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Abstract.

Spaces

A topological space is a set X with a specified collection of open subsets of X which is closed
under unions, finite intersections, complements and contains () and X. A continuous function
f: X — Y is a map such that f~*(V) is open in X for all open subsets V' C Y. The morphisms in
the category of topological spaces are continuous functions.

(a) A closed subset of X is the complement of an open set of X.

(b) The space X is compact if every open cover has a finite subcover.

(¢) The space X is locally compact if every point has a neighborhood with compact closure.

(d) The space X is totally disconnected if there is no connected subset with more than one element.

(e) The space X is Hausdorff if Ax = {(z,x) | x € X} is a closed subspace of X x X, where
X x X has the product topolgy.

The topological space X is Hausdorff if and only if for any two points in X there exist neighborhoods
of each of them that do not intersect.

A metric space is a set X with a metric d: X x X — R> such that A Cauchy sequence is a
sequence (p; € V' | i € Z~g) such that, for every positive real number € there is a positive integer
N such that d(pn,pm) < € for all m,n > N. A sequence (p; € V | i € Z~g) converges if there is a
p € V such that, for every € € R, there is an N € Z~( such that d(p,,p) < e for alln > N. A
metric space is complete if all Cauchy sequences converge.

Sheaves

Let X be a topological space. A sheaf on X is a contravariant functor

Ox: {open sets of X} — {rings}
U —  Ox(U)

such that if {U,} is an open cover of U and f, € Ox(U,) are such that

fa’UaﬁUB = f,g‘UamUﬁ, for all a, 3,
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then there is a unique f € Ox (U) such that f, = f|y, for all a. A ringed space is a pair (X, Ox)
where X is a topological space and Oy is a sheaf on X. The stalk of Ox at x € X is

Ox,o = indlim Ox (),

where the limit is over all neighborhoods U of z.
Note: an alternate way of stating the condition in the definition of a sheaf is to say that the
sequence j
; —
O — 0, (U)— H(’)x(Ua)_> [[0:(UnTUs)
o E o8
is exact where
¢ is the map induced by the inclusions U, — U,
J is the map induced by the inclusions U, N Ug — U,,
k is the map induced by the inclusions U, N Ug — Usg,

and exactness of the sequence means imi = ker(j — k).

Smooth manifolds

A manifold is a topological space X which is locally homeomorphic to R™. Locally homeo-
morphic to R™ means that for each x € X there is an open neighborhood U of x, an open set V in
R™ and a homeomorphism ¢:U — V. The map ¢: U — V is a chart. An atlas is an open covering
(Uy) of X, a set of open sets (V) of R™ and a collection of charts ¢,:U, — V,. Examples of
manifolds are

PICTURE OF SPHERE PICTURE OF TORUS
sphere torus

A smooth manifold is a manifold with an atlas (¢,) such that for each pair of charts ¢4, ¢g the
maps

$po by 0a(Ua NUs) — ¢3(Ua NUp)

are smooth (i.e. C*). Let M be a smooth manifold and let U be an open subset of M. The ring
of smooth functions on U is the set of functions f: U — R that are smooth at every point of U, i.e.
If £ € U then there is a chart ¢,: U, — V, such that x € U, and

fo¢;1:Va—>R, is C°°.

Let V, be an open set of R"™. For each open set V of V,, let C°°(V') be the set of functions
f:V — R that are C* at every point of V. If V' < V’ then we have a map

c=V) — O=(V)
f — f‘V .
Thus
C>: {open sets of V,} — {rings}
Vv —  C®(V)

is a sheaf on V,, and (V,,,C*) is a ringed space.

A smooth manifold is a Hausdorff topological space which is locally isomorphic to R™, i.e. a
Hausdorff ringed space (M, C) with an open cover (U,) such that each (U,,C>) is isomorphic
(as a ringed space) to an open set (V,,,C>) of R™.

Varieties
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A affine algebraic variety over F is a set
X ={(z1,...,2n) | falz1,...,25) =0 for all f, € S}

where S is a set of polynomials in F[t1,?s,...,t,]. By definition, these are the closed sets in the
Zariski topology on F". Let U be an open set of X and define Ox (U) to be the set of functions
f:U — T that are regular at every point of z € U, i.e.
For each 2 € U there is a neigborhood U, C U of z and functions g,h € F[t1,...,t,]
such that h(y) # 0 and f(y) = g(y)/h(y) for all y € U,.
Then Ox is a sheaf on X and (X,Ox) is a ringed space. The sheaf Ox is the structure sheaf of
the affine algebraic variety X.
A wvariety is a ringed space (X, Q) such that
(a) X has a finite open covering {U,, } such that each (U, O|y, ) is isomorphic to an affine algebriac
variety,
(b) (X, O) satisfies the separation azxiom, i.e.

Ax ={(z,z) | z € X} is closed in X x X,

where the topology on X x X is the Zariski topology. (Note that the Zariski topology on
X x X is, in general, finer than the product topology on X x X.)

A prevariety is a ringed space which satisfies (a).

Schemes

Let A be a finitely generated commutative F-algebra and let
X = HomFalg(A,]F).
By definition, the closed sets of X in the Zariski topology are the sets
Cr={MeX|JCM} forJCA,

where we identify the points of X with the maximal ideals in A. Let U be an open set of X and
let
Ox(U)={g/h | g,he€ A, x(h)#0 forall z € U}.

Then Ox is a sheaf on X and (X, Ox) is a ringed space. The space X is an affine F-scheme.
An F-variety is a ringed space (X, Ox) such that
(a) For each x € X the stalk Ox , is a local ring,
(b) X has a finite open covering {U,} such that each (U,,Ox|v,) is isomorphic to an affine
F-scheme,
(¢) (X,0Ox) is reduced, i.e. for each z € X the local ring Ox , has no nonzero nilpotent elements,
(d) (X,Ox) satisfies the separation aziom, i.e.

Ax ={(z,z) | z € X} is closed in X x X.

A prevariety is a ringed space which satisfies (a),(b) and (c). An F-scheme is a ringed space which
satisfies (a) and (b). An F-space is a ringed space which satisfies (a).

Groups
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group is a set G with a mulitplication such that
) (ab)c = a(be), for all a,b,c € G,

) There is an identity 1 € G,

) Every element of G is invertible. Let

A
(a
(b
(c

[z,y] = zyr ty L, for x,y € G.

The lower central series of G is the sequence
CH@)D2C*G)D---, where C1(G) = G and C(G) = [G, CHG)).
The derived series of G is the sequence
D%G) 2 D*(G)2 -+,  where D°(G) = G and D'*Y(G) = [D'(G), D'(g)].

Let G be a group.
(a) G is abelian if [G,G] = {1}.
(b) G is nilpotent if C™(G) = {1} for all sufficiently large n.
(¢) G is solvable if D™(G) = {1} for all sufficiently large n.

The radical R(G) of a Lie group G is the largest connected solvable normal subgroup of G.

A topological group is a topological space G which is also a group such that multiplication and
inversion

GxG@ — G G — G

(g,h) +— gh g — g!

are morphisms of topological spaces, i.e. continuous maps.

A Lie group is a smooth manifold with a group structure such that multiplication and inversion
are morphisms of smooth manifolds, i.e. smooth maps.

A complex Lie group is a complex analytic manifold which is also a group such that multipli-
cation and inversion are morphisms of complex analytic manifolds, i.e. holomorphic maps.

A linear algebraic group is an affine algebraic variety which is also a group such that multipli-
cation and inversion are morphisms of affine algebraic varieties.

A group scheme is a scheme which is also a group such that multiplication and inversion are
morphisms of schemes.

Lie groups

The Lie group S* = R/Z = U;(C). A torus is a Lie group G is isomorphic to S* x --- St (k
factors), for some k € Z~.

A connected Lie group is semisimple if R(G) = {1}.

Let G be a Lie group and let z € G. A tangent vector at z is a linear map &,: C°(G) — R
such that

§e(f1f2) = &a(fi) fo(@) + fr(2)€e(f2),  forall f1, fa € C(G).
A wvector field is a linear map &: C>°(G) — C*°(G) such that

§(f1f2) = E(f1)f2 + [1&(f2),  for f1, fo € C(G).
A left invariant vector field on G is a vector field £: C*°(G) — C*°(G) such that

Ly =¢ELg, for all g € G.
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A one parameter subgroup of G is a smooth group homomorphism v: R — G. If v is a one parameter

subgroup of G define (y(t+ 1)) = f(2(#)
d @+ h) = f(u(t
af(’Y(t)) = }llli% h .

The following proposition says that we can identify the three vector spaces
(1) {left invariant vector fields on G},
(2) {one parameter subgroups of G},
(3) {tangent vectors at 1 € G}.

Proposition 0.1. The maps

{left invariant vector fields} — {tangent vectors at 1}

3 — &
and
{one paramemeter subgroups} — {tangent vectors at 1}
where

af =€, ad = (HO0) |

are vector space isomorphisms.

The Lie algebra g = Lie(G) of the Lie group G is the tangent space to G at the identity with
the bracket [,]: g X g — g given by

(€1, Tia] = §162 — 261, for &,& €9
Let ¢: G — H be a Lie group homomorphism and let g = Lie(G) and h = Lie(H). Then

c=(H) 2 c=(q)
fo—  fos

and the differential of ¢ is the Lie group homomorphism gﬂh given by

dp(&1) = & o ¢, if & is a tangent vectors at the identity,
dop(€) = € o ¢*, if £ is a left invariant vector field,
dp(y) = ¢ o, if v is a one parameter subgroup.

(Note: It should be checked that (a) the map d¢ is well defined, (b) the three definitions of d¢ are
the same, and (c) that d¢ is a Lie algebra homorphisms. These checks are not immediate, but are
straightforward manipulations of the definitions.) The map

the category of Lie groups —— the category of Lie algebras
G — Lie(G)
¢ — do
is a functor. This functor is not one-to-one; for example, the Lie groups O, (R) and SO,,(R) have

the same Lie algebra. On the other hand, the Lie algebra contains the structure of the Lie groups
in a neighborhood of the identity. The exponential map is

- G
t?X RS where e'X = v(t)
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is the one parameter subgroup corresponding to X € g. This map is a homeomorphism from a
neighborhood of 0 in g to a neighborhood of 1 in G.

Theorem 0.2. (Lie’s theorem) The functor

Lie: {connected simply connected Lie groups} — {Lie algebras}
G — g = Lie(G) = T1(G)

is an equivalence of categories.

If g is a Lie subalgebra of gl,, then the matrices

{X | teR, X €gl,}, where e'X = Z

form a group with Lie algebra g.

et X otY et(X+Y)+(t2/2)[X,Y}+m

)

— 2 ee
et X oY o—tX _ Y+t (X, Y]+

Y

— p— 2 e
X tY g tX gtV _ I Y ]

Let G be a Lie group and let g = Lie(G). Let € G. Then the differential of the Lie group

homomorphism
Int,: G — G

g — :ngfl

is a Lie algebra homomorphism
Ad,:g—g.

Since there is a map Ad, for each x € G, there is a map

Ad: G — GL(g)

z — Ad,

and Ad,Ad, = Ad,,, forz,yecg,

since Int,Int, = Inty,. The differential of Ad is

ad: g — End(g) ady: g — g
X — adX ) where v o [X7 Y] 7
since L
tX _sY —tX N
@@e e ¢ |s:0,t:0_ [X,Y], for X,YEg_

Define a (right) action of G on C*°(G) by
(R f)(g) = f(gz), forz € G, f € C*(G),g € G.

Then
Ad & = RyER, -, foralz € G, € € g,

since, for x € G, IHt;(Admg) = fOInt; =¢L,- 1Ry =L,—1éR,—1Ly-1Ry-1 R (R, 1 = IIlt:,(ngRw—l).



REPRESENTATIONS 7

Recall that the adjoint representation of G is

Ad: G — GL(g) Ad,: g
r s Ad,  Where € s RyR,

is the differential of
Int,: G — G

g +— gjggg_l'

The coadjoint representation of GG is the dual of the adjoint representation, i.e. the action of G on
¢g* = Hom(g, C) given by

(99)(X) = ¢(Ady—1 X), forge G, ¢peg”, X eg.

A coadjoint orbit is the set produced by the action of G on an element ¢ € g*, i.e. G¢ C g* is a
coadjoint orbit.

Let G be a Lie group and let g be the Lie algebra of G. Then G? is nilpotent if and only if
Lie(G) is nilpotent, and G° is solvable if and only if Lie(G) is solvable. A semisimple Lie group is
a connected Lie group with semisimple Lie algebra.

The class of reductive Lie groups is the largest class of Lie groups which contains all the
semisimple Lie groups and parabolic subgroups of them and for which the representation theory is
still controllable. A real Lie group is reductive if there is a linear algebraic group G over R whose
identity component (in the Zariski topology) is reductive and a morphism v: G — G(R) with finite
kernel, whose image is an open subgroup of G(R). For the definition of Harish-Chandra class see
Knapp’s article.

(a) U(n) = {x € M,(C) | zz"* =id}.
(b) Sp(2n,C) ={A € M,(C) | A'JA = J}.
(¢) Span = Sp(2n,C)NU(2n).

Theorem 0.3. The simple compact Lie groups are
(a) (Type A) SU,(C)
(b) (Type By,) SO02,41(R), n >
(c) (Type Cpn) Sp2n(C)NUp, n > 1,
(d) (Type Dy) SO2,(R), n > 4,
(e) 777

Theorem 0.4. If G is a Lie group such that G/G° is finite then
(a) G has a maximal compact subgroup,
(b) Any two maximal compact subgroups are conjugate,
(c) G is homeomorphic to K x R™ under the map

KXp—> G

(k,z) +—— ke”

(d) If G is a semisimple Lie group then

K={geG|06(9) =g},
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where © is the Cartan involution on G, is a maximal compact subgroup of G. For matrix
groups
0. G — G
g +— (g7

is the Cartan involution.

On the Lie algebra level

0: g — fg

x — —T

t={zecg|bz=ux}, p={scg|br=—2,

g=tdyp, u==€tod1ip, gc=9gDig=udu.

Theorem 0.5. There is an equivalence of categories

{compact connected Lie groups}  «—  {connected reductive algebraic groups over C}
U — G

where U is the maximal compact subgroup of G and G is the algebraic group with coordinate ring
C(U)rer. The group G is the complezification of U.

(b) The functor
Res: { holomorphic representations of G} — {representations of K}
is an equivalence of categories.

Proof. (a) The point of (a) is that for compact grops the continuous functions separate the points
of G and for algebraic groups the polynomial functions separate the points of G, and, for C and R
the polynomial functions are dense in the continuous functions.

Ezamples: Under the equivalence of (777)
(a) semisimple algebraic groups correspond exactly to the Lie groups with finite center,
(b) algebraic tori correspond exactly to geometric tori.
(c) irreducible finite dimensional representations of G correspond exactly to irreducible finite
dimensional representations of U.

U, —  GL,(C)

SU,, ~— SL,(C)
SO02,41(R) «— 5092,11(C)

Span — Span (C)

Other examples are GL,,(C), SL,(C), PGL,(C), O,(C), SO, (C), Pin,, Spin,,, Sp2,(C),
PSpan(C), Un(C), SUL(C), Un(C)/Z(Un(C)), On(R), SOu(R), ...

Equivalences:
{compact Lie groups} «— {complex semisimple Lie groups}

«—— {semisimple algebraic groups}

— {complex semisimple Lie algebras}
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A representation of G is an action of G on a vector space by linear transformations. The words
representation and G-module are used interchangably. A complex representation is a representation
where V' is a vector space over C. In order to distinguish the group element g from the linear
transformation of V' given by the action of g write V' (g) for the linear transformation. Then

V:G— GL(V)
and the statement that the representation is a group action means
V(zy) = V(z)V(y), for all z,y € G.

Unless otherwise stated we shall assume that all representations of G are Lie group homomorphisms.
A holomorphic representation is a representation in the category of complex Lie groups.

A representation is irreducible, or simple, if it has no subrepresentations (except 0 and itself).
In the case when V is a topological vector space then a subrepresentation is required to be a closed
subspace of V. The trivial G-module is the representation

1: G — C*=GL1(C)

g — 1
If V and W are G-modules the tensor product is the action of G on V ® W given by
g(v®w) = gv® gw, forveV,weW, gedG.

If V is a G-module the dual G-module to V' is the action of G on V* = Hom(V,C) (linear maps
:V — C) given by

(g)(v) =¢(g'v), for geG eV veV.

The maps

10V = V Vel = V
and

l@v — v 11 — W

are G-module isomorphisms for any V. The maps

VeV — 1 and 1 — VeVv*
pRv  —  P(v) 1 — > b;®p;

where {b;} is a basis of V and {3} is the dual basis in V* are G-module homomorphisms.
If V:G — GL(V) is a homomorphism of Lie groups then the differential of V' is a map

dV:g — End(V)

which satisfies
dV([z,y]) = [dV(z),dV (y)] = dV(z)dV (y) — dV (y)dV (z),

for x,y € g. A representation of a Lie algebra g, or g-module, is an action of g on a vector space
V by linear transformations, i.e. a linear map ¢: g — End(V') such that

V([z,y]) = [V(2),V(y)] =V(x)V(y) = V(y)V(z), forallz,yecyg,
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where V(z) is the linear transformation of V' determined by the action of x € g. The trivial
representation of g is the map
: g — C

r — 0

If V is a g-module, the dual g-module is the g-action on V* = Hom(V,C) given by
(xp)(v) = ¢(—zv), forzeg eV 5 veV.
If V and W are g-modules the tensor product of V and W is the g-action on V ® W given by
r(v@w)=zv@w+ v Tw, zegveVweW.

The definitions of the trivial, dual and tensor product g-modules are accounted for by the following
formulas:

d d o
al}tzozﬁe }t:OZO’
d, ixy-1 d _ix
%(6 ) }t:O:%Q ‘t:oZ*X’
d ix ix d t2 2 2v2
$(e Qe )}t:02£(1+tx+ 51 +- ) (1+tX + 51

d
:a(1®1+t(X®1+1®X)+-~)]t:0

=X®1+1X.

4. ‘)}t:O

Lie algebras

A Lie algebra over a field F' is a vector space g over F' with a bracket [,]: g X g — g which is
bilinear and satisfies

(1) [z, y] = [y, 2], for all 7,y € g,

(2) (The Jacobi identity) [z, [y, z]] + [z, [z, y]] + [y, [2, 2]] = 0, for all z,y, 2z € g.

The derived series of g is the sequence
DD DlgD---, where Dg = g and D*t'g = [D'g, D'g.
The lower central series of g is the sequence
ClgD>C?%D -, where C%g = g and C**lg = [g, Cg].

Let g be a Lie algebra.

) g is abelian if [g,g] = 0.
g is nilpotent if C™(g) = 0 for all sufficiently large n.
g is solvable if D™(g) = 0 for all sufficiently large n.
The radical rad(g) is the largest solvable ideal of g.

posable. g is reductive if g = Z(g) @ [g, g] with [g, g] semisimple.
(h) A Cartan subalgebra is a maximal abelian subalgebra of semisimple elements.
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Then
0 C nil(g) Crad(g) C g

where nil(g) is nilpotent, rad(g) is solvable, g/rad(g) is semisimple, rad(g)/nil(g) is abelian, and
nil(g) is nilpotent.

Ezample. [Bou, Chap. I, §4, Prop. 5] The following are equivalent:

a) g is reductive,

) The adjoint representation of g is semisimple,

) [g, 9] is a semisimple Lie algebra,

) g is the direct sum of a semisimple Lie algebra and a commutative Lie algebra.
)

generate.
(f) g has a faithful finite dimensional representation.
(g) rad(g) is the center of g.

Theorem 0.6. The finite dimensional simple Lie algebras over C are
(a) (Type Ap—1) s,(C), n > 2,
(b) (Type Bn) 502n+1((c)’ n=>1,
(C) (Type Cn) 5p2n((c)7 n Z 17
(d) (Type D,,) s02,(C), n > 4, and
(e) the five simple Lie algebras Eg, E7, Es, Fy, Ga.

Linear algebraic groups

A linear algebraic group is an afine algebraic variety G which is also a group such that multi-
plication and inversion are morphisms of algebraic varieties.
The following fundamental theorem is reason for the terminology linear algebraic group.

Theorem 0.8. If G is a linear algebraic group then there is an injective morphism of algebraic
groups i: G — GL,(F) for some n € Zxy.

The multiplicative group is the linear algebraic group G,, = F*.

A matrix x € M, (F) is

(a) semisimple if it is conjugate to a diagonal matrix,

(b) mnilpotent if all it eigenvalues are 0, or, equivalently, if " = 0 for some n € Z~,

(c) unipotent if all its eigenvalues are 1, or equivalently, if  — 1 is nilpotent.

Let G be an linear algebraic group and let i: G — GL,(F) be an injective homomorphism.
An element g € G is

(a) semisimple if i(g) is semisimple in GL,,(F),

(b) wnipotent if i(g) is unipotent in GL,,(F).
The resulting notions of semisimple and unipotent elements in G do not depend on the choice of
the imbedding i: G — GL,(C).

Theorem 0.9. (Jordan decomposition) Let G be a linear algebraic group and let g € G. Then
there exist unique gs, g, € G such that
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(a) gs is semisimple,
(b) g is unipotent,
(¢) 9= 9gsgu = Gugs-

Let G be a linear algebraic group.
(a) The radical R(G) is the unique maximal closed connected solvable normal subgroup of G.

(b) The wunipotent radical R, (G) is the unique maximal closed connected unipotent normal
subgroup of G.

(

(

c) G is semisimple if R(G) = 1.

d) G is reductive if R, (G) = 1. G is reductive if its Lie algebra is reductive.

(e) G is an (algebraic) torus if G is isomorphic to G, x --- G, (k factors) for some k € Z~,.
(f) A Borel subgroup of G is a maximal connected closed solvable subgroup of G°.

Let G be a linear algebraic group and let GV be the connected component of the identity in G.
Then

1CR,(G)CRGCG C@

where R, (G) is unipotent, R(G) is solvable, G is connected, G/G" is finite, G°/ R(G) is semisimple,
R(G)/R.(G) is a torus, and R, (G) is unipotent.

A linear algebraic group is simple if it has no proper closed connected normal subgroups. This
implies that proper normal subgroups are finite subgroups of the center.

Proposition 0.10. Let G be an algebraic group.
(a) If G is nilpotent then G = TU where T is a torus and U is unipotent.

(b) If G is connected reductive then G = |G, G|Z°, where [G, G] is semisimple and [G,G] N Z° is
finite.

(c) If[G, G| is semisimple then G is an almost direct product of simple groups, i.e. there are closed

A~

normal subgroups G1,...,Gy in G such that G = Gy -Gy -G and G; N (Gy---G; -Gy is
finite.

Ezample. If G = GL,,(C) then

[G.G] =SL,(C), 2°=C-1d, and [G,G]NZ°={\-1d|\" =1} 2 Z/nZ

Structure of a simple algebraic group

za(t) = e wa(t) = a(®)r—a(t)Talt),  ha(t) = wa(twa (1),

U= (zat) |a>0), T=(ha(t)) N=(wa(t)) B=TU W =N/T
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The Langlands decomposition of a parabolic is P = M AN where

Ay
Ay 0
M = , det(4;) =1,
0 Arq
Ay
a1ld
asld 0
A= , a; >0,
0 ap—11d
asld
Id
Id *
N = :
0 Id
Id

and there is a corresponding decomposition p = m @ a @ n at the Lie algebra level.

The Iwasawa decomposition of G is G = K AN where

K = a maximal compact subgroup of G,

ai
a9 0
A= R det(Al) =1,
0 ag—1
aeld
1
1 *
N = ,
0 1
1

and the corresponding Lie algebra decomposition is

t={reg|lr=ua}, p={zxeg|br=—xa},
g=tPp=tDadn, where a = a maximal abelian subspace of p,

n = the set of positive roots with respect to a.

The Cartan decomposition of G is G = KAK. The Bruhat decomposition of G is G = BW B.

Let g be a semsimple complex Lie algebra.

13

(a) There is an involutory semiautomorphism o of g (relative to complex conjugation) such that

00(Xa) = —Xa, oo(Hy) = —Hyg, for all @ € R.

Let G be a Chevalley group over C viewed as a (real) Lie group.
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(b) There is an (analytic) automorphism o of G such that
0x4(t) = x_o(—1), o(ha(t) = ha(t™1), foralla € R, t € C.
(¢) A maximal compact subgroup of G is
K={g9eG|alg) =g}
(d) K is semisimple and connected.

(e) The Iwasawa decomposition is G = BK.
(f) The Cartan decomposition is G = K AK where

A={he H | u(h) >0 forall pec L}.

Let © be a P.I.D., k the quotient field, and ©* the group of units of © (examples: © = Z, © = Ft],
© = Z,). If G is a Chevalley group over k let Gg be the subgroup of G with coordinates relative
to M in ©. Now let G be a semisimple Chevalley group over k.

(a) The Iwasawa decomposition is G = BK where

K = Go.
(b) The Cartan decomposition is K AT K where
At ={h e H |a(h) €O for all a« € R*}.

(c) If © is not a field (in particular if © = Z) then K is maximal in its commensurability class.
(d) If © =Z, and k = Q, the K is a maximal compact subgroup in the p-adic topology.
(e) If © is a local PID and p is its unique prime then
(1) The Iwahori subgroup I = U, HeUs is a subgroup of K.
(2) K= J Twl.
weWw
(3) Iwl = IwU, e with the last component determined uniquely mod U, p,.

Classification Theorems

{semisimple algebraic groups over C} &L {lattices and root systems}
{complex semisimple Lie groups} &L {semisimple algebraic groups over C}
connected reductive L {compact connected Lie groups}
algebraic groups over C P group
— U = maximal compact subgroup of G
semsimple — finite center
algebraic torus — geometric torus
{connected simply connected Lie groups} &L {finite dimensional real Lie algebras}
finite dimensional 1-1 Root systems:
complex simple Lie algebras 4 infinite families and 5 exceptionals
ﬁn}te dlm(?nsmnal & {12 infinite families and 23 exceptionals}
real simple Lie algebras

Functions, measures and distributions
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Let G be a locally compact Hausdorff topological group and let  be a Haar measure on G.
The support of a function f is

supp f={g € G | f(g) # 0}

If it exists, the convolution of functions f1: G — C and fo: G — C is the function (f1 * f2):G — C
given by

(i £)(6) = [ AR 9)dulo) (011)
Define an involution on functions f: G — C by

[ 9)=flg™h), for all g € G.

Useful norms on functions f: G — C are defined by

1] = /G F(@)lduo),

1712 = /G (@) Pdu(g),
1o = sup{|f(9)] | g € G},

If it exists, the inner product of functions f1: G — C and fo: G — C is

(et | A& Rl duta)
The left and right actions of G on functions f: G — C are defined by

(Lef)@) = flg™'w),  and  (Ryf)(a) = flzg), g.z€C.

Some space of functions are
CG = {functions f:G — C with finite support}.
?1(G) = {functions f:G — C with countable support and || f| = > gec 1f(g)] < oo}
LY(G, ) = {functions f:G — C such that || f|| = [, [f(9)ldu(g) < c0.}.
Let X be a topological space. A o-algebra is a collection of subsets of X which is closed under
countable unions and complements and contains the set X. A Borel set is a set in the smallest
o-algebra B containing all open sets of X. A Borel measure is a function u:B — [0, 00] which is

countably additive, i.e.
It (|_| Ai) => A,
i=1 i=1

for every disjoint collection of A; from B. A regular Borel measure is a Borel measure which satisfies
u(E) =sup{u(K) | K C E,for K compact} = inf{u(U) | E C U,for U open},

for all E € B. A complex Borel measure is a function p: B — C which is countably additive. The
total variation measure with respect to a complex Borel measure p is the measure |u| given by

Hl(E) = sup S (B, for E€E,
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where the sup is over all countable collections {F;} of disjoint sets of B such that | J, F; = E. A
reqular complex Borel measure is a Borel measure on X such that the total variation measure |u|
is regular. A measure X is absolutely continuous with respect to a measure p if u(E) = 0 implies
AE) =0.

Let p be a Haar measure on a locally compact group G. Under the map

{functions} — {measures}
f — [f(9)du(g)

the group algebra CG maps to measures v with finite support, £(G') maps to measures with count-
able support, and L'(G, ) maps to measures v which are absolutely continuous with respect to

1.
Let X be a locally compact Hausdorff topological space. Define

C.(X) = {continuous functions f: X — C with compact support}.

Then C.(X) is a normed vector space (not always complete) under the norm

[flloo = sup{|f(z)| | = € X}

The completion Cy(X) of C.(X) with respect to || - ||oc is a Banach space. A distribution is a
bounded linear functional u:C.(X) — C. The Riesz representation theorem says that with the
notation

u(f) = /X f@)dp(z),  for f € Cu(X),

the regular complex Borel measures on X are exactly the distributions on X. The norm ||u|| is the
norm of y as a linear functional p: C.(X) — C. Viewing p as a measure, ||u|| = |p|(X), where |u]
is the total variation measure of u.

The support supp p of a distribution p is the set of x € X such that for each neighborhood U
of z there is f € C.(X) such that supp(f) C U and pu(f) # 0. Define

E.(X) = {distributions p on X with compact support}.
If ¢: X — Y is a morphism of locally compact spaces then
¢x:Ee(X) = Ec(Y) s given by (¢.p)(f) = p(f 0 ¢),

for f € C.(Y).

Let G be a locally compact topological group. Define an involution on distributions by

pe(f) =p(f),  for feCe(G).

The convolution of distributions is defined by

/ F(g)d(p * p2)(g) = / / f(g192)dpa(g1)dpz(g2)-
G GJG
The left and right actions of G on distributions are given by

(Lyw)(f) = (Lys ). and  (Rgu)(f) = p(Ry 1), for all f € C(CG).
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Let X be a smooth manifold. The vector space C*°(X) is a topological vector space under
a suitable topology. A compactly supported distribution on X is a continuous linear functional
w:C*(X) — C. Let
E'(X) = {continuous linear functionals pu: C*=(X) — C}
and, for a compact subset K C X,
ENX, K) = {n € EY(X) | supp(p) C K}

If $: X — Y is a morphism of smooth manifolds then

¢ EN(X) = ENY)  isgivenby  (¢up)(f) = u(f 0 @)

Haar measures and the modular function

Let G be a locally compact Hausdorff topological group. A Haar measure on G is a linear
functional p: Cy(G) — C such that
(a) (continuity) u is continuous with respect to the topolgy on Cy(G) given by

[flleo = sup{|f(9)l [ g € G},

(b) (positivity) If f(g) € R>q for all g € G then u(f) € R,
(c) (left invariance) u(Lgyf) = p(f), for all g € G and f € Cy(G).

Theorem 0.12. (Existence and uniqueness of Haar measure) If G is a locally compact Hausdorff
topological group then G has a Haar measure and any two Haar measures are proportional.

Fix a (left) Haar measure g on G. A group is unimodular if p is also a right Haar measure on
G. The modular function is the function A: G — R>( given by

u(f) =A(g)u(Ryf),  forall f e Cy(G).

The fact that the image of A is in R is a consequence of the positivity condition in the definition
of Haar measure. There are several equivalent ways of defining the modular function

u(f7) = (A7) or /G £(9)dp(gh) = /G F@AMdug), or u(f) = pr(Af),

for all f € Cy(G), where pug is a right Haar measure on G. The group G is unimodular exactly
when A = 1.

Proposition 0.13. Finite groups, abelian groups, compact groups, semisimple Lie groups, reduc-
tive Lie groups, and nilpotent groups are all unimodular.

Proposition 0.14. (a) On a Lie group the Haar measure is given by

u(f) = /G fo,  forall f € Co(G),
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where w is the unique positive left invariant n form on G. (b) For a Lie group G the modular

function is given by
A(g) = | det Ady|, for all g € G.

Examples

(1) R, under addition. Haar measure is the usual Lebesgue measure dx on R.
(2) R>p, under multiplication. Haar measure is given by (1/z)dz.

(3) GL,(R) has Haar measure |det ) ’n H dx;j.

(4) The group B,, of upper triangular matrices in GL,,(R) has Haar measure ———— H dx;;.
Hl 1 | “| 1<i<j<n
This group is not unimodular unless n = 1

(5) A finite group has Haar measure p(f \G| Z f(g
geG

Vector spaces and linear transformations
A wvector space is a set V with an addition +: V' xV — V and a scalar multiplication CxV — V
such that addition makes V' into an abelian group and

c(vy + va) = cv1 + cvg, (c1 4+ c2)v = c1v + cov,

and
c1(cov) = (c102)v, lv=wv

for all ¢,c1,c0 € C and v,v1,v2 € V. A linear transformation from a vector space X to a vector
space Y is a map T: X — Y such that T(civ1 + cova) = 1T (v1) + 2T (v32), for all ¢1,c5 € C and
v1,v9 € V. The morphisms in the category of vector spaces are linear transformations.

A topological vector space is a vector space V with a topology such that addition and scalar
multiplication are continuous maps. The morphisms in the category of topological vector spaces
are continuous linear transformations. A set C' C V is convez if tx + (1 —t)y € C, for all x,y € C,

€ [0,1]. A topological vector space V is locally convez if it has a basis of nieghborhoods of 0
consisting convex sets.

A normed linear space is a vector space V with a norm || - ||: V' — R>q such that

(@) [lz+yll < [lzll + [lyl], for z,y,€ V,

(b) ||| = |ef[|z[], for « € C, z €V,

(¢) ||z|| = 0 implies x = 0.

A linear transformation 7: X — Y between normed vector spaces X and Y is an isometry if
|Tz|| = ||z| for all z € X. The norm of a linear transformation 7: X — Y is

1T = sup{[|Tz| | v € X, [l«]| <1}. (0.15)

A linear transformation 7" is bounded if ||T'|| < co. If X and Y are normed linear spaces such that
points are closed then linear transformation 7: X — Y is continuous if and only if it is bounded
(reference??)

A Banach space is a normed linear space which is complete with respect to the metric defined
by d(z,y) = ||z — y||. A Hilbert space is a vector space V with an inner product (,):V xV — C
such that for all ¢, ¢y, co € C and v, v1,v2,v3 € V,

(a) (v1,v2) = (v2,v1),
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(b) (c1v1 + cavz, v3)c1 (v, v3) 4 c2(v2, v3),
(¢) (v,v) =0onlyifv=0,
(d) V is a Banach space with respect to the norm given by ||v[|? = (v, v).
If H is a Hilbert space the adjoint T of a linear transformation T: H — H is the linear transfor-

mation defined by
<Th1, hg) = <h1,T*h2>, for all hi,he € H, (016)

and T is unitary if (T'xq, Txe) = (x1,22) for all z1, 29 € H.

Algebras

An algebra is a vector space A with an associative multiplication A x A which satisfies the
distributive laws, i.e. such that A is a ring. A Banach algebra is a Banach space A with a
multiplication such that A is an algebra and

llaraz| < |la1l||az], for all aq,aq € A.

A *-algebra is a Banach algebra with an involution x: A — A such that

An element a in a x-algebra is hermitian, or self adjoint, if a* = a. A C*-algebra is a x-algebra A
such that
la*al| = |lal|?, for all a € A.

An idempotented algebra is an algebra A with a set of idempotents £ such that

(1) For each pair e, ey € € there is an ey € € such that ege; = ejeg = e1 and eges = ezey = eg,
and

(2) For each a € A there is an e € £ such that ae = ea = a. A von-Neumann algebra is an algebra
A of operators on a Hilbert space H such that
(a) A is closed under taking adjoints,
(b) A coincides with its bicommutant.

Ezamples
1. The algebra B(H) of bounded linear operators on a Hilbert space H with the operator norm
(77?7) and involution given by adjoint (?7?) is a Banach algebra.

2. Let G be a locally compact Hausdorff topological group G and let ;1 be a Haar measure on G.
The vector space

L*(G,p) ={f:G = C ||| fll2 < o0}

is a Hilbert space under the operations defined in (777).
3. Let V be a vector space. Then End(V) is an algebra.

Representations

A representation of a group G, or G-module, is an action of G on a vector space V by au-
tomorphisms (invertible linear transformations). A representation of an algebra A, or A-module,
is an action of A on a vector space V' by endomorphisms (linear transformations). A morphism
T:Vi — V3 of A-modules is a linear transformation such that T'(av) = aT'(v), for all @ € A and
v € V. An A-module M is simple, or irreducible, if it has no submodules except 0 and itself.
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A representation of a topological group G, or G-module, is an action of G on a topological
vector space V' by automorphisms (continuous invertible linear transformations) such that the map

GxV — V
(g,v) +— gv

is continuous. When dealing with representations of topological groups all submodules are assumed
to be closed subspaces.
A *representation of a x-algebra A is an action of A on a Hilbert space H by bounded
operators such that
(avi,v9) = (v1,a"ve), for all vi,ve €V, a € A.

A s-representation of A on H is nondegenerate if AV = {av | a € A,v € V'} is dense in V.

A unitary representation of a topological group G, or G-module, is an action of G on a Hilbert
space V' by automorphisms (unitary continuous invertible linear transformations) such that the
action G x V — V is a continuous map.

An admissible representation of an idempotented algebra (A, ) is an action of A on a vector
space V' by linear transformations such that

(a) V= U ev,

ecé
(b) each eV is finite dimensional.

A representation of an idempotented algebra is smooth if it satisfies (a).

Group algebras

(1) Let G be a group. Then CG is the algebra with basis G and multiplication forced by the
multiplication in G and the distributive law. A representation of G on a vector space V
extends uniquely to a representation of CG on V' and this induces an equivalence of categories
between the representations of G and the representations of CG.

(2) Let G be a locally compact topological group and fix a Haar measure 1 on G. Let

LG p) = {f: G—ClIfl= [ 1f@lduto) < oo} |

Then L'(G, 1) is a *-algebra under the operations defined in (???). Any unitary representation
of G on a Hilbert space H extends uniquely to a representation of L*(G, i) on H by the formula

fo= /G f@)gvdulg).  feLNGop).g <G,

and this induces an equivalence of categories between the unitary representations of G and
the nondegenerate *-representations of L!(G, ).
(3) Let G be a locally compact topological group. and fix a Haar measure p on G. Let

&. = {distributions on G with compact support}

Then &, is a ?77-algebra under the operations defined in (777). Any representation of the
topological group GG on a complete locally convex vector space V extends uniquely to a repre-
sentation of £ on V by the formula

pv = /vadu(g% feé,ged,
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and this induces an equivalence of categories between the representations of G on a complete
locally convex vector space V' and the representations of £.(G) on a complete locally convex
vector space V.

Let G be a totally disconnected locally compact unimodular group and fix a Haar measure p
on G. Let

C.(G) = {locally constant compactly supprted functions f: G — C}.

Then C.(G) is a idempotented algebra with with the operations in (?77) and with idempotents

given by
1
€K = ——XK> for open compact subgroups K C G,
1(K)

where x g denotes the characteristic function of the subgroup K. Any smooth representation of
G extends uniquely to a smooth representation of C.(G) on V by the formula in (??7) and this
induces an equivalence of categories between the smooth representations of G and the smooth
representations of C.(G) (see Bump Prop. 3.4.3 and Prop. 3.4.4). This correspondence takes
admissible representations for G (see Bump p. 425) to admissible representations for C.(G).

Let G be a Lie group. Let

C2°(G) = {compactly supported smooth functions on G}.

Then C(G) is a ?7?77-algebra under the operations defined in (??7). Any representation of
the topological group G on a complete locally convex vector space V extends uniquely to a
representation of C2°(G) on V' by the formula in (777) and this induces an equivalence of
categories between the representations of G on a complete locally convex vector space V and
the representations of C2°(G) on a complete locally convex vector space V.

Let G be a reductive Lie group and let K be a maximal compact subgroup of G. Let

E(G,K) ™ = {1 € £.(G) | supp(p) € K and p is left and right K finite}.

Then £(G, K)fi" is a idempotented algebra with with the operations in (???) and with idem-
potents given by

1
€K = ——=XK> for open compact subgroups K C G,
(K)
where x denotes the characteristic function of the subgroup K. Any (g, K)-module extends
uniquely to a smooth representation of £(G, K)i" on V by the formula in (???) and this induces
an equivalence of categories between the (g, K)-modules and the smooth representations of
E(G, K)f" (see Bump Prop. 3.4.8). This correspondence takes admissible modules for G' (see
Bump p. 280 and p. 193) to admissible modules for £(G, K)fi". By Knapp and Vogan Cor.
1.7.1
E(G, K)™ = C(K)™ @y, Ulge)-

Let G be a compact Lie group. Let
C(G)in = {f € C®(G) | f is G finite}.

Then C(G)f" is an idempotented algebra with idempotents corresponding to the identity on
a finite sum of blocks @, G* @ a.
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Theorem 0.17. The category of representations of G in a Hilbert space V' and the category of
smooth representations of C(G)" are equivalent.

(8) Let g be a Lie algebra. The enveloping algebra Ug of g is the associative algebra with 1 given
by
Generators: z € g, and
Relations: zy — yx = [z,y], for all x € g.

The functor
U: {Lie algebras} —— {associative algebras}
g — Ug

is the left adjoint of the functor

L: {associative algebras} —— {Lie algebras}

(A7 ) — (A7 [7])

where (A, [,]) is the Lie algebra given by the vector space A with the bracket [,]: A® A — C defined
by

[a1, as] = ajas — aszay, for all ay,as € A.

This means that
Homype(g, LA) = Hom,(Ug, A),  for all associative algebras A. (0.18)

Let t: g — Ug be the map given by «(z) = x. Then (777) is equivalent to the following universal
property satisfied by Ug:
If p: g — A is a map from g to an associative algebra A such that

o([z,y]) = d(x)p(y) — ¢(y)¢(x), forall z,y,€ g,

then there exists an algebra homomorphism q;: Ug — A such that gg oL =¢.
A representation of g on a vector space V extends uniquely to a representation of Ug on V' and

this induces an equivalence of categories between the representations of g and the representations
of Ug.

Proposition 0.19. Let G be a Lie group and let g = C Qg gr be the complexification of the Lie
algebra gr = Lie(G) of G. Let £(G,{1}) be the algebra of distributions yi: C*°(G) — C on G such
that supp(p) = {1}. Then

Ug — &(G{1})

x — iy

d X
where i (f) = 5 f()],_,, forzeg,

is an isomorphism of algebras.

Compact groups
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Let G be a compact Lie group and let y be a Haar measure on G. Assume that p is normalized
so that u(G) = 1. The algebra C.(G) (under convolution) of continuous complex valued functions
on G with compact support is the same as the algebra C'(G) of continuous functions on G. The
vector space C'(G) is a G-module with G-action given by

(zf)(9) = f(a™'g), forzeG, feC(Q).
The group G acts on C(G) in two ways,
(Lof)(x) = flg~ @),  and  (Ref)(z) = f(zg),
and these two actions commute with each other.

Suppose that V is a representation of G in a complete locally convex vector space. Let
(,):V®V — C be an inner product on V and define a new innner product (,):V ® V. — C by

(o1, v2) = / (gun, gu)dulg),  viv € V.
G

Under the inner product (,) the representation V' is unitary. If V' is a finite dimensional represen-
tation of G,

Vi G — M,(C) then Vi G — M, (C)
g — Vi), g — Vig=V(g "),
is another finite dimensional representation of G.
Lemma 0.20. Every finite dimensional representation of a compact group is unitary and

completely decomposable.

The representation C'(G) is an example of an infinite dimensional representation of G which is not
unitary.

If V is a representation of G in a complete locally convex normed vector space V then the
representation V' can be extended to be a representation of the algebra (under convolution) of
continuous functions C(G) on G by

fu= / f(@)gvdp(g),  feCG)veV (0.21)
G

The complete locally convex assumption on V' is necessary to define the integral in (777).
If V is a representation of G define

Vin — {4 € V | the G-module generated by v is finite dimensional}.

The vector space C(G)*P of representative functions consists of all functions f: G — C given
by
f(g> - <U7gw>7

for some vectors v, w in a finite dimensional representation of G.

Lemma 0.22. Let G be a compact group. Then C(G)" = C(G)*eP.
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Proof. Let f € C(G)™P. Let v,w be vectors in a finite dimensional representation V' such that
f(g) = (v,gw) for all g € G. Let {v1,...,vr} be an orthonormal basis of V' and let W be the vector
space of linear combinations of the functions f; = (v;,gw), 1 < j < k. Since v can be wrritten as
a linear combinattion of the v;, the function f can be written as a linear combination of the f;
and so f € W. Foreach1 <7<k

k
(2fi)(9) = fiz™g) = (vi, 2™ gw) = (2vi, gw) chv],gw > cifil9)
j=1

for some constants c¢; € C. So the G-module generated by f is contained in the finite dimensional
representation W. So f € C(G)". So C(G)™P C C(G)f»

Let f € C(G)™ and let fi = f, fa,..., fr be an orthonormal basis of the finite dimensional
representation W generated by f. Then

k
flo)=(g"f) Zf],g YA fi(1),  where ¢; = (fj, 971 fu)

Define a new finite dimensional representation W of G' which has orthonormal basis {w, ..., W}
and G action given by

k
ng,g Ufyw;, 1<i<k

It is straightforward to check that gi(g2w) = (g192)w, for all g1,92 € G. Since (w;, gw;) =
<fj7g_1fi>7

9) = () cjwj, gwn) where ¢; = f;(1)

and so f € C(G)™P. So C(G)i» C C(G)™P. &

Theorem 0.23. (Peter-Weyl) Let G be a compact Lie group. Then
(a) C(G)™P is dense in C(G), under the topology defined by the sup norm.
(b) Vin is dense in V for all representations V of G.
(c) G is linear, i.e. there is an injective map i: G — GL,,(C) for some n.
(d) Let G be an index set for the finite dimensional representations of G. For each finite
dimensional irreducible representation G*, A € G, fix an orthonormal basis wr1<i<
dx} of G*. Define M;; € C(G)*" by

M} (9) = (v}, gv}),  g€G.

Then
@Aeé GG — c(G)rep

vi)‘ & U])-‘ — Mi)]\
is an isomorphism of G x G-modules.
(e) The map
Dice Ma, (C) — C(G)™P
B —
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is an isomorphism of algebras.

and (a), (b), (c), (d) and (e) are all equivalent.

Proof. (b) = (a) is immediate.

(a) = (b): Note that C(G)8V C VIin, Since C(G)f" is dense in C(G), the closure of C(G)i"V

contains C(G)V. Let f1,..., fo be a sequence of functions in C'(G) such that u(f;) = 1 and the

sequence approaches the ¢ function at 1, i.e. the function §; which has supp(d1) = {1}. Ifv € V

then the sequence fiv, fou,... approaches lv = v and so v is in the closure of C(G)V. So the

closure of C(G)V is V. So V" is dense in V.

The following method of making this precise is taken more or less from Brocker and tom Dieck.
An operator K:C(G) — C(G) is compact if, for every bounded B C C(G), every sequence

(fn) € K(B) converges in K(B). An operator K:C(G) — C(G) is symmetric if (K f1, fo) =

(f1, K f2) for all fi, fo € C(G).

Proposition 0.24. See Briocker-tom Dieck Theorem (2.6) If K:C(G) — C(G) is a compact
symmetric operator then

(a) |K|| =sup{||Kf||l | || f]l <1} or —||K]|| is an eigenvalue of K,

(b) All eigenspaces of K are finite dimensional,

(c) @, C(G)x is dense in C(G).

Proof. (b) The reason eigenspaces are finite dimensional: Let x1, x5, ... be an orthonormal basis.
Then Kx; = Ax;. So
1Kz — Kaj||* = [N[l|lzy — 2;]* = 2| Al

and this never goes to zero.

(c) If not then U+ = (O, C(G)a)* is nonzero. Then K:U' — U? is a compact symmetric
operator. So this operator has a finite dimensional eigenspace. This is a contradiction. So U+ = 0.

So @, C(G), is dense in C(G). 11

Take K to be the operator given by convolution by an approximation ¢ to the ¢ function.
Then K f is close to f,

K f = flloo = ‘/ f(g))du(g)‘ S/Geé(g)du(g)—
=[10(1) = 1]l <,

and K f can be approximated by the action of ¢ on finite dimensional subspaces.
The symmetric condition on K translates to

o(g) = d(g™)

and the compactness condition translates to

/ 6(9)dp(g) =
G
12 = / £(9)T(g)du / F@)F@)dulg) < If1%.

Note that
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So the L? and sup norms compare. For norms of operators ||6 * f|loo < [|]loolf]loo-

(c) = (a): If 1: G — GL,(C) is an injection then the algebra C(G)*& generated (under pointwise
multiplication) by the functions ¢;; and z;;, where

tij(9) = 1(9)ij, and  15(9) = ti;(g), for g € G,

is contained in C(G)f". This subalgebra separates points of G' and is closed under pointwise
multiplication, and conjugation and so, by the Stone-Weierstrass theorem, is dense in C(G). So
C(G)i" is dense in C(G).

(a) = (c): The elements of C(G) distinguish the points of G and so the functions in C(G)"P
distinguish the points of G. For each g € G fix a function f, such that (gf,)(1) = fy(g™") # f4(1)
and let V;; be the finite dimensional representation of G generated by f,. By choosing g; & K;_1
we can find a sequence g1, g, . . . of elements of G such that

KiDKyD..., where K; =ker(Vy, ©--- D V,),

and K; # K;11. Since each K; is a closed subgroup of GG, and G is compact there is a finite n such
that K,, = {1}. Then W =V, @& ---V,, is a finite dimensional representation of G with trivial
kernel. So there is an injective map from G into GL(W).

(d) By construction this an algebra isomorphism. After all the algebra multiplication is designed
to extend the G x G module structure, and this is a G x G module homomorphism since

((z @)} @) (9) = (@0} @ yv})) (9)
= (zv} ® gyvj»‘
= (v} ® x_lgyv;‘
= M;;(z" " gy)
= (L. Ry M3)(9).

Note that

Tr(Ei)‘j) = <vf‘,v]>-‘> = 0.

Consider the L? norm on C(G) .

1712 = /G £(9) @) dulg)
— /G f(@)f (g™ )dulg)  where f*(g) = (g D)
= (f* 1)),
More generally, (f1, f2)2 = (f1 * f2)(1). Now

T C(G)yr — C
fo—fQ)
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is a trace on C(G)™P, i.e. 7(f1 * f2) = 7(fo = f1) for all fi, fo € C(G)™P. In fact thsi is trace of
the action of C(G)"™P on itself:

(f) = /G f(9)ghl, du(g)
— / F(9)1dn(g)
G
- /G F)du(g) = FOIR(G) = £(1).
Now consider the action of @, Mg, (C) on itself. Then, if f = (f*) then

T(f) = Z daTr(f).

So
15 = (f + f)@) = 7(f + 1) = 7(FA () = D T (S ()
AeG
Note that Tr(Idy) = dy and 7(Idy) =777.

Fourier analysis for compact groups

A function f:G — C is

(a) representative if there is a finite dimensional representation V' of G and vectors v, w € V
such that f(g) = (v, gw) for all g € G.

(b) square integrable if

1712 = /G £(9)T@dulg) < oo.

(¢) smooth if all derivatives of f exist.
(d) real analytic if f has a power series expansion at every point.

C(G)™P = {representative functions f: G — C},
L*(G) = {square integrable functions f: G — C},
C*°(G) = {smooth functions f:G — C},
C¥(@G) = {real analytic functions f: G — C},
We have a map
H M,, (C) — functions f: G — C.
AeG
The set G has a norm || - ||: G — Rsg. For (f*) e [1ee Ma, (C) define
(a) (f) is finite if all but a finite number of the blocks f* in (f*) are 0,
(b) (f*) is square summable if
L2
> a7 < oo

\e@

(¢) (f*) is rapidly decreasing if, for all k € Zso, {|A|*[| /| | AinG} is bounded,
(d) (f*) is exponentially decreasing if, for some K € Ry, {KIM|| £} | X € hatG} is bounded.
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Under the map

{functions f:G — C} — [Lca Ma, (C),
C(G)re» — {finite (f*)}
L%(G, 1) — {square summable (f*)}
C> (@) — {rapidly decreasing (f*)}
C*(@) +—— {exponentially decreasing ( f o)

The space C(g)™P is dense in C(G) and C(G) C L*(G). In fact the sup norm on C(G) is related
to the L? norm on L{G) and C(G) is dense in L?*(G).

Abelian Lie groups

Theorem 0.25.
(a) If G is a connected abelian Lie group then

G = (SHF x R,
for some n € Z~g, 0 <k <n.
(b) If G is a compact abelian Lie group then

G = (SHYr X Z)miZ X Z)maZ X - - X L) myZ,

for some k € Z>o, mi,...,my € Lxo.

Proof. (Sketch) (a)
0— K —g22G — 0, where K = ker(exp).

The map exp is surjective since the image contains a set of generators of G. The group K is
discrete since exp is a local bijection. So K = Z* since it is a discrete subgroup of a vector space.
So
G =~ g/K = R"/ZF = (R*/ZF) x R"7F,
(b) Let T=G". Then 0 - T — G — G/T — 0 and G/T is discrete and compact since 7" is open
in G. Thus, by part (a), T = (SY)*, and G/T is finite. So
G = (SY* x (Z/miZ) x (Z)maZ) x - - x (Z/mZ).

Proposition 0.26.
(a) The finite dimensional irreducible representations of Z/rZ are

X Z/rZ — C*

eZﬂ'ik/r N 627rik/\/r ) 0<A<r—-1L

(b) The finite dimensional irreducible representations of S! are

X Z/rz — C*
e27if }/_> o2 , A€ 7.

(c) The finite dimensional irreducible representations of Z are
2. 7 — C*

2TIAT ’

zeC* AeC.

r — 2z'=e
(d) The finite dimensional irreducible representations of R are
R C*
N o . z€ECHAEC.

r — 2zl=e

Weights and roots
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Let G be a compact connected group. A mazimal torus of G is a maximal connected subgroup
of G isomorphic to (S1)* for some positive integer k.

Fix a maximal torus 7" in G. The group T is a maximal connected abelian subgroup of G.
The Weyl group is

W = Nea(T)/T, where Ng(T) ={g € G | gTg~ ' =T}.

The Weyl group W acts on I' by conjugation. The map

G/TxT -2 @G

(9T,t)  +— (gtg™")

is surjective and Card(¢~1(g)) = |W| for any g € G. It follows from this that
(a) Every element g € G is in some maximal torus.
(b) Any two maximal tori in G are conjugate.

Thus, maximal tori exist, are unique up to conjugacy, and cover the group G.
Let P be an index set for the irreducible representations of T'. Since the irreducible represen-
tations of S! are indexed by Z, P = ZF. The set P is called the weight lattice of G.

IfAeP  then X7 —C*,

denotes the corresponding irreducible representation of 1. The W-action on 7" induces a W-action
on P via

XM t) = XMNw™1t), forallt € T.

A representation V' of G is a representation of T', by restriction, and, as a T-module,

V:@VA, where Vy={veV |tv= X t)v foralltecT.}
AEP

The vector space Vy is the X isotypic component of the T-module V. The W-action on T gives
dim(Vy) = dim(Vi,»), for all w € W and X € P.

The vector space V) is the A-weight space of V. A weight vector of weight A in V is a vector v in
Vi.

Let G be a compact connected Lie group and let u = Lie(G). The group G acts on u by
the adjoint representation. Extend the adjoint representation to be a representation of G on the
complex vector space

gc=ud®iu=CqxRu.

By 777, this representation extends to a representation of the complex algebraic group G¢ which
is the complexification of G. Since G is compact, the adjoint representation of G¢ on g¢, and thus
the adjoint representation of gc¢ on itself, is completely decomposable. This shows that gc is a
complex semisimple Lie algebra.

The adjoint representation gc of G has a weight decomposition

gc = @gaa

aeP
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and the root system of G is the set
R={aeP|a#0,g9,#0}

of nonzero weights of the adjoint representation. The roots are the elements of R. Set h = go.

Then
gc=hEP <@ ga>

a€R

is the decomposition of g¢ into the Cartan subalgebra b and the root spaces go. (Note that the
usual notation is hr = b, he = h @ ih, where § is a Cartan subalgebra of g, i.e. a maximal abelian
subspace of g. Also gg = hc since b is maximal abelian in g. Also h = t ® it where t is the Lie
algebra of the maximal torus T of GG, and the maximal abelian subalgebra in g. Don’t forget to
think of
X T — C*
t —  XM¢)

oh ()

A C

h —
h +—— A(h)
)

Proposition 0.27.
(?) The Weyl group W' is generated by s,, o € R. The action of W on h* is generated by the
transformations

So: bH* — h* _
A — A=\ where a (o, a)’

and (,):h* x h* — R is a nondegenerate symmtric bilinear form.

(1) If o« is a root then —« is a root and +« are the only multiples of o« which are root. (The thing
that makes this work is that the root spaces are pure imaginary.)

(2) If v is a root then dim(g,) = 1.

(3) The only connected compact Lie groups with dim(7T") = 1 are SO3(R) and the two fold simply
connected cover of SO3(R).

Proof. (1) Suppose that « is a root and that x € g,.

X* T — C* X T — C*

h a(h) and e s ealh) — p—a(h)

since a(h) € iR for h € t. Then, for all h € t,

[hz] = [h, %] = [h,x] = a(h)T = —a(h)z,

and so T € g_,. Thus g_, # 0 and —« is a root. Note that [z, Z] € b since it has weight 0.

(2) Consider X*:T — C*. Then T, = ker X is closed in T" and is of codimension 1. Let T3
be the connected component of the identity in T, and let Z, = Zg(T3) be the centralizer of T} in
U (this is connected). Then

C®g Lie(Z,) =t@it® (@ﬁh(i;rgl g,a) =ho keeazgka-
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Now

So T/T? is a maximal torus of Z, /T and dimT /TS = 1. Then
C ®p Lie(Za) = bho & CH, & (EB Qka> :
kEZ
If X, € go then [X,, X _,] = AH, and X # 0 since CH is maximal abelian in
Lie(Z,/T2) = CH @ (@ g;m> :
keZ

Now consider the action of H, on

C}{EB 6}) Hka Gac}(a-
kEZ>O

Then . .
Tr(H) = XTr([XQ,X_a]) = XTr(aanadX_a —ady_,adx,) = 0.

But this implies

0=0+ Y dim(gra)ka(Hq) — o(Ha).
k€Z>o

S0 gka = 0 for k£ > 1 and go = CX,. So span{X,, X _,, H,} is a 3 dimensional subalgebra of g.
If U is a compact connected Lie group such that dim7T" = 1 then U has Lie algebra

g =span{X,, X o, Hpo} =ud®iu.
Then the Weyl group of U is {1, s,} = Sy where s, comes from conjugation by an element of Z,

and so s, leaves T, fixed.
So the Weyl group of G contains all the s,, a € R. 1

Ezample. There are only two compact connected groups of dimension 3,

SO(3) and Spin(3).

Proof. G acts on g and this gives an imbedding Ad: G — SO(g) (with respect to an Ad invariant
form on g). This is an immersion since everything is connected. So G is a cover of SO(3). 1

Weyl’s integral formula
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Theorem 0.28. Let G be a compact connected Lie group. Let T be a maximal torus of G and
let W be the Weyl group. Let R be the set of roots. Then

W[ sz = [ TIx"0=1) [ (lotg™)dga.

aER

Proof. First note that the map G/T x T'— G given by (¢7T,t) — gt, can be used to define a (left)
G invariant measure on G /T so that

[ fayda= [ slgnyinagr)
G G/TXT
and thus, for y € T',
/ flgyg")dg = / flgtyt™ g~ ")dtd(gT)
G G/TxT
— [ flovg ardaT) = | Flovg (o)
G/TxT G/T
Then the map ¢: G/T x T — G given by (¢T,t) — gtg~" yields
Wi [ fordg= [ flatg™ )V graded(aT), (b)
G G/TXT

where Jgp 1) is the determinant of the differential at (¢7',¢) of the map ¢. By translation, Jy7 ) is
the same as the determinant of the differential at the identity, (7', e), of the map Lg;-1,-10po L,

G/TxT — G/TxT — G — G
(2T,y) +— (gaT,ty) +— (go)ty(gz)~" — (gt~ g ") (ga)ty(gz)".

Since (gt~ 1g71)(gx)ty(gz) ! = gt laxtyz—1g! this differential is

g/boh — g
(X,Y) — Ady(Ad;—1(X)+Y — X).

So Jig1,) is the determinant of the linear transformation of g given by

Adgp(t7") —id 0
Adg(g)< a/b( 0) g/b id;,)’

where the second factor is a block 2 x 2 matrix with respect to the decomposition g/h @& b and
Adg/y is the adjoint action of T restricted to the subspace g/h in g. The element t~! acts on the
root space g, by the value X*(¢~!) where X“: T — C* is the character of T" associated to the root
a. Since G is unimodular det(Ady) = 1, and since g/b = P c g ga;

Jern = [J(X*¢) -1 = [ (xX*@) - 1), (c)

a€ER a€R
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where the last equality follows from the fact that if « is a root then —« is also a root. The theorem
follows by combining (a), (b) and (c). 1

It follows from this theorem that, if x and n are class functions on G then

— 1 B N R
/Gx(g)n(g)dgzWLE(X“(t)—l)LX(gtg )n(gtg=1)dg dt

1 a —a ()

= Ta>o(X (t) — D)(X~(t) — 1)x(t)n(t)dt
1 o —a -« @

- |W|/TQI>IO<X I2(t) - X~0/2(8))(X~2(t) — X2 () (D)t
1

- W a>0(apX)(t)(apn)(t)dt

Weyl’s character formula

The adjoint representation g is a unitary representation of G. So the Weyl group W acts on
bh by unitary operators. So W acts on t by orthogonal matrices. Identify t and t* = Hom(t,R) =
{a:t — R} with the inner product,

For a root o define 5
a’ = <a7o;> and H,={zet]|alx)=0}

Then, the reflection s, in the hyperplane H,, which comes from Z, = Zg(T3)/T5, is

Saq: t — t

A= A=\ aY)a.
PICTUREOFHY PERPLANEANDREFLECTION.

So
(a) W acts on t, and

(b) t— U H, =R"\ <U Ha) is a union of chambers (these are the connected compo-

a€R a€R
nents).

PICTUREOFCHAMBERSANDW EIGHTLATTICE

The Weyl group W permutes these chambers and if we fix a choice of a chamber C' then we can
identify the chambers are wC, w € C. (See Brocker-tom Dieck V (2.3iv) and the Claim at the

bottom of p. 193.
PICTUREOFCHAMBERSLABELEDBY wC

Let
R(T) = representation ring of T’

= Grothendieck ring of representations of GG, and

R(G) = representation ring of G.
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This means that R(G) = span-{[G*] | A € G} with
(a) addition given by [G*] + [G*] = [G* @ G*], and
(b) multiplication given by [G}][G*] = [G* ® G*].

Thus, in R(G) it makes sense to write

Z ma[G] instead of @(GA)EB"”.

AeG AeG

Define
CP =span-{e* | A € P} with multiplication elet = e*#,

for A\, p € P. Then
CP = R(T), since R(T) = span-{[X*] | A € P}.

The action of W on R(T) (see (777)) induces an action of W on CP given by

wer = e, forwe W, e P.

Note that
e(w) = dgzt(w) =+1

since the action of w on § is by an orthogonal matrix. The vector spaces of symmetric and
alternating functions are

ClPI"W ={feCP|wf=fforalwe W},  and
A={feCP|wf==c(w)f for all w e W},

respectively. Note that C[P]" is a ring but A is only a vector space.
Define B
Pt =pPnC andPT+ = PNC.

The set P is the set of dominant weights. Every W-orbit on P contains a unique element of P+
and so the set of monomial symmetric functions

my = Z e, \e Pt
YEW A

forms a basis of C[P]". Define
a, = Z e(w)e™™,

weW

for 4 € P. Then
(a) wa, =e(w)ay, for allw € W and all p € P,
(b) a, =0, if p € H, for some «, and
(c) {au | € PT+} is a basis of A.
The fundamental weights wy, . ..,w, in t are defined by

<wi>a;‘/> = 0ij,
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where H,; are the walls of C'. Write
a>0 if (A\,a) >0 for all \ € C.

Then

n
P:Zwi
i=1
1
-3

a>0

is the element of t defined by

Lemma 0.29. The map
is a bijection, and

is a vector space isomorphism.

Proof. Since
w(a,f) = (wap)(wf) = e(w)a,f,
the second map is well defined. Let

g:nge’\ e A.

AEP

Then, for a positive root «,

—g=509=Y_ gre"?,
AEP

g= Z g)\(eA — SSO‘/\).

A
(X, ) >0

and so

Since
6)\ _ esa)\ — (ekfa ea e/\—(,\ﬂv)a)(ea _ 1)7

the element g is divsible by e* — 1. Thus, since all the factors in the product are coprime in CP,
g is divisible by

H(eo‘ —1)=e" l—I(ea/2 —e"Y2) = ¢Pa,,

a>0 a>0

where the last equality follows from the fact that a,, is divisible by the product [, (e*/? —e~%/2)
and these two expressions have the same top monomial, e”. Since g € A is divisible by a, the map
CP — A is invertible. I
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Define

so that the {x* | A € P*} are the basis of C[P]" obtained by taking the inverse image of the basis
{axtp | A € PT} of A. Extend these functions to all of U by setting

Matg™h) = X 2), for all g € U.

Since [, X*(t)X*(t)dt = 6, for A\, u € P,

| ansoltia e = 5,1

and thus, by (777),

Sap = / xMg)x*(9)dyg, for all \, u € PT.
a

Thus the x*, A € P+ are an orthonormal basis of the set of class functions in C(G)*P. If U? is an
irreducible rpresentation of U then

d
Trpa(9) = Y Mi(g),  where  Mj = (v}, gv}),
i=1

]

for an orthonormal basis v{, ..., v} of U*. Then

/ Try () Tron (9)dg = da
G

and so the functions Try» are another orthonormal basis of the set of class functions in C(G)"P.
It follows that x* = £Trya.

It only remains to check that the sign is positive to show that the x* are the irreducible
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characters of U. This follows from the following computation.

XM(1) = lim xA ()

t—0
L S )X Oe)
~ 0 > wew E(w)Xwe(etr)
_ hm ZMEW E(w)e<w(>‘+p)7tp>
t—0 ZweW g(w)e(wﬂvtp)
t()\—&—p,w*lp)
= lim Z“’EW e(we

t—0 Z ewg( )et<p7w*1p>

Clp( et(A+p)
t—0 a,(etr)
H (Xa/Q _ X—a/Q)(et(/\-l-p)
= lim a>0
=0 [[hso(X 072 = X—a/2)(efP)
. Ha>0 (et(k+p,o</2> _ €—t</\+p,a/2))
t—0 Ha>0 (€t<p7a/2> — 6_t<p1a/2>)

_ 5 sinh(t(X + p, @ /2))
= H Sinh(£(p, a/2))

_ H )\+p,a/2

a>0 (P, a/2
\/
a>0 p,G{

Theorem 0.30. Let U be a compact connected Lie group and let T' be a maximal torus and L

the corresponding lattice.

(a) The irreducible representations of U are indexed by dominant integral weights A\ € Lt underr
the corresopndence

irreducible representations =1 Pt
VA +——  highest weight of V*

(b) The character of V* is
N Dwew e(w)eH)
ZwGW 5(w)ewp

where p € Pt is defined by (p,a)) =1 for 1 <i <n and e(w) = det(w).
(c) The dimension of V* is

X

[Lso(A+p,0")
Ha>o<pa av)

Ao S e,

PEPA

dy =

(d)

where Py is the set of all paths obtained by acting on p) by root operators.
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Remark. By part (d)
dim((V?*),) = # paths in Py which end at p.

(For the path model some copying can be done from the Barcelona abstract.)

Remark. Point out that R(T") = ZL, where L is the lattice corresponding to 7. Also point out
that R(U) = R(T)Y = (ZL)W.



