
REPRESENTATION THEORY

EMILY PETERS

Abstract. Notes from Arun Ram’s 2008 course at the University

of Melbourne.

3. Week 3

Question. Why is (q + q−1) the q-analogue of 2?

Answer. If q = 1 then this is 2. More generally, we can define

[n] =
qn − 1

q − 1
= 1 + q + · · · qn−1

And we can also define

[n]! = [n][n − 1] · · · [2][1] and

[

n

k

]

=
[n]!

[k]![n − k]!

Note that (perhaps surprisingly) this last quantity is a genuine poly-
nomial, not just a quotient of polynomials.

In analogy to the binomial theorem, we have: If xy = qyx then we

have (x + y)n =
∑

[

n

k

]

xnyn−k.

3.1. Heading towards Artin-Wedderburn Theorem.

Theorem 3.1. Let A be a finite dimensional algebra such that the trace
of the regular representation is nondegenerate. Then A is isomorphic
to a direct sum of matrix algebras. More precisely, A =

⊕

λ∈Â Mdλ
(C).
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We picture this as

RHS =











∗ }dλ 0
∗ }dµ

0 ∗











.

⊕

λ∈Â Mdλ
(C) has basis {Eλ

i,j|λ ∈ Â, 1 ≤ i, j ≤ dλ}. Eλ
i,j has 1 in ith

row, jth column of λth block and all other entries 0. Meanwhile A

has basis B = {b}. In practice, Artin-Wedderburn says we can change
basis from B to Eλ

i,j . How do we do this?

Idea of Proof. A is an A-module (A acts on A by left multiplication).

Maschke says we can decompose A into simple modules:

A =
⊕

λ∈Â

(Aλ)nλ

where Â is an index set for the simples and nλ is the number of times
Aλ appears in A.

We have a map

ρλ : A → End(Aλ) = Mdλ
(C)

a 7→ ρλ(a)

where ρλ(a) is the action of a on Aλ.

Md(C) has Cd = span {e1, . . . , ed}, where ei is a column vector with a
1 in the ith row, as a module, and Md(C) = (Cd)d.

Homework. Cd is a simple Md(C) module! It’s the only one!

⊕

λ∈Â Mdλ
(C) has simple modules Aλ = Cdλ = span

{

eλ
i |1 ≤ i ≤ dλ

}

with E
µ
i,je

λ
r = δµ,λδj,re

λ
i .

Back to Artin-Wedderburn: To find the isomorphism from A to
⊕

λ∈Â Mdλ
(C),

we need to change basis from B = {b} to {Eλ
i,j|λ ∈ Â, 1 ≤ i, j ≤ dλ}.

We found Â and the dλ by decomposing A as an A-module (using
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Maschke). We have

ρλ : A → End(Aλ) = Mdλ
(C) so ρ :=

⊕

λ∈Â

ρλ : A →
⊕

λ∈Â

Mdλ
(C)

a 7→ ρλ(a) a 7→





ρλ(a)
ρµ(a)

ρν(a)





If b ∈ B then

ρ(b) =
∑

λ∈Â

dλ
∑

i,j=1

ρλ(b)i,jE
λ
i,j.

But ρ is injective (since A acts faithfully on itself by left multiplicaiton),
so we identify b with ρ(b):

b =
∑

λ∈Â

dλ
∑

i,j=1

ρλ(b)i,jE
λ
i,j.

Now we want

Eλ
i,j =

∑

b∈B

??b

in order to prove this is an isomorphism.

(Fourier Inversion – noncommutative)

(1) Eλ
i,j =

∑

b∈B

ρλ(b∗)j,ib,

where {b∗} is the dual basis to B with respect to 〈, 〉 defined by 〈x, y〉 =
t(xy), where t is the trace of the regular representation.

Why does this work? The point is that (1) does not depend on the

choice of B. And (1) is trivial if B = {Eλ
i,j|λ ∈ Â, 1 ≤ i, j ≤ dλ}.

Homework. Work this out and make this proof more formal

�
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3.2. Towers of algebras and some families of algebras. For all k

we have

TLk →֒ TLk+1

b 7→ b

...

...

which are injective algebras homomorphisms. Then

TL1 ⊂ TL2 ⊂ TL3 ⊂ · · ·

is a “tower of algebras.”

Definition. The braid group Bk is the group of braids on k strands
with product b1b2 = b1 stacked on top of b2.

Theorem 3.2. (Artin) The braid group Bk is presented by generators

Ti = · · · · · · , 1 ≤ i ≤ k − 1 with relations TiTi+1Ti = Ti+1TiTi+1.

Definition. Let G be a group. The group algebra of G is the vector
space CG with basis G with product determined by the product in G

(and distributive laws). Sometimes this product is called convolution.

Definition. A G-module is a CG module.

Definition. The symmetric group Sk is given by generators s1, . . . , sk

and relations sisi+1si = si+1sisi+1 and si = s−1

i .

Now we have two more towers of algebras: CB1 ⊂ CB2 ⊂ CB3 ⊂ · · ·
and CS1 ⊂ CS2 ⊂ CS3 ⊂ · · · .

We also have a surjective map Bk ։ Sk given by

Ti = · · · · · · 7→ si = · · · · · ·

Definition. The Iwahori-Hecke algebra Hk is the quotient of CBk by
Ti = T−1

i + (q − q−1), for 1 ≤ i ≤ k − 1.

Remark. If q = 1, then Hk = CSk. The Gram matrix of the form 〈, 〉
for Hk is a matrix of polynomials. If Artin-Wedderburn works for Sk

(ie, the hypothesis is satisfied) then it works for Hk – if the polynomial
in q which is the determinant of the Gram matrix is non-zero for q = 1
then it’s non-zero as a polynomial.
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Let ei = Ti − q in Hk. (Recall that in TLk, ei = · · · · · · and

e2
i = [2]ei, eiei±1ei = ei.)

Homework. Assuming that Ti = T−1

i + (q − q−1), as it is in Hk, then
TiTi+1Ti = Ti+1TiTi+1 is equivalent to eiei+ei − ei+1eiei+1 = ei − ei+1

and Ti = T−1

i + (q + q−1) is equivalent to e2
i = [2]ei.

Proposition 3.3. Hk is presented by generators e1, . . . , ek−1 and rela-
tions e2

i = [2]ei and eiei+ei − ei+1eiei+1 = ei − ei+1. So

Hk ։ TLk

ei 7→ ei

is a surjective homomorphism.

So the picture thus far is:

CBk

��
��

CSk Hk
// //

q=1

oo o/ o/ o/ TLk

Definition. Tw0
=

Remark. T 2
w0

is a full rotation of all strands. By drawing pictures, it’s
not hard to convince yourself that T 2

w0
TiT

2
w0

= Ti, so T 2
w0

∈ Z(Bk).

Theorem 3.4. (Arnold or Artin, Garside-Deligne) Z(Bk) is generated
by T 2

w0
.

Definition. Let yε∨i = , where the ith strand is pulled

across and then under the others.

Then T 2
w0

= yε∨
1 yε∨

2 · · · yε∨
k and yε∨i yε∨j = yε∨j yε∨i . So, C[yε∨

1 , . . . , yε∨
k ] ⊂

CBk.
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The game for studying the towers is to, inductively, find eigenvalues
(and eigenvectors) for T 2

w0
and yǫ∨

1 , . . . , yǫ∨
k as operators on modules.

3.3. Tools for next week.

Definition (Pullback functors). Let φ : A → R be an algebra homo-
morphism. Then we get

φ∗ : R-modules → A-modules

M 7→ M

where A acts on M by a · m = φ(a)m for a ∈ A.

If φ : A →֒ R (A is a subalgebra of R), then φ∗(M) is M with A-action
from A ⊂ R (a forgetful functor). We write ResR

A(M) (an A-module).

Definition (Adjoint functors). Say F : {R-modules} → {A-modules}
is a functor. The adjoint functor is F∨ : {A-modules} → {R-modules}
determined by HomR(F∨M, N) = HomA(M, FN).

Example. If F = ResR
A then F∨ = IndR

A.

Given some tower, for instance H1 ⊂ H2 ⊂ H3 ⊂ · · · , Res moves us
down the tower and Ind modes us up the tower.


