ xgx−1 .

The coadjoint representation of G is the dual of the adjoint representation, i.e. the action of G on
g∗ = Hom(g,C) given by

(gφ)(X) = φ(Adg−1X), for g ∈ G, φ ∈ g∗, X ∈ g.

A coadjoint orbit is the set produced by the action of G on an element φ ∈ g∗, i.e. Gφ ⊆ g∗ is a
coadjoint orbit.

Let G be a Lie group and let g be the Lie algebra of G. Then G0 is nilpotent if and only if
Lie(G) is nilpotent, and G0 is solvable if and only if Lie(G) is solvable. A semisimple Lie group is
a connected Lie group with semisimple Lie algebra.

The class of reductive Lie groups is the largest class of Lie groups which contains all the
semisimple Lie groups and parabolic subgroups of them and for which the representation theory is
still controllable. A real Lie group is reductive if there is a linear algebraic group G over R whose
identity component (in the Zariski topology) is reductive and a morphism ν:G→ G(R) with finite
kernel, whose image is an open subgroup of G(R). For the definition of Harish-Chandra class see
Knapp’s article.
(a) U(n) = {x ∈Mn(C) | xx̄t = id}.
(b) Sp(2n,C) = {A ∈Mn(C) | AtJA = J}.
(c) Sp2n = Sp(2n,C) ∩ U(2n).

Theorem 0.3. The simple compact Lie groups are
(a) (Type A) SUn(C)
(b) (Type Bn) S02n+1(R), n ≥
(c) (Type Cn) Sp2n(C) ∩ Un, n ≥ 1,
(d) (Type Dn) SO2n(R), n ≥ 4,
(e) ???

Theorem 0.4. If G is a Lie group such that G/G0 is finite then
(a) G has a maximal compact subgroup,
(b) Any two maximal compact subgroups are conjugate,
(c) G is homeomorphic to K × Rm under the map

K × p −→ G
(k, x) 7−→ kex

where K is a maximal compact subgroup of G and p =??????????.
(d) If G is a semisimple Lie group then

K = {g ∈ G | Θ(g) = g},
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where Θ is the Cartan involution on G, is a maximal compact subgroup of G. For matrix
groups

Θ: G −→ G
g 7−→ (g−1)t

is the Cartan involution.

On the Lie algebra level

θ: g −→ fg
x 7−→ −x̄t k = {x ∈ g | θx = x}, p = {s ∈ g | θx = −x},

g = k⊕ p, u = k⊕ ip, gC = g⊕ ig = u⊕ iu.

Theorem 0.5. There is an equivalence of categories

{compact connected Lie groups} ←→ {connected reductive algebraic groups over C}
U ←→ G

where U is the maximal compact subgroup of G and G is the algebraic group with coordinate ring
C(U)rep. The group G is the complexification of U .

(b) The functor

ResGK : {holomorphic representations of G} −→ {representations of K}

is an equivalence of categories.

Proof. (a) The point of (a) is that for compact grops the continuous functions separate the points
of G and for algebraic groups the polynomial functions separate the points of G, and, for C and R
the polynomial functions are dense in the continuous functions.

Examples: Under the equivalence of (???)
(a) semisimple algebraic groups correspond exactly to the Lie groups with finite center,
(b) algebraic tori correspond exactly to geometric tori.
(c) irreducible finite dimensional representations of G correspond exactly to irreducible finite

dimensional representations of U .

Un ←→ GLn(C)
SUn ←→ SLn(C)

SO2n+1(R) ←→ SO2n+1(C)
Sp2n ←→ Sp2n(C)

SO2n(R) ←→ SO2n(C)

Other examples are GLn(C), SLn(C), PGLn(C), On(C), SOn(C), Pinn, Spinn, Sp2n(C),
PSp2n(C), Un(C), SUn(C), Un(C)/Z(Un(C)), On(R), SOn(R), . . ..

Equivalences:

{compact Lie groups} ←→ {complex semisimple Lie groups}
←→ {semisimple algebraic groups}
−→ {complex semisimple Lie algebras}
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A representation of G is an action of G on a vector space by linear transformations. The words
representation and G-module are used interchangably. A complex representation is a representation
where V is a vector space over C. In order to distinguish the group element g from the linear
transformation of V given by the action of g write V (g) for the linear transformation. Then

V :G −→ GL(V )

and the statement that the representation is a group action means

V (xy) = V (x)V (y), for all x, y ∈ G.

Unless otherwise stated we shall assume that all representations of G are Lie group homomorphisms.
A holomorphic representation is a representation in the category of complex Lie groups.

A representation is irreducible, or simple, if it has no subrepresentations (except 0 and itself).
In the case when V is a topological vector space then a subrepresentation is required to be a closed
subspace of V . The trivial G-module is the representation

1: G −→ C∗ = GL1(C)
g 7−→ 1

If V and W are G-modules the tensor product is the action of G on V ⊗W given by

g(v ⊗ w) = gv ⊗ gw, for v ∈ V , w ∈W , g ∈ G.

If V is a G-module the dual G-module to V is the action of G on V ∗ = Hom(V,C) (linear maps
ψ:V → C) given by

(gψ)(v) = ψ(g−1v), for g ∈ G,ψ ∈ V ∗, v ∈ V.

The maps
1⊗ V ∼−→ V
1⊗ v 7−→ v

and V ⊗ 1 ∼−→ V
v ⊗ 1 7−→ v

are G-module isomorphisms for any V . The maps

V ∗ ⊗ V −→ 1
φ⊗ v 7−→ φ(v) and 1 −→ V ⊗ V ∗

1 7−→
∑
i bi ⊗ β∗i

where {bi} is a basis of V and {β∗i } is the dual basis in V ∗ are G-module homomorphisms.
If V :G→ GL(V ) is a homomorphism of Lie groups then the differential of V is a map

dV : g −→ End(V )

which satisfies
dV ([x, y]) = [dV (x), dV (y)] = dV (x)dV (y)− dV (y)dV (x),

for x, y ∈ g. A representation of a Lie algebra g, or g-module, is an action of g on a vector space
V by linear transformations, i.e. a linear map φ: g→ End(V ) such that

V ([x, y]) = [V (x), V (y)] = V (x)V (y)− V (y)V (x), for all x, y ∈ g,
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where V (x) is the linear transformation of V determined by the action of x ∈ g. The trivial
representation of g is the map

1: g −→ C
x 7−→ 0

If V is a g-module, the dual g-module is the g-action on V ∗ = Hom(V,C) given by

(xφ)(v) = φ(−xv), for x ∈ g, φ ∈ V ∗, v ∈ V .

If V and W are g-modules the tensor product of V and W is the g-action on V ⊗W given by

x(v ⊗ w) = xv ⊗ w + v ⊗ xw, x ∈ g, v ∈ V,w ∈W.

The definitions of the trivial, dual and tensor product g-modules are accounted for by the following
formulas:

d

dt
1
∣∣
t=0

=
d

dt
et·0
∣∣
t=0

= 0,

d

dt
(etX)−1

∣∣
t=0

=
d

dt
e−tX

∣∣
t=0

= −X,

d

dt
(etX ⊗ etX)

∣∣
t=0

=
d

dt
(1 + tX +

t2X2

2!
+ · · ·)⊗ (1 + tX +

t2X2

2!
+ · · ·)

∣∣
t=0

=
d

dt
(1⊗ 1 + t(X ⊗ 1 + 1⊗X) + · · ·)

∣∣
t=0

= X ⊗ 1 + 1⊗X.

Lie algebras

A Lie algebra over a field F is a vector space g over F with a bracket [, ]: g × g → g which is
bilinear and satisfies

(1) [x, y] = −[y, x], for all x, y ∈ g,
(2) (The Jacobi identity) [x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0, for all x, y, z ∈ g.

The derived series of g is the sequence

D0g ⊇ D1g ⊇ · · · , where D0g = g and Di+1g = [Dig, Dig].

The lower central series of g is the sequence

C1g ⊇ C2g ⊇ · · · , where C0g = g and Ci+1g = [g, Cig].

Let g be a Lie algebra.
(a) g is abelian if [g, g] = 0.
(b) g is nilpotent if Cn(g) = 0 for all sufficiently large n.
(c) g is solvable if Dn(g) = 0 for all sufficiently large n.
(d) The radical rad(g) is the largest solvable ideal of g.
(e) The nilradical nil(g) is the largest nilpotent ideal????????? of g.
(f) g is semisimple if rad(g) = 0.
(g) g is reductive if nil(g) = 0. g is reductive if all its representations are completely decom-

posable. g is reductive if g = Z(g)⊕ [g, g] with [g, g] semisimple.
(h) A Cartan subalgebra is a maximal abelian subalgebra of semisimple elements.
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Then
0 ⊆ nil(g) ⊆ rad(g) ⊆ g

where nil(g) is nilpotent, rad(g) is solvable, g/rad(g) is semisimple, rad(g)/nil(g) is abelian, and
nil(g) is nilpotent.

Example. [Bou, Chap. I, §4, Prop. 5] The following are equivalent:
(a) g is reductive,
(b) The adjoint representation of g is semisimple,
(c) [g, g] is a semisimple Lie algebra,
(d) g is the direct sum of a semisimple Lie algebra and a commutative Lie algebra.
(e) g has a finite dimensional representation such that the associated bilinear form is nonde-

generate.
(f) g has a faithful finite dimensional representation.
(g) rad(g) is the center of g.

Theorem 0.6. The finite dimensional simple Lie algebras over C are
(a) (Type An−1) sln(C), n ≥ 2,
(b) (Type Bn) so2n+1(C), n ≥ 1,
(c) (Type Cn) sp2n(C), n ≥ 1,
(d) (Type Dn) so2n(C), n ≥ 4, and
(e) the five simple Lie algebras E6, E7, E8, F4, G2.

Theorem 0.7. The finite dimensional simple Lie algebras over R are ?????

Linear algebraic groups

A linear algebraic group is an afine algebraic variety G which is also a group such that multi-
plication and inversion are morphisms of algebraic varieties.

The following fundamental theorem is reason for the terminology linear algebraic group.

Theorem 0.8. If G is a linear algebraic group then there is an injective morphism of algebraic
groups i:G→ GLn(F ) for some n ∈ Z>0.

The multiplicative group is the linear algebraic group Gm = F ∗.
A matrix x ∈Mn(F ) is
(a) semisimple if it is conjugate to a diagonal matrix,
(b) nilpotent if all it eigenvalues are 0, or, equivalently, if xn = 0 for some n ∈ Z>0,
(c) unipotent if all its eigenvalues are 1, or equivalently, if x− 1 is nilpotent.
Let G be an linear algebraic group and let i:G → GLn(F ) be an injective homomorphism.

An element g ∈ G is
(a) semisimple if i(g) is semisimple in GLn(F ),
(b) unipotent if i(g) is unipotent in GLn(F ).

The resulting notions of semisimple and unipotent elements in G do not depend on the choice of
the imbedding i:G→ GLn(C).

Theorem 0.9. (Jordan decomposition) Let G be a linear algebraic group and let g ∈ G. Then
there exist unique gs, gu ∈ G such that
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(a) gs is semisimple,

(b) gu is unipotent,

(c) g = gsgu = gugs.

Let G be a linear algebraic group.
(a) The radical R(G) is the unique maximal closed connected solvable normal subgroup of G.
(b) The unipotent radical Ru(G) is the unique maximal closed connected unipotent normal

subgroup of G.
(c) G is semisimple if R(G) = 1.
(d) G is reductive if Ru(G) = 1. G is reductive if its Lie algebra is reductive.
(e) G is an (algebraic) torus if G is isomorphic to Gm × · · ·Gm (k factors) for some k ∈ Z>0.
(f) A Borel subgroup of G is a maximal connected closed solvable subgroup of G0.

Let G be a linear algebraic group and let G0 be the connected component of the identity in G.
Then

1 ⊆ Ru(G) ⊆ R(G) ⊆ G0 ⊆ G

whereRu(G) is unipotent, R(G) is solvable, G0 is connected, G/G0 is finite, G0/R(G) is semisimple,
R(G)/Ru(G) is a torus, and Ru(G) is unipotent.

A linear algebraic group is simple if it has no proper closed connected normal subgroups. This
implies that proper normal subgroups are finite subgroups of the center.

Proposition 0.10. Let G be an algebraic group.

(a) If G is nilpotent then G ∼= TU where T is a torus and U is unipotent.

(b) If G is connected reductive then G = [G,G]Z◦, where [G,G] is semisimple and [G,G] ∩ Z◦ is
finite.

(c) If [G,G] is semisimple then G is an almost direct product of simple groups, i.e. there are closed
normal subgroups G1, . . . , Gk in G such that G = G1 ·G2 · · ·Gk and Gi ∩ (G1 · · · Ĝi · · ·Gk is
finite.

Example. If G = GLn(C) then

[G,G] = SLn(C), Z◦ = C · Id, and [G,G] ∩ Z◦ = {λ · Id | λn = 1} ∼= Z/nZ.

Structure of a simple algebraic group

xα(t) = etXα , wα(t) = xα(t)x−α(t−1)xα(t), hα(t) = wα(t)wα(1)−1,

U = 〈xα(t) | α > 0〉, T = 〈hα(t)〉 N = 〈wα(t)〉 B = TU W = N/T
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The Langlands decomposition of a parabolic is P = MAN where

M =


A1

A2 0
. . .

0 A`−1

A`

 , det(Ai) = 1,

A =


a1Id

a2Id 0
. . .

0 a`−1Id
a`Id

 , ai > 0,

N =


Id

Id ∗
. . .

0 Id
Id

 ,

and there is a corresponding decomposition p = m⊕ a⊕ n at the Lie algebra level.
The Iwasawa decomposition of G is G = KAN where

K = a maximal compact subgroup of G,

A =


a1

a2 0
. . .

0 a`−1

a`Id

 , det(Ai) = 1,

N =


1

1 ∗
. . .

0 1
1

 ,

and the corresponding Lie algebra decomposition is

g = k⊕ p = k⊕ a⊕ n, where
k = {x ∈ g | θx = x}, p = {x ∈ g | θx = −x},
a = a maximal abelian subspace of p,

n = the set of positive roots with respect to a.

The Cartan decomposition of G is G = KAK. The Bruhat decomposition of G is G = BWB.

Let g be a semsimple complex Lie algebra.
(a) There is an involutory semiautomorphism σ0 of g (relative to complex conjugation) such that

σ0(Xα) = −Xα, σ0(Hα) = −Hα, for all α ∈ R.

Let G be a Chevalley group over C viewed as a (real) Lie group.
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(b) There is an (analytic) automorphism σ of G such that

σxα(t) = x−α(−t̄), σ(hα(t) = hα(t̄−1), for all α ∈ R, t ∈ C.
(c) A maximal compact subgroup of G is

K = {g ∈ G | σ(g) = g}.
(d) K is semisimple and connected.
(e) The Iwasawa decomposition is G = BK.
(f) The Cartan decomposition is G = KAK where

A = {h ∈ H | µ(h) > 0 for all µ ∈ L}.

Let Θ be a P.I.D., k the quotient field, and Θ∗ the group of units of Θ (examples: Θ = Z, Θ = F [t],
Θ = Zp). If G is a Chevalley group over k let GΘ be the subgroup of G with coordinates relative
to M in Θ. Now let G be a semisimple Chevalley group over k.
(a) The Iwasawa decomposition is G = BK where

K = GΘ.

(b) The Cartan decomposition is KA+K where

A+ = {h ∈ H | α(h) ∈ Θ for all α ∈ R+}.
(c) If Θ is not a field (in particular if Θ = Z) then K is maximal in its commensurability class.
(d) If Θ = Zp and k = Qp the K is a maximal compact subgroup in the p-adic topology.
(e) If Θ is a local PID and p is its unique prime then

(1) The Iwahori subgroup I = U−p HΘUΘ is a subgroup of K.

(2) K =
⋃
w∈W

IwI.

(3) IwI = IwUw,Θ with the last component determined uniquely mod Uw,p.

Classification Theorems

{semisimple algebraic groups over C} 1−1←→ {lattices and root systems}

{complex semisimple Lie groups} 1−1←→ {semisimple algebraic groups over C}{
connected reductive

algebraic groups over C

}
1−1←→ {compact connected Lie groups}

G 7−→ U = maximal compact subgroup of G
semsimple 7−→ finite center

algebraic torus 7−→ geometric torus

{connected simply connected Lie groups} 1−1←→ {finite dimensional real Lie algebras}{
finite dimensional

complex simple Lie algebras

}
1−1←→

{
Root systems:

4 infinite families and 5 exceptionals

}
{

finite dimensional
real simple Lie algebras

}
1−1←→ {12 infinite families and 23 exceptionals}

Functions, measures and distributions
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Let G be a locally compact Hausdorff topological group and let µ be a Haar measure on G.
The support of a function f is

supp f = {g ∈ G | f(g) 6= 0}.

If it exists, the convolution of functions f1:G→ C and f2:G→ C is the function (f1 ∗ f2):G→ C
given by

(f1 ∗ f2)(g) =
∫
G

f1(h)f2(h−1g)dµ(g). (0.11)

Define an involution on functions f :G→ C by

f∗(g) = f(g−1), for all g ∈ G.

Useful norms on functions f :G→ C are defined by

‖f‖1 =
∫
G

|f(g)|dµ(g),

‖f‖22 =
∫
G

|f(g)|2dµ(g),

‖f‖∞ = sup{|f(g)| | g ∈ G},

If it exists, the inner product of functions f1:G→ C and f2:G→ C is

〈f1, f2〉
∫
G

f1(g)f2(g−1)dµ(g).

The left and right actions of G on functions f :G→ C are defined by

(Lgf)(x) = f(g−1x), and (Rgf)(x) = f(xg), g, x ∈ G.

Some space of functions are
CG = {functions f :G→ C with finite support}.
`1(G) = {functions f :G→ C with countable support and ‖f‖ =

∑
g∈G |f(g)| <∞}.

L1(G,µ) = {functions f :G→ C such that ‖f‖ =
∫
G
|f(g)|dµ(g) <∞.}.

Let X be a topological space. A σ-algebra is a collection of subsets of X which is closed under
countable unions and complements and contains the set X. A Borel set is a set in the smallest
σ-algebra B containing all open sets of X. A Borel measure is a function µ:B → [0,∞] which is
countably additive, i.e.

µ

( ∞⊔
i=1

Ai

)
=
∞∑
i=1

µ(Ai),

for every disjoint collection of Ai from B. A regular Borel measure is a Borel measure which satisfies

µ(E) = sup{µ(K) | K ⊆ E, for K compact} = inf{µ(U) | E ⊆ U, for U open},

for all E ∈ B. A complex Borel measure is a function µ:B → C which is countably additive. The
total variation measure with respect to a complex Borel measure µ is the measure |µ| given by

|µ|(E) = sup
∑
i

|µ(Ei)|, for E ∈ E ,
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where the sup is over all countable collections {Ei} of disjoint sets of B such that
⋃
iEi = E. A

regular complex Borel measure is a Borel measure on X such that the total variation measure |µ|
is regular. A measure λ is absolutely continuous with respect to a measure µ if µ(E) = 0 implies
λ(E) = 0.

Let µ be a Haar measure on a locally compact group G. Under the map

{functions} −→ {measures}
f 7−→ f(g)dµ(g)

the group algebra CG maps to measures ν with finite support, `(G) maps to measures with count-
able support, and L1(G,µ) maps to measures ν which are absolutely continuous with respect to
µ.

Let X be a locally compact Hausdorff topological space. Define

Cc(X) = {continuous functions f :X → C with compact support}.

Then Cc(X) is a normed vector space (not always complete) under the norm

‖f‖∞ = sup{|f(x)| | x ∈ X}.

The completion C0(X) of Cc(X) with respect to ‖ · ‖∞ is a Banach space. A distribution is a
bounded linear functional µ:Cc(X) → C. The Riesz representation theorem says that with the
notation

µ(f) =
∫
X

f(x)dµ(x), for f ∈ Cc(X),

the regular complex Borel measures on X are exactly the distributions on X. The norm ‖µ‖ is the
norm of µ as a linear functional µ:Cc(X)→ C. Viewing µ as a measure, ‖µ‖ = |µ|(X), where |µ|
is the total variation measure of µ.

The support supp µ of a distribution µ is the set of x ∈ X such that for each neighborhood U
of x there is f ∈ Cc(X) such that supp(f) ⊆ U and µ(f) 6= 0. Define

Ec(X) = {distributions µ on X with compact support}.

If φ:X → Y is a morphism of locally compact spaces then

φ∗: Ec(X)→ Ec(Y ) is given by (φ∗µ)(f) = µ(f ◦ φ),

for f ∈ Cc(Y ).
Let G be a locally compact topological group. Define an involution on distributions by

µ∗(f) = µ(f∗), for f ∈ Cc(G).

The convolution of distributions is defined by∫
G

f(g)d(µ1 ∗ µ2)(g) =
∫
G

∫
G

f(g1g2)dµ1(g1)dµ2(g2).

The left and right actions of G on distributions are given by

(Lgµ)(f) = µ(Lg−1f), and (Rgµ)(f) = µ(Rg−1f), for all f ∈ Cc(G).
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Let X be a smooth manifold. The vector space C∞(X) is a topological vector space under
a suitable topology. A compactly supported distribution on X is a continuous linear functional
µ:C∞(X)→ C. Let

E1(X) = {continuous linear functionals µ:C∞(X)→ C}

and, for a compact subset K ⊆ X,

E1(X,K) = {µ ∈ E1(X) | supp(µ) ⊆ K}.

If φ:X → Y is a morphism of smooth manifolds then

φ∗: E1(X)→ E1(Y ) is given by (φ∗µ)(f) = µ(f ◦ φ).

Haar measures and the modular function

Let G be a locally compact Hausdorff topological group. A Haar measure on G is a linear
functional µ:C0(G)→ C such that

(a) (continuity) µ is continuous with respect to the topolgy on C0(G) given by

‖f‖∞ = sup{|f(g)| | g ∈ G},

(b) (positivity) If f(g) ∈ R≥0 for all g ∈ G then µ(f) ∈ R≥0,
(c) (left invariance) µ(Lgf) = µ(f), for all g ∈ G and f ∈ C0(G).

Theorem 0.12. (Existence and uniqueness of Haar measure) If G is a locally compact Hausdorff
topological group then G has a Haar measure and any two Haar measures are proportional.

Fix a (left) Haar measure µ on G. A group is unimodular if µ is also a right Haar measure on
G. The modular function is the function ∆:G→ R≥0 given by

µ(f) = ∆(g)µ(Rgf), for all f ∈ C0(G).

The fact that the image of ∆ is in R≥0 is a consequence of the positivity condition in the definition
of Haar measure. There are several equivalent ways of defining the modular function

µ(f∗) = µ(∆−1f) or
∫
G

f(g)dµ(gh) =
∫
G

f(g)∆(h)dµ(g), or µ(f) = µR(∆f),

for all f ∈ C0(G), where µR is a right Haar measure on G. The group G is unimodular exactly
when ∆ = 1.

Proposition 0.13. Finite groups, abelian groups, compact groups, semisimple Lie groups, reduc-
tive Lie groups, and nilpotent groups are all unimodular.

Proposition 0.14. (a) On a Lie group the Haar measure is given by

µ(f) =
∫
G

fω, for all f ∈ C0(G),
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where ω is the unique positive left invariant n form on G. (b) For a Lie group G the modular
function is given by

∆(g) = |detAdg|, for all g ∈ G.

Examples
(1) R, under addition. Haar measure is the usual Lebesgue measure dx on R.
(2) R≥0, under multiplication. Haar measure is given by (1/x)dx.

(3) GLn(R) has Haar measure
1

|det(xij)|n
n∏

i,j=1

dxij .

(4) The groupBn of upper triangular matrices inGLn(R) has Haar measure
1∏n

i=1 |xii|i
∏

1≤i<j≤n

dxij .

This group is not unimodular unless n = 1.

(5) A finite group has Haar measure µ(f) =
1
|G|

∑
g∈G

f(g).

Vector spaces and linear transformations

A vector space is a set V with an addition +:V ×V → V and a scalar multiplication C×V → V
such that addition makes V into an abelian group and

c(v1 + v2) = cv1 + cv2,

c1(c2v) = (c1c2)v,
and

(c1 + c2)v = c1v + c2v,

1v = v

for all c, c1, c2 ∈ C and v, v1, v2 ∈ V . A linear transformation from a vector space X to a vector
space Y is a map T :X → Y such that T (c1v1 + c2v2) = c1T (v1) + c2T (v2), for all c1, c2 ∈ C and
v1, v2 ∈ V . The morphisms in the category of vector spaces are linear transformations.

A topological vector space is a vector space V with a topology such that addition and scalar
multiplication are continuous maps. The morphisms in the category of topological vector spaces
are continuous linear transformations. A set C ⊆ V is convex if tx+ (1− t)y ∈ C, for all x, y ∈ C,
t ∈ [0, 1]. A topological vector space V is locally convex if it has a basis of nieghborhoods of 0
consisting convex sets.

A normed linear space is a vector space V with a norm ‖ · ‖:V → R≥0 such that
(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖, for x, y,∈ V ,
(b) ‖αx‖ = |α|‖x‖, for α ∈ C, x ∈ V ,
(c) ‖x‖ = 0 implies x = 0.

A linear transformation T :X → Y between normed vector spaces X and Y is an isometry if
‖Tx‖ = ‖x‖ for all x ∈ X. The norm of a linear transformation T :X → Y is

‖T‖ = sup{‖Tx‖ | x ∈ X, ‖x‖ ≤ 1}. (0.15)

A linear transformation T is bounded if ‖T‖ <∞. If X and Y are normed linear spaces such that
points are closed then linear transformation T :X → Y is continuous if and only if it is bounded
(reference??)

A Banach space is a normed linear space which is complete with respect to the metric defined
by d(x, y) = ‖x − y‖. A Hilbert space is a vector space V with an inner product 〈, 〉:V × V → C
such that for all c, c1, c2 ∈ C and v, v1, v2, v3 ∈ V ,

(a) 〈v1, v2〉 = 〈v2, v1〉,
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(b) 〈c1v1 + c2v2, v3〉c1〈v1, v3〉+ c2〈v2, v3〉,
(c) 〈v, v〉 = 0 only if v = 0,
(d) V is a Banach space with respect to the norm given by ‖v‖2 = 〈v, v〉.

If H is a Hilbert space the adjoint T ∗ of a linear transformation T :H → H is the linear transfor-
mation defined by

〈Th1, h2〉 = 〈h1, T
∗h2〉, for all h1, h2 ∈ H, (0.16)

and T is unitary if 〈Tx1, Tx2〉 = 〈x1, x2〉 for all x1, x2 ∈ H.

Algebras

An algebra is a vector space A with an associative multiplication A × A which satisfies the
distributive laws, i.e. such that A is a ring. A Banach algebra is a Banach space A with a
multiplication such that A is an algebra and

‖a1a2‖ ≤ ‖a1‖‖a2‖, for all a1, a2 ∈ A.

A *-algebra is a Banach algebra with an involution ∗:A→ A such that

An element a in a ∗-algebra is hermitian, or self adjoint, if a∗ = a. A C∗-algebra is a ∗-algebra A
such that

‖a∗a‖ = ‖a‖2, for all a ∈ A.

An idempotented algebra is an algebra A with a set of idempotents E such that
(1) For each pair e1, e2 ∈ E there is an e0 ∈ E such that e0e1 = e1e0 = e1 and e0e2 = e2e0 = e2,

and
(2) For each a ∈ A there is an e ∈ E such that ae = ea = a. A von-Neumann algebra is an algebra

A of operators on a Hilbert space H such that
(a) A is closed under taking adjoints,
(b) A coincides with its bicommutant.

Examples
1. The algebra B(H) of bounded linear operators on a Hilbert space H with the operator norm
(???) and involution given by adjoint (???) is a Banach algebra.
2. Let G be a locally compact Hausdorff topological group G and let µ be a Haar measure on G.
The vector space

L2(G,µ) = {f :G→ C | ‖f‖2 <∞}

is a Hilbert space under the operations defined in (???).
3. Let V be a vector space. Then End(V ) is an algebra.

Representations

A representation of a group G, or G-module, is an action of G on a vector space V by au-
tomorphisms (invertible linear transformations). A representation of an algebra A, or A-module,
is an action of A on a vector space V by endomorphisms (linear transformations). A morphism
T :V1 → V2 of A-modules is a linear transformation such that T (av) = aT (v), for all a ∈ A and
v ∈ V . An A-module M is simple, or irreducible, if it has no submodules except 0 and itself.
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A representation of a topological group G, or G-module, is an action of G on a topological
vector space V by automorphisms (continuous invertible linear transformations) such that the map

G× V −→ V
(g, v) 7−→ gv

is continuous. When dealing with representations of topological groups all submodules are assumed
to be closed subspaces.

A *-representation of a ∗-algebra A is an action of A on a Hilbert space H by bounded
operators such that

〈av1, v2〉 = 〈v1, a
∗v2〉, for all v1, v2 ∈ V , a ∈ A.

A ∗-representation of A on H is nondegenerate if AV = {av | a ∈ A, v ∈ V } is dense in V .
A unitary representation of a topological group G, or G-module, is an action of G on a Hilbert

space V by automorphisms (unitary continuous invertible linear transformations) such that the
action G× V −→ V is a continuous map.

An admissible representation of an idempotented algebra (A, E) is an action of A on a vector
space V by linear transformations such that

(a) V =
⋃
e∈E

eV ,

(b) each eV is finite dimensional.
A representation of an idempotented algebra is smooth if it satisfies (a).

Group algebras

(1) Let G be a group. Then CG is the algebra with basis G and multiplication forced by the
multiplication in G and the distributive law. A representation of G on a vector space V
extends uniquely to a representation of CG on V and this induces an equivalence of categories
between the representations of G and the representations of CG.

(2) Let G be a locally compact topological group and fix a Haar measure µ on G. Let

L1(G,µ) =
{
f :G→ C | ‖f‖ =

∫
G

|f(g)|dµ(g) <∞
}
.

Then L1(G,µ) is a ∗-algebra under the operations defined in (???). Any unitary representation
of G on a Hilbert space H extends uniquely to a representation of L1(G,µ) on H by the formula

fv =
∫
G

f(g)gvdµ(g), f ∈ L1(G,µ), g ∈ G,

and this induces an equivalence of categories between the unitary representations of G and
the nondegenerate ∗-representations of L1(G,µ).

(3) Let G be a locally compact topological group. and fix a Haar measure µ on G. Let

Ec = {distributions on G with compact support}

Then Ec is a ???-algebra under the operations defined in (???). Any representation of the
topological group G on a complete locally convex vector space V extends uniquely to a repre-
sentation of Ec on V by the formula

µv =
∫
G

gvdµ(g), f ∈ Ec, g ∈ G,
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and this induces an equivalence of categories between the representations of G on a complete
locally convex vector space V and the representations of Ec(G) on a complete locally convex
vector space V .

(4) Let G be a totally disconnected locally compact unimodular group and fix a Haar measure µ
on G. Let

Cc(G) = {locally constant compactly supprted functions f :G→ C}.

Then Cc(G) is a idempotented algebra with with the operations in (???) and with idempotents
given by

eK =
1

µ(K)
χK , for open compact subgroups K ⊆ G,

where χK denotes the characteristic function of the subgroup K. Any smooth representation of
G extends uniquely to a smooth representation of Cc(G) on V by the formula in (???) and this
induces an equivalence of categories between the smooth representations of G and the smooth
representations of Cc(G) (see Bump Prop. 3.4.3 and Prop. 3.4.4). This correspondence takes
admissible representations for G (see Bump p. 425) to admissible representations for Cc(G).

(5) Let G be a Lie group. Let

C∞c (G) = {compactly supported smooth functions on G}.

Then C∞c (G) is a ???-algebra under the operations defined in (???). Any representation of
the topological group G on a complete locally convex vector space V extends uniquely to a
representation of C∞c (G) on V by the formula in (???) and this induces an equivalence of
categories between the representations of G on a complete locally convex vector space V and
the representations of C∞c (G) on a complete locally convex vector space V .

(6) Let G be a reductive Lie group and let K be a maximal compact subgroup of G. Let

E(G,K)fin = {µ ∈ Ec(G) | supp(µ) ⊆ K and µ is left and right K finite}.

Then E(G,K)fin is a idempotented algebra with with the operations in (???) and with idem-
potents given by

eK =
1

µ(K)
χK , for open compact subgroups K ⊆ G,

where χK denotes the characteristic function of the subgroup K. Any (g,K)-module extends
uniquely to a smooth representation of E(G,K)fin on V by the formula in (???) and this induces
an equivalence of categories between the (g,K)-modules and the smooth representations of
E(G,K)fin (see Bump Prop. 3.4.8). This correspondence takes admissible modules for G (see
Bump p. 280 and p. 193) to admissible modules for E(G,K)fin. By Knapp and Vogan Cor.
1.7.1

E(G,K)fin = C(K)fin ⊗U(kC) U(gC).

(7) Let G be a compact Lie group. Let

C(G)fin = {f ∈ C∞(G) | f is G finite}.

Then C(G)fin is an idempotented algebra with idempotents corresponding to the identity on
a finite sum of blocks

⊕
λG

λ ⊗Gλ.
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Theorem 0.17. The category of representations of G in a Hilbert space V and the category of
smooth representations of C(G)fin are equivalent.

(8) Let g be a Lie algebra. The enveloping algebra Ug of g is the associative algebra with 1 given
by

Generators: x ∈ g, and
Relations: xy − yx = [x, y], for all x ∈ g.

The functor
U : {Lie algebras} −→ {associative algebras}

g 7−→ Ug

is the left adjoint of the functor

L: {associative algebras} −→ {Lie algebras}
(A, ·) 7−→ (A, [, ])

where (A, [, ]) is the Lie algebra given by the vector space A with the bracket [, ]:A⊗A→ C defined
by

[a1, a2] = a1a2 − a2a1, for all a1, a2 ∈ A.

This means that

HomLie(g, LA) ∼= Homalg(Ug, A), for all associative algebras A. (0.18)

Let ι: g → Ug be the map given by ι(x) = x. Then (???) is equivalent to the following universal
property satisfied by Ug:

If φ: g→ A is a map from g to an associative algebra A such that

φ([x, y]) = φ(x)φ(y)− φ(y)φ(x), for all x, y,∈ g,

then there exists an algebra homomorphism φ̃:Ug→ A such that φ̃ ◦ ι = φ.
A representation of g on a vector space V extends uniquely to a representation of Ug on V and

this induces an equivalence of categories between the representations of g and the representations
of Ug.

Proposition 0.19. Let G be a Lie group and let g = C⊗R gR be the complexification of the Lie
algebra gR = Lie(G) of G. Let E(G, {1}) be the algebra of distributions µ:C∞(G)→ C on G such
that supp(µ) = {1}. Then

Ug −→ E(G, {1})
x 7−→ µx

where µx(f) =
d

dt
f(etx)

∣∣
t=0

, for x ∈ g,

is an isomorphism of algebras.

Compact groups
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Let G be a compact Lie group and let µ be a Haar measure on G. Assume that µ is normalized
so that µ(G) = 1. The algebra Cc(G) (under convolution) of continuous complex valued functions
on G with compact support is the same as the algebra C(G) of continuous functions on G. The
vector space C(G) is a G-module with G-action given by

(xf)(g) = f(x−1g), for x ∈ G, f ∈ C(G).

The group G acts on C(G) in two ways,

(Lgf)(x) = f(g−1x), and (Rgf)(x) = f(xg),

and these two actions commute with each other.
Suppose that V is a representation of G in a complete locally convex vector space. Let

(, ):V ⊗ V → C be an inner product on V and define a new innner product 〈, 〉:V ⊗ V → C by

〈v1, v2〉 =
∫
G

(gv1, gv2)dµ(g), v1, v2 ∈ V.

Under the inner product 〈, 〉 the representation V is unitary. If V is a finite dimensional represen-
tation of G,

V : G −→ Mn(C)
g 7−→ V (g), then V̄ : G −→ Mn(C)

g 7−→ V (g) = V (g−1)t,

is another finite dimensional representation of G.

Lemma 0.20. Every finite dimensional representation of a compact group is unitary and
completely decomposable.

The representation C(G) is an example of an infinite dimensional representation of G which is not
unitary.

If V is a representation of G in a complete locally convex normed vector space V then the
representation V can be extended to be a representation of the algebra (under convolution) of
continuous functions C(G) on G by

fv =
∫
G

f(g)gvdµ(g), f ∈ C(G), v ∈ V. (0.21)

The complete locally convex assumption on V is necessary to define the integral in (???).
If V is a representation of G define

V fin = {v ∈ V | the G-module generated by v is finite dimensional}.

The vector space C(G)rep of representative functions consists of all functions f :G→ C given
by

f(g) = 〈v, gw〉,

for some vectors v, w in a finite dimensional representation of G.

Lemma 0.22. Let G be a compact group. Then C(G)fin = C(G)rep.
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Proof. Let f ∈ C(G)rep. Let v, w be vectors in a finite dimensional representation V such that
f(g) = 〈v, gw〉 for all g ∈ G. Let {v1, . . . , vk} be an orthonormal basis of V and let W be the vector
space of linear combinations of the functions fj = 〈vj , gw〉, 1 ≤ j ≤ k. Since v can be wrritten as
a linear combinattion of the vj , the function f can be written as a linear combination of the fj
and so f ∈W . For each 1 ≤ i ≤ k

(xfi)(g) = f̃i(x−1g) = 〈vi, x−1gw〉 = 〈xvi, gw〉 = 〈
k∑
j=1

cjvj , gw〉 =
k∑
j=1

cjfj(g)

for some constants cj ∈ C. So the G-module generated by f is contained in the finite dimensional
representation W . So f ∈ C(G)fin. So C(G)rep ⊆ C(G)fin.

Let f ∈ C(G)fin and let f1 = f, f2, . . . , fk be an orthonormal basis of the finite dimensional
representation W generated by f . Then

f(g) = (g−1f1)(1) =
k∑
j=1

〈fj , g−1f1〉fj(1), where cj = 〈fj , g−1f1〉.

Define a new finite dimensional representation W̄ of G which has orthonormal basis {w̄1, . . . , w̄k}
and G action given by

gw̄i =
k∑
j=1

〈fj , g−1fi〉w̄j , 1 ≤ i ≤ k.

It is straightforward to check that g1(g2w̄) = (g1g2)w̄, for all g1, g2 ∈ G. Since 〈w̄j , gw̄i〉 =
〈fj , g−1fi〉,

f(g) = 〈
k∑
j=1

cjw̄j , gw̄1〉 where cj = fj(1)

and so f ∈ C(G)rep. So C(G)fin ⊆ C(G)rep.

Theorem 0.23. (Peter-Weyl) Let G be a compact Lie group. Then
(a) C(G)rep is dense in C(G), under the topology defined by the sup norm.
(b) V fin is dense in V for all representations V of G.
(c) G is linear, i.e. there is an injective map i:G→ GLn(C) for some n.
(d) Let Ĝ be an index set for the finite dimensional representations of G. For each finite

dimensional irreducible representation Gλ, λ ∈ Ĝ, fix an orthonormal basis {vλi | 1 ≤ i ≤
dλ} of Gλ. Define Mλ

ij ∈ C(G)rep by

Mλ
ij(g) = 〈vλi , gvλj 〉, g ∈ G.

Then ⊕
λ∈ĜG

λ ⊗Gλ −→ C(G)rep

vλi ⊗ vλj 7−→ Mλ
ij

is an isomorphism of G×G-modules.
(e) The map ⊕

λ∈ĜMdλ(C) −→ C(G)rep

Eλij 7−→ Mλ
ij
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is an isomorphism of algebras.

and (a), (b), (c), (d) and (e) are all equivalent.

Proof. (b) =⇒ (a) is immediate.
(a) =⇒ (b): Note that C(G)finV ⊆ V fin. Since C(G)fin is dense in C(G), the closure of C(G)finV
contains C(G)V . Let f1, . . . , f2 be a sequence of functions in C(G) such that µ(fi) = 1 and the
sequence approaches the δ function at 1, i.e. the function δ1 which has supp(δ1) = {1}. If v ∈ V
then the sequence f1v, f2v, . . . approaches 1v = v and so v is in the closure of C(G)V . So the
closure of C(G)V is V . So V fin is dense in V .
The following method of making this precise is taken more or less from Bröcker and tom Dieck.

An operator K:C(G) → C(G) is compact if, for every bounded B ⊆ C(G), every sequence
(fn) ⊆ K(B) converges in K(B). An operator K:C(G) → C(G) is symmetric if 〈Kf1, f2〉 =
〈f1,Kf2〉 for all f1, f2 ∈ C(G).

Proposition 0.24. See Bröcker-tom Dieck Theorem (2.6) If K:C(G) → C(G) is a compact
symmetric operator then

(a) ‖K‖ = sup{‖Kf‖ | ‖f‖ ≤ 1} or −‖K‖ is an eigenvalue of K,
(b) All eigenspaces of K are finite dimensional,
(c)

⊕
λ C(G)λ is dense in C(G).

Proof. (b) The reason eigenspaces are finite dimensional: Let x1, x2, . . . be an orthonormal basis.
Then Kxi = λxi. So

‖Kxi −Kxj‖2 = |λ2|‖x1 − xj‖2 = 2‖λ‖2

and this never goes to zero.
(c) If not then U⊥ = (

⊕
λ C(G)λ)⊥ is nonzero. Then K:U⊥ → U⊥ is a compact symmetric

operator. So this operator has a finite dimensional eigenspace. This is a contradiction. So U⊥ = 0.
So
⊕

λ C(G)λ is dense in C(G).

Take K to be the operator given by convolution by an approximation φ to the δ function.
Then Kf is close to f ,

‖Kf − f‖∞ =
∣∣∣ ∫
G

(δ(g)f(xg)− f(g))dµ(g)
∣∣∣ ≤ ∫

G

εδ(g)dµ(g) = ε

= ‖δ(1)− 1‖∞ ≤ ε,

and Kf can be approximated by the action of φ on finite dimensional subspaces.
The symmetric condition on K translates to

φ(g) = φ(g−1)

and the compactness condition translates to∫
G

φ(g)dµ(g) = 1.

Note that
‖f‖22 =

∫
f(g)f(g)dµ(g) ≤

∫
|f(g)f(g)dµ(g) ≤ ‖f‖2∞.
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So the L2 and sup norms compare. For norms of operators ‖δ ∗ f‖∞ ≤ ‖δ‖∞‖f‖∞.

(c) =⇒ (a): If ι:G→ GLn(C) is an injection then the algebra C(G)alg generated (under pointwise
multiplication) by the functions ιij and ῑij , where

ιij(g) = ι(g)ij , and ιij(g) = ιij(g), for g ∈ G,

is contained in C(G)fin. This subalgebra separates points of G and is closed under pointwise
multiplication, and conjugation and so, by the Stone-Weierstrass theorem, is dense in C(G). So
C(G)fin is dense in C(G).

(a) =⇒ (c): The elements of C(G) distinguish the points of G and so the functions in C(G)rep

distinguish the points of G. For each g ∈ G fix a function fg such that (gfg)(1) = fg(g−1) 6= fg(1)
and let Vg be the finite dimensional representation of G generated by fg. By choosing gi 6∈ Ki−1

we can find a sequence g1, g2, . . . of elements of G such that

K1 ⊇ K2 ⊇ . . . , where Kj = ker(Vg1 ⊕ · · · ⊕ Vgj ),

and Ki 6= Ki+1. Since each Ki is a closed subgroup of G, and G is compact there is a finite n such
that Kn = {1}. Then W = Vg1 ⊕ · · ·Vgn is a finite dimensional representation of G with trivial
kernel. So there is an injective map from G into GL(W ).

(d) By construction this an algebra isomorphism. After all the algebra multiplication is designed
to extend the G×G module structure, and this is a G×G module homomorphism since(

(x⊗ y)(vλi ⊗ vλj )
)
(g) =

(
Φ(xvλi ⊗ yvλj )

)
(g)

= 〈xvλi ⊗ gyvλj
= 〈vλi ⊗ x−1gyvλj

= Mλ
ij(x

−1gy)

= (LxRyMλ
ij)(g).

Note that
Tr(Eλij) = 〈vλi , vλj 〉 = δij .

Consider the L2 norm on C(G)rep.

‖f‖22 =
∫
G

f(g)f(g)dµ(g)

=
∫
G

f(g)f∗(g−1)dµ(g) where f∗(g) = f(g−1)

= (f ∗ f∗)(1).

More generally, 〈f1, f2〉2 = (f1 ∗ f2)(1). Now

τ : C(G)rep −→ C
f 7−→ f(1)
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is a trace on C(G)rep, i.e. τ(f1 ∗ f2) = τ(f2 ∗ f1) for all f1, f2 ∈ C(G)rep. In fact thsi is trace of
the action of C(G)rep on itself:

τ(f) =
∫
G

f(g)gh
∣∣
h
dµ(g)

=
∫
G

f(g)δg1dµ(g)

=
∫
G

f(1)dµ(g) = f(1)µ(G) = f(1).

Now consider the action of
⊕

λMdλ(C) on itself. Then, if f = (f̂λ) then

τ(f) =
∑
λ∈Ĝ

dλTr(fλ).

So
‖f‖22 = (f ∗ f∗)(1) = τ(f ∗ f∗) = τ(f̂λ(f̂λ)t) =

∑
λ∈Ĝ

dλTr(f̂λ(f̂λ)t).

Note that Tr(Idλ) = dλ and τ(Idλ) =???.

Fourier analysis for compact groups

A function f :G→ C is
(a) representative if there is a finite dimensional representation V of G and vectors v, w ∈ V

such that f(g) = 〈v, gw〉 for all g ∈ G.
(b) square integrable if

‖f‖22 =
∫
G

f(g)f(g)dµ(g) <∞.

(c) smooth if all derivatives of f exist.
(d) real analytic if f has a power series expansion at every point.

C(G)rep = {representative functions f :G→ C},
L2(G) = {square integrable functions f :G→ C},
C∞(G) = {smooth functions f :G→ C},
Cω(G) = {real analytic functions f :G→ C},

We have a map ∏
λ∈Ĝ

Mdλ(C) −→ functions f :G→ C.

The set Ĝ has a norm ‖ · ‖: Ĝ→ R≥0. For (f̂λ) ∈
∏
λ∈ĜMdλ(C) define

(a) (f̂λ) is finite if all but a finite number of the blocks f̂λ in (f̂λ) are 0,
(b) (f̂λ) is square summable if ∑

λ∈Ĝ

1
dλ
‖fλ‖2 <∞.

(c) (f̂λ) is rapidly decreasing if, for all k ∈ Z>0, {‖λ‖k‖f̂λ‖ | λinĜ} is bounded,
(d) (f̂λ) is exponentially decreasing if, for some K ∈ R>1, {K‖λ‖‖f̂λ‖ | λ ∈ hatG} is bounded.
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Under the map
{functions f :G→ C} −→

∏
λ∈ĜMdλ(C),

C(G)rep 7−→ {finite (f̂λ)}
L2(G,µ) 7−→ {square summable (f̂λ)}
C∞(G) 7−→ {rapidly decreasing (f̂λ)}
Cω(G) 7−→ {exponentially decreasing (f̂λ)}

The space C(g)rep is dense in C(G) and C(G) ⊆ L2(G). In fact the sup norm on C(G) is related
to the L2 norm on L(G) and C(G) is dense in L2(G).

Abelian Lie groups

Theorem 0.25.
(a) If G is a connected abelian Lie group then

G ∼= (S1)k × Rn−k,
for some n ∈ Z>0, 0 ≤ k ≤ n.

(b) If G is a compact abelian Lie group then

G ∼= (S1)k × Z/m1Z× Z/m2Z× · · · × Z/m`Z,
for some k ∈ Z≥0, m1, . . . ,m` ∈ Z>0.

Proof. (Sketch) (a)

0 −→ K −→ g
exp−→G −→ 0, where K = ker(exp).

The map exp is surjective since the image contains a set of generators of G. The group K is
discrete since exp is a local bijection. So K ∼= Zk since it is a discrete subgroup of a vector space.
So

G ∼= g/K ∼= Rn/Zk ∼= (Rk/Zk)× Rn−k.
(b) Let T = G0. Then 0→ T → G→ G/T → 0 and G/T is discrete and compact since T is open
in G. Thus, by part (a), T ∼= (S1)k, and G/T is finite. So

G ∼= (S1)k × (Z/m1Z)× (Z/m2Z)× · · · × (Z/m`Z).

Proposition 0.26.
(a) The finite dimensional irreducible representations of Z/rZ are

Xλ: Z/rZ −→ C∗
e2πik/r 7−→ e2πikλ/r , 0 ≤ λ ≤ r − 1.

(b) The finite dimensional irreducible representations of S1 are

Xλ: Z/rZ −→ C∗
e2πiβ 7−→ e2πiβλ , λ ∈ Z.

(c) The finite dimensional irreducible representations of Z are

z: Z −→ C∗
r 7−→ zr = e2πiλr , z ∈ C∗, λ ∈ C.

(d) The finite dimensional irreducible representations of R are

z: R −→ C∗
r 7−→ zr = e2πiλr , z ∈ C∗, λ ∈ C.

Weights and roots
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Let G be a compact connected group. A maximal torus of G is a maximal connected subgroup
of G isomorphic to (S1)k for some positive integer k.

Fix a maximal torus T in G. The group T is a maximal connected abelian subgroup of G.
The Weyl group is

W = NG(T )/T , where NG(T ) = {g ∈ G | gTg−1 = T}.

The Weyl group W acts on T by conjugation. The map

G/T × T φ−→ G
(gT, t) 7−→ (gtg−1)

is surjective and Card(φ−1(g)) = |W | for any g ∈ G. It follows from this that
(a) Every element g ∈ G is in some maximal torus.
(b) Any two maximal tori in G are conjugate.

Thus, maximal tori exist, are unique up to conjugacy, and cover the group G.
Let P be an index set for the irreducible representations of T . Since the irreducible represen-

tations of S1 are indexed by Z, P ∼= Zk. The set P is called the weight lattice of G.

If λ ∈ P then Xλ:T → C∗,

denotes the corresponding irreducible representation of T . The W -action on T induces a W -action
on P via

Xwλ(t) = Xλ(w−1t), for all t ∈ T .

A representation V of G is a representation of T , by restriction, and, as a T -module,

V =
⊕
λ∈P

Vλ, where Vλ = {v ∈ V | tv = Xλ(t)v for all t ∈ T .}

The vector space Vλ is the Xλ isotypic component of the T -module V . The W -action on T gives

dim(Vλ) = dim(Vwλ), for all w ∈W and λ ∈ P .

The vector space Vλ is the λ-weight space of V . A weight vector of weight λ in V is a vector v in
Vλ.

Let G be a compact connected Lie group and let u = Lie(G). The group G acts on u by
the adjoint representation. Extend the adjoint representation to be a representation of G on the
complex vector space

gC = u⊕ iu = C⊗ Ru.

By ???, this representation extends to a representation of the complex algebraic group GC which
is the complexification of G. Since G is compact, the adjoint representation of GC on gC, and thus
the adjoint representation of gC on itself, is completely decomposable. This shows that gC is a
complex semisimple Lie algebra.

The adjoint representation gC of G has a weight decomposition

gC =
⊕
α∈P

gα,
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and the root system of G is the set

R = {α ∈ P | α 6= 0, gα 6= 0}

of nonzero weights of the adjoint representation. The roots are the elements of R. Set h = g0.
Then

gC = h
⊕(⊕

α∈R
gα

)
is the decomposition of gC into the Cartan subalgebra h and the root spaces gα. (Note that the
usual notation is hR = ih, hC = h⊕ ih, where h is a Cartan subalgebra of g, i.e. a maximal abelian
subspace of g. Also g0 = hC since h is maximal abelian in g. Also h = t ⊕ it where t is the Lie
algebra of the maximal torus T of G, and the maximal abelian subalgebra in g. Don’t forget to
think of

X : T −→ C∗
t 7−→ Xλ(t)
eh 7−→ eλ(h)

λ: h −→ C
h 7−→ λ(h)

)

Proposition 0.27.
(?) The Weyl group W is generated by sα, α ∈ R. The action of W on h∗ is generated by the

transformations

sα: h∗ −→ h∗

λ 7−→ λ− 〈λ, α∨α where α∨ =
2α
〈α, α〉

,

and 〈, 〉: h∗ × h∗ → R is a nondegenerate symmtric bilinear form.
(1) If α is a root then −α is a root and ±α are the only multiples of α which are root. (The thing

that makes this work is that the root spaces are pure imaginary.)
(2) If α is a root then dim(gα) = 1.
(3) The only connected compact Lie groups with dim(T ) = 1 are SO3(R) and the two fold simply

connected cover of SO3(R).

Proof. (1) Suppose that α is a root and that x ∈ gα.

Xα: T −→ C∗
eh 7−→ eα(h) and X−α: T −→ C∗

eh 7−→ eα(h) = e−α(h)

since α(h) ∈ iR for h ∈ t. Then, for all h ∈ t,

[hx̄] = [h̄, x̄] = [h, x] = α(h)x̄ = −α(h)x̄,

and so x̄ ∈ g−α. Thus g−α 6= 0 and −α is a root. Note that [x, x̄] ∈ h since it has weight 0.
(2) Consider Xα:T → C∗. Then Tα = kerXα is closed in T and is of codimension 1. Let T ◦α

be the connected component of the identity in Tα and let Zα = ZG(T ◦α) be the centralizer of T ◦α in
U (this is connected). Then

C⊗R Lie(Zα) = t⊕ it⊕
(
⊕ h∈Tα
β(h)=1

gβ

)
= h⊕

⊕
k∈Z

gkα.
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Now
Zα −→ Zα/T

◦
α

∪| ∪|
T −→ T/T ◦α

So T/T ◦α is a maximal torus of Zα/T ◦α and dimT/T ◦α = 1. Then

C⊗R Lie(Zα) = hα ⊕ CHα ⊕

(⊕
k∈Z

gkα

)
.

If Xα ∈ gα then [Xα, X−α] = λHα and λ 6= 0 since CH is maximal abelian in

Lie(Zα/T ◦α) = CH ⊕

(⊕
k∈Z

gkα

)
.

Now consider the action of Hα on

CH ⊕

 ⊕
k∈Z>0

gkα

⊕ CXα.

Then
Tr(H) =

1
λ

Tr([Xα, X−α]) =
1
λ

Tr
(
adXαadX−α − adX−αadXα

)
= 0.

But this implies
0 = 0 +

∑
k∈Z>0

dim(gkα)kα(Hα)− α(Hα).

So gkα = 0 for k > 1 and gα = CXα. So span{Xα, X−α, Hα} is a 3 dimensional subalgebra of g.
If U is a compact connected Lie group such that dimT = 1 then U has Lie algebra

g = span{Xα, X−α, Hα} = u⊕ iu.

Then the Weyl group of U is {1, sα} ∼= S2 where sα comes from conjugation by an element of Zα
and so sα leaves Tα fixed.

So the Weyl group of G contains all the sα, α ∈ R.

Example. There are only two compact connected groups of dimension 3,

SO(3) and Spin(3).

Proof. G acts on g and this gives an imbedding Ad:G→ SO(g) (with respect to an Ad invariant
form on g). This is an immersion since everything is connected. So G is a cover of SO(3).

Weyl’s integral formula
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Theorem 0.28. Let G be a compact connected Lie group. Let T be a maximal torus of G and
let W be the Weyl group. Let R be the set of roots. Then

|W |
∫
G

f(x)dx =
∫
T

∏
α∈R

(Xα(t)− 1)
∫
G

(f(gtg−1)dgdt.

Proof. First note that the map G/T × T → G given by (gT, t) 7→ gt, can be used to define a (left)
G invariant measure on G/T so that∫

G

f(g)dg =
∫
G/T×T

f(gt)dtd(gT ),

and thus, for y ∈ T ,∫
G

f(gyg−1)dg =
∫
G/T×T

f(gtyt−1g−1)dtd(gT )

=
∫
G/T×T

f(gyg−1)dtd(gT ) =
∫
G/T

f(gyg−1)d(gT ).
(a)

Then the map φ:G/T × T → G given by (gT, t) 7→ gtg−1 yields

|W |
∫
G

f(g)dg =
∫
G/T×T

f(gtg−1)J(gT,t)dtd(gT ), (b)

where J(gT,t) is the determinant of the differential at (gT, t) of the map φ. By translation, J(gT,t) is
the same as the determinant of the differential at the identity, (T, e), of the map Lgt−1g−1 ◦φ◦Lg,t,

G/T × T −→ G/T × T −→ G −→ G
(xT, y) 7−→ (gxT, ty) 7−→ (gx)ty(gx)−1 7−→ (gt−1g−1)(gx)ty(gx)−1.

Since (gt−1g−1)(gx)ty(gx)−1 = gt−1xtyx−1g−1 this differential is

g/h⊕ h 7−→ g
(X,Y ) 7−→ Adg(Adt−1(X) + Y −X).

So J(gT,t) is the determinant of the linear transformation of g given by

Adg(g)
(

Adg/h(t−1)− idg/h 0
0 idh

)
,

where the second factor is a block 2 × 2 matrix with respect to the decomposition g/h ⊕ h and
Adg/h is the adjoint action of T restricted to the subspace g/h in g. The element t−1 acts on the
root space gα by the value Xα(t−1) where Xα:T → C∗ is the character of T associated to the root
α. Since G is unimodular det(Adg) = 1, and since g/h =

⊕
α∈R gα,

J(gT,t) =
∏
α∈R

(Xα(t−1)− 1) =
∏
α∈R

(Xα(t)− 1), (c)



Representations 33

where the last equality follows from the fact that if α is a root then −α is also a root. The theorem
follows by combining (a), (b) and (c).

It follows from this theorem that, if χ and η are class functions on G then∫
G

χ(g)η(g)dg =
1
|W |

∫
T

∏
α∈R

(Xα(t)− 1)
∫
G

χ(gtg−1)η(gtg−1)dg dt

=
1
|W |

∫
T

∏
α>0

(Xα(t)− 1)(X−α(t)− 1)χ(t)η(t)dt

=
1
|W |

∫
T

∏
α>0

(Xα/2(t)−X−α/2(t))(X−α/2(t)−Xα/2(t))χ(t)η(t)dt

=
1
|W |

∫
T

∏
α>0

(aρχ)(t)(aρη)(t)dt .

Weyl’s character formula

The adjoint representation g is a unitary representation of G. So the Weyl group W acts on
h by unitary operators. So W acts on t by orthogonal matrices. Identify t and t∗ = Hom(t,R) =
{α: t→ R} with the inner product,

t
∼−→ t∗

α 7−→ 〈α, ·〉.
For a root α define

α∨ =
2α
〈α, α〉

and Hα = {x ∈ t | α(x) = 0}.

Then, the reflection sα in the hyperplane Hα, which comes from Zα = ZG(T ◦α)/T ◦α, is

sα: t −→ t
λ 7→ λ− 〈λ, α∨〉α.

PICTUREOFHY PERPLANEANDREFLECTION.

So
(a) W acts on t, and

(b) t−
⋃
α∈R

Hα = Rn\

(⋃
α∈R

Hα

)
is a union of chambers (these are the connected compo-

nents).
PICTUREOFCHAMBERSANDWEIGHTLATTICE

The Weyl group W permutes these chambers and if we fix a choice of a chamber C then we can
identify the chambers are wC, w ∈ C. (See Bröcker-tom Dieck V (2.3iv) and the Claim at the
bottom of p. 193.

PICTUREOFCHAMBERSLABELEDBY wC

Let
R(T ) = representation ring of T

= Grothendieck ring of representations of G, and
R(G) = representation ring of G.
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This means that R(G) = span-{[Gλ] | λ ∈ Ĝ} with
(a) addition given by [Gλ] + [Gµ] = [Gλ ⊕Gµ], and
(b) multiplication given by [Gλ][Gµ] = [Gλ ⊗Gµ].

Thus, in R(G) it makes sense to write∑
λ∈Ĝ

mλ[Gλ] instead of
⊕
λ∈Ĝ

(Gλ)⊕mλ .

Define
CP = span-{eλ | λ ∈ P} with multiplication eλeµ = eλ+µ,

for λ, µ ∈ P . Then

CP ∼= R(T ), since R(T ) = span-{[Xλ] | λ ∈ P}.

The action of W on R(T ) (see (???)) induces an action of W on CP given by

weλ = ewλ, for w ∈W , λ ∈ P .

Note that
ε(w) = det

h
(w) = ±1

since the action of w on h is by an orthogonal matrix. The vector spaces of symmetric and
alternating functions are

C[P ]W = {f ∈ CP | wf = f for all w ∈W}, and
A = {f ∈ CP | wf == ε(w)f for all w ∈W},

respectively. Note that C[P ]W is a ring but A is only a vector space.
Define

P+ = P ∩ C andP++ = P ∩ C.

The set P+ is the set of dominant weights. Every W -orbit on P contains a unique element of P+

and so the set of monomial symmetric functions

mλ =
∑
γ∈Wλ

eγ , λ ∈ P+,

forms a basis of C[P ]W . Define
aµ =

∑
w∈W

ε(w)ewµ,

for µ ∈ P . Then
(a) waµ = ε(w)aµ, for all w ∈W and all µ ∈ P ,
(b) aµ = 0, if µ ∈ Hα for some α, and
(c) {aµ | µ ∈ P++} is a basis of A.

The fundamental weights ω1, . . . , ωn in t are defined by

〈ωi, α∨j 〉 = δij ,
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where Hαj are the walls of C. Write

α > 0 if 〈λ, α〉 > 0 for all λ ∈ C.

Then

ρ =
n∑
i=1

ωi

=
1
2

∑
α>0

α,

is the element of t defined by

〈ρ, α∨i 〉 = 1, for all α1, . . . , αn.

Lemma 0.29. The map
P+ −→ P++

λ 7−→ λ+ ρ

is a bijection, and
C[P ]W −→ A
f 7−→ aρf

is a vector space isomorphism.

Proof. Since
w(aρf) = (waρ)(wf) = ε(w)aρf,

the second map is well defined. Let

g =
∑
λ∈P

gλe
λ ∈ A.

Then, for a positive root α,
−g = sαg =

∑
λ∈P

gλe
sαλ,

and so
g =

∑
λ

〈λ,α〉>0

gλ(eλ − ssαλ).

Since
eλ − esαλ = (eλ−α + · · ·+ eλ−〈λ,α

∨〉α)(eα − 1),

the element g is divsible by eα − 1. Thus, since all the factors in the product are coprime in CP ,
g is divisible by ∏

α>0

(eα − 1) = eρ
∏
α>0

(eα/2 − e−α/2) = eρaρ,

where the last equality follows from the fact that aρ is divisible by the product
∏
α>0(eα/2−e−α/2)

and these two expressions have the same top monomial, eρ. Since g ∈ A is divisible by aρ the map
CP → A is invertible.
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Define

χλ =
aλ+ρ

aρ
, for λ ∈ P+,

so that the {χλ | λ ∈ P+} are the basis of C[P ]W obtained by taking the inverse image of the basis
{aλ+ρ | λ ∈ P+} of A. Extend these functions to all of U by setting

χλ(gtg−1) = χλ(t), for all g ∈ U .

Since
∫
T
Xλ(t)Xµ(t)dt = δλµ, for λ, µ ∈ P ,

∫
T

aλ+ρ(t)aµ+ρ(t)dt = δλµ|W |,

and thus, by (???),

δλµ =
∫
G

χλ(g)χµ(g)dg, for all λ, µ ∈ P+.

Thus the χλ, λ ∈ P+ are an orthonormal basis of the set of class functions in C(G)rep. If Uλ is an
irreducible rpresentation of U then

TrUλ(g) =
d∑
i=1

Mλ
ii(g), where Mλ

ij = 〈vλi , gvλj 〉,

for an orthonormal basis vλ1 , . . . , v
λ
n of Uλ. Then

∫
G

TrUλ(g)TrUµ(g)dg = δλµ,

and so the functions TrUλ are another orthonormal basis of the set of class functions in C(G)rep.
It follows that χλ = ±TrUλ .

It only remains to check that the sign is positive to show that the χλ are the irreducible
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characters of U . This follows from the following computation.

χλ(1) = lim
t→0

χλ(etρ)

= lim
t→0

∑
w∈W ε(w)Xw(λ+ρ)(etρ)∑
w∈W ε(w)Xwρ(etρ)

= lim
t→0

∑
w∈W ε(w)e〈w(λ+ρ),tρ〉∑
w∈W ε(w)e〈wρ,tρ〉

= lim
t→0

∑
w∈W ε(w)et〈λ+ρ,w−1ρ〉∑
w∈W ε(w)et〈ρ,w−1ρ〉

= lim
t→0

aρ(et(λ+ρ)

aρ(etρ)

= lim
t→0

∏
α>0(Xα/2 −X−α/2)(et(λ+ρ)∏
α>0(Xα/2 −X−α/2)(etρ)

= lim
t→0

∏
α>0

(
et〈λ+ρ,α/2〉 − e−t〈λ+ρ,α/2〉)∏

α>0

(
et〈ρ,α/2〉 − e−t〈ρ,α/2〉

)
= lim
t→0

∏
α>0

sinh(t〈λ+ ρ, α/2〉)
sinh(t〈ρ, α/2〉)

=
∏
α>0

〈λ+ ρ, α/2〉
〈ρ, α/2〉

=
∏
α>0

〈λ+ ρ, α∨〉
〈ρ, α∨〉.

Theorem 0.30. Let U be a compact connected Lie group and let T be a maximal torus and L
the corresponding lattice.
(a) The irreducible representations of U are indexed by dominant integral weights λ ∈ L+ underr

the corresopndence

irreducible representations
1−1−→ P+

V λ 7−→ highest weight of V λ

(b) The character of V λ is

χλ =
∑
w∈W ε(w)ew(λ+ρ)∑
w∈W ε(w)ewρ

,

where ρ ∈ P+ is defined by 〈ρ, α∨i 〉 = 1 for 1 ≤ i ≤ n and ε(w) = det(w).
(c) The dimension of V λ is

dλ =
∏
α>0〈λ+ ρ, α∨〉∏
α>0〈ρ, α∨〉

.

(d)

χλ =
∑
p∈Pλ

ep(1),

where Pλ is the set of all paths obtained by acting on pλ by root operators.
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Remark. By part (d)

dim((V λ)µ) = # paths in Pλ which end at µ.

(For the path model some copying can be done from the Barcelona abstract.)
Remark. Point out that R(T ) = ZL, where L is the lattice corresponding to T . Also point out
that R(U) = R(T )W ∼= (ZL)W .


