Ze&fmxﬁl ()/pr %4‘/51, dl«wé /keﬁ/f«‘/g’ﬁé/’p\ /7. Jo. 20 @

1) Wewt! 53 QQM ?%/j%@/g///
Vioyndeys s /u/gﬂ«tfvm%// Rlsa.

cmf lek

7/5pr’ %f/ zzl,f%f% %{?/’/54[2‘]
%\ /W i 5%9 ///7,... Zéf SUVA %{

%»i%,%%w'%@// - ¥ R /Z‘*’,ég_),

Lesmma Fh f e Aot Lt g [/’/édfgfj

Dhon Diore it peéc /M/c/ bot 4 4
Su W

£ C-plf

74 fE

/17)%4%27/ Vst af Dhe. Lewmpa S
dempe z foayratt-ta, 1 LT
Do Dheve 22/575 BEL seh Bal
%/ﬁ)f/’@,
ke ples R s not ot néymz_ﬂ,/% Llpse s
CPH dvs ol fctty m REZT
£V ﬁ%jL o é‘fz}/faz‘/ﬁéfﬁg Ao (V7T




%—i@ Z F= aptadrt "f“{ézf’ééﬁﬁj
ﬁﬁbh %éﬁ& KZ/{SZ ﬁ;-”}@/ M’ﬁb
eqlpi) onl b /ot sved Bud

J[;P/'/ﬂv' ' '/&f”-

%JS .% Yo %ﬁyﬂ éu:, ﬁw/ﬁwr_@,&/ M@u\—

H SRIL mnd pEC suph At ////;0
lees f////fﬂ,

. 7= lt-y,) LX) E-p ) o g ) )
= (=5) LG ) p) - o tihiE)
Wil N R b S A b,
Proosps§ R Nobe thnt PiHFER ad 77 ¢ R

This  theoyom #s tallod - Aaé’w%éd/

%ﬁo/ﬁ/&"/\ ‘”J[‘ ﬂ// M A

LY wos food o by L Do £, afby il
Goonvss stodod T et s feus, m%/ ;fmf//é/,‘;
17 fm?/-g I

5% ALY Et (oS L M‘é’f‘-’@‘/[éﬁ ‘?Zném}é/m 4/;;7/ =

Mot Doy Foni— Foppitoara nibd Tiorpeon ofWod
dldh a_/ B o s s



/D
W 4) s &£ /iﬁéfﬂt'éﬁ,//j é/pféz/

Y
Z?’_a__ﬂ[’ Lol Dok it =~ B8 fé’av/{f. 24 T g/f;’; /]

@M@@ algf:\w/ L os ﬁ[[jlybf//\
_{p__{é__wi /) _ff aé‘f;o /fém Dove wpistc Jo ER.

[6) T p ) EREE) ned ooy p 5 5led Tt
Thae euists wéR fj@é Pl /7 0.

[4) Aesine p) 2ty K% Xt 2y P
nwsdd ad a,y,_?“D.

o ¥ ERE o 440 Fe
=, /fﬁ)a A—,,,g“j/kg Whese g/z/: 4 Juli RN N
/ Lal CWE L
fma /f“/;/ M /LCJM\ e
X— 5 Z g 'K__“MZ/!} = /

5% !i[:tS'ZLS Aé[{);c; svcb ﬁuaj
s:t7n/mm7ﬁgggj) e _—q,tjmjn///m))

Thotss, a’j Bolevio’s Fane.. [5’%7% ﬂféﬂa-/%wil
Hte ppl5ts w 2/P oy aly coch Hint /’/4/ )0
2.
& Focdd [ 3, 7op. LW §.2. Byryrise 2]

Lt flt)e dTHT soch Hut 7440
T Arow 7/37& pudstc rfﬁm Sk MQ

i eed and 2% /23, vy /&Z’}/>/y/tﬁj/
Use [Evsyeise (] oed W&wfzf;/ﬁu' M%[ﬁ)uj 70;3
CKIV 44 ne. [ Heenl] £ stoon, £ /s aﬁ%/;s/“jﬁ clogel .



fﬁw @&M FL, EL’&/&';&/]
LZ afL, afO M”—‘-‘Z;o_

ﬁ%s@ﬁﬁ i’ffpa sk M r‘ﬁé/d_/
Hiar Thoe zuishs 2AL SUQA,M/Z/-’—V sen)

/4%21“/: Ja)-r".

|6) ZF F bl e ¢/FT nct ‘4?//50 ey
and 2, EC, wih //@)%O
Hien Thae erists 242;/%} Sl 7ot

e s i)



THE FUNDAMENTAL THEOREM OF ALGEBRA
AND LINEAR ALGEBRA

HARM DERKSEN

1. INTRODUCTION

The first widely accepted proof of the Fundamental Theorem of Algebra was pub-
lished by Gaufl in 1799 in his Ph.D. thesis, although to current standards this proof has
gaps. Argand gave a proof (with only small gaps) in 1814 which was based on a flawed
proof of d’Alembert of 1746. Many more proofs followed, including three more proofs
by Gauf. For a more about the history of the Fundamental Theorem of Algebra, see
[5, 6].

Proofs roughly can be divided up in three categories (see [3] for a collection of
proofs). First there are the topological proofs (see [1, 8]). These proofs are based on
topological considerations such as the winding number of a curve in R2 around 0. Gauf}’
original proof might fit in this category as well. Then there are analytical proofs (see
[9]) which are related to Liouville’s result that an entire non-constant function on C
is unbounded. Finally there are the algebraic proofs (see [4, 10]). These proofs only
use the facts that every odd polynomial with real coefficients has a real root, and that
every complex number has a square root. The deeper reasons why these proves work
can be understood in terms of Galois Theory.

For a linear algebra course, the Fundamental Theorem of Algebra is needed, so it
is therefore desireable to have a proof of it in terms of linear algebra. In this paper
we will prove that every square matrix with complex coefficients has an eigenvector.
This is equivalent to the Fundamental Theorem of Algebra. In fact we will prove the
slightly stronger result that any number of commuting square matrices with complex
entries will have a common eigenvector. The proof is entirely within the framework
of linear algebra, and unlike most other algebraic proves of the Fundamental Theorem
of Algebra, it does not require Galois Theory or splitting fields. Another (but longer)
proof using linear algebra can be found in [7].

2. PRELIMINARIES

For the proof we will only use the following elementary properties of the real and
the complex numbers.

Lemma 1. Every polynomial of odd degree with real coefficients has a zero.
1



2 HARM DERKSEN

Proof. Tt is enough to prove that a monic polynomial
Plz)=z"+az" '+ +a,.

with a1,...,a, € R and n odd has a zero. Put a = |a1| + - - + |a,| + 1 then it is easy
to see that P(a) > 0 and P(—a) < 0. By the Intermediate Value Theorem there exists
A in the interval [—a, a] such that P()\) = 0. O

Lemma 2. Every complex number has a square root.

Proof. Suppose that o + #i € C with o, 8 € R. Put v = /a? + 2, then

([ e

3. THE PROOF OF THE FUNDAMENTAL THEOREM OF ALGEBRA

For a field K, consider the following statement:

P(K,d,r): Suppose that Ay, As, ..., A, are commuting endomorphisms of a K-vector
space V' of dimension n such that d does not divide n. Then A1, A,,..., A, have a
common eigenvector.

Lemma 3. If P(K,d, 1) holds, then P(K,d,r) holds for all r > 1.

Proof. We prove the lemma by induction on 7.

Assume that P(K,d,r — 1) holds. Suppose that Ay, As,. .., A, are commuting en-
domorphisms of a K-vector space V of dimension n such that d does not divide n.
By induction on n we prove that A;, A,,..., A, have a common eigenvector. The case
n =1 is trivial.

Because P(K,d, 1) holds, A, has an eigenvalue A € K. Let W be the kernel, and Z
be the image of A, — Al. Note also that W and Z are stable under Ay, 4,,..., A, ;.

Suppose that W # V. Because dimW + dim Z = dim V, d does not divide dim W
or d does not divide dim Z. Since dimW < n and dim Z < n we may assume by
induction on n that A,,..., A, already have a common eigenvector in W or in Z.

Suppose that W = V. Because P(K, d,7—1) holds, we may assume that A;,..., 4, ;
have a common eigenvector on V, say v. Since A,v = Av, v is a common eigenvector

OfAl,...,Ar. O

Lemma 4. P(R,2,7) holds for allr, i.e., if A, ..., A, are commuting endomorphisms
on an odd dimensional R-vector space then they have a common eigenvector.

Proof. By Lemma 3 it is enough to show P(R,2,1). If A is an endomorphism of an
odd dimensional R-vector space then det(z/ — A4) is an odd polynomial which has a
zero A by Lemma 1. Now A is a real eigenvalue of A. O
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Lemma 5. P(C,2,1) holds, i.e., every endomorphism of a C-vector space of odd di-
mension has an eigenvector.

Proof. Suppose that A : C* — C" is a C-linear map with n odd. Put V = Herm,(C),
the set of n x n Hermitian matrices. One can check that we can define commuting
endomorphisms Ly, Ly of V' by

AB + BA

Li(B) = ———

and .
AB — BA

Here A' is the transpose of the complex conjugate of the matrix A.

Note that dimg V' = n? is odd. Now P(R,2,2) (see Lemma 4) implies that L, and
Ls have a common eigenvector B, say L;(B) = AB and Ly(B) = uB with A\, p € R.
But then we have

(Ll -+ ZLQ)(B) = AR ()\ + ,(LZ)B

and any nonzero column vector of B gives an eigenvector for the matrix A. O

Lemma 6. P(C, 2% 1) holds for all k and r.

Proof. We will prove the lemma by induction on k. The case & = 1 follows from
Lemma 5 and Lemma 3. Assume that P(C,2",r) holds for I < k. We will prove
P(C, 2% 7). It suffices to prove P(C, 2%, 1) by Lemma 3. Suppose that 4 : C* — C” is
linear and n is divisible by 2¥=! but not by 2. Let V = Skew, (C) be the set of n x n
skew-symmetric matrices with complex entries. Define two commuting endomorphisms
Ly, Ly of V by

Li(B)=AB — BA*
and

Ly(B) = ABA®.
Note that dim V' = n(n — 1)/2 and 25~! does not divide dim V. By P(C,2x1,2), I,
and L, have a common eigenvector B, say Ly(B) = AB and Ly(B) = uB with ApeC.
But then we have
uB = ABA* = A(AB — A\B)

S0

(A= XA —u)B=0
Let v be a nonzero column of B. Then we get

(A* = XA — ulv = 0.

By Lemma 3 there is a 6 € C such that 6> = A* + 4. We can write (22 — Az — p) =
(z — a)(z — B) where o= (A +6)/2 and 8 = (A — §)/2. We have

(A-al)w=0
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where w = (A — fI)v. If w = 0 then v is an eigenvector of A with eigenvalue 3. If
w # 0 then w is an eigenvector of A with eigenvalue a. ]

Theorem 7. If A, A,, ..., A, are commuting endomorphisms of a finite dimensional
nonzero C-vector space V' then they have a common eigenvector.

Proof. Let n be the dimension of V. There exists a positive integer k such that 2* does
not divide n. Since P(C, 2%,7) holds by Lemma 6, the theorem follows. O

Corollary 8 (Fundamental Theorem of Algebra). If P(z) 4s a non-constant polyno-
mial with complex coefficients, then there exists an A € C such that P(A) = 0.

Proof. 1t suffices to prove this for monic polynomials. Suppose that
Plz) =z"+a12" ! +apz™ % 4+ - + q,,.
Then P(z) = det(z] — A) where A is the companion matrix

00 0 =—a,
0 1 0 —ap_s
00 -1 —-a

Theorem 7 implies that A has a complex eigenvalue A € C. Then we get P(A\) =0. O

As for all algebraic proofs of the Fundamental Theorem of Algebra, the statement can
be generalized to more general fields. An ordered field R is a field with the following
properties: For every o € R\ {0}, either & or —a is a square. Also, the sum of any two
squares must be a square. On such an ordered field there is a total ordering defined
by o < 8 if and only if § — « is a square. If & € R is a square, then we define /&
as the unique 8 € R such that 82 = a and  is a square itself. The element —1 is
not a square in an ordered field. We can construct a field C by adjoining an element
i with 2 = —1 to R in a similar fashion as C is constructed from R. It can be shown
(just as for C) that any element of C has a square root. If we assume R is an ordered
field such that every polynomial of odd degree has a zero, then the above prove goes
through with R replaced by R and C replaced by C. In particular C is algebraically
closed.
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