
Chapter 0. SETS AND FUNCTIONS

The basic building blocks of mathematics are sets and functions. Functions allow us to compare sets.

§1T. Sets

(0.1.1) Definition.

• A set is a collection of objects which are called elements. We write s ∈ S if s is an element of a
set S.

• The emptyset, ∅, is the set with no elements.

• A subset T of a set S is a set T such that if t ∈ T then t ∈ S. We write T ⊆ S.

• Two sets S and T are equal if S ⊆ T and T ⊆ S. We write T = S.

• Let S and T be sets. The union of S and T is the set S ∪ T of all u such that u ∈ S or u ∈ T .

S ∪ T = {u | u ∈ S or u ∈ T }.

• Let S and T be sets. The intersection of S and T is the set S ∩ T of all u such that u ∈ S and
u ∈ T .

S ∩ T = {u | u ∈ S and u ∈ T }.

• Let S and T be sets. S and T are disjoint if S ∩ T = ∅.

• Let S and T be sets. S is a proper subset of T if S ⊆ T and S &= T . We write S ⊂
"=

T .

• The product of two sets S and T is the set of all ordered pairs (s, t) where s ∈ S and t ∈ T ,

S × T = {(s, t) | s ∈ S, t ∈ T }.

More generally, given sets S1, . . . , Sn, the product
∏

i Si is the set of all tuples (s1, . . . , sn) such
that si ∈ Si.

• The elements of a set S are indexed by the elements of a set I if each element of S is labeled by
a unique element of I. If i ∈ I, si denotes the corresponding element of S.

We will use the following notations:

ZII = {. . . ,−2,−1, 0, 1, 2, . . .} is the set of integers.

IN = {0, 1, 2, . . .} is the set of nonnegative integers.

IP = {1, 2, . . .} is the set of positive integers.

[1, n] = {1, 2, . . . , n} for each n ∈IP.

Q


= {p/q | p ∈ZII , q ∈IP} is the set of rational numbers.

IR is the set of real numbers.

C is the set of complex numbers.

Example. Let S, T, U, and V be the sets S = {1, 2}, U = {1, 2}, T = {1, 2, 3}, and V = {2, 3}. Then

a) S ⊆ U ⊆ T.

b) U &⊆ V.

c) U ∪ V = T.

d) U ∩ V = {2}.

e) S × T = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)}.

HW: Show that the emptyset is a subset of every set.
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§2T. Functions

(2.2.1) Definition.

• Let S and T be sets. A map or function f : S → T is given by associating to each element s ∈ S
a unique element f(s) ∈ T .

f : S → T
s *→ f(s).

• Often in mathematics one will try to define a function without being exactly sure if what has been
defined really is a function. In order to check that a function is well defined one must check that
a) For every s ∈ S, f(s) ∈ T .
b) If s1 = s2 then f(s1) = f(s2).

• Let S and T be sets. Two functions f : S → T and g: S → T are equal if

f(s) = g(s), for all s ∈ S.

We write f = g.

• Let S and T be sets and let f : S → T be a function. Let R ⊆ S. The restriction of f to R is the
function f |R given by

f |R: R → T
r *→ f(r).

• A map f : S → T is injective or one-to-one if it satisfies

If s1, s2 ∈ S and f(s1) = f(s2) then s1 = s2.

• A map f : S → T is surjective or onto if for each element t ∈ T there exists s ∈ S such that
f(s) = t.

• A map is bijective if it is both injective and surjective.

Examples. It is useful to visualize a function f : S → T as a graph with edges
(

s, f(s)
)

connecting elements
of s ∈ S and f(s) ∈ T . With this idea in mind we have the following.

TS S TTS

S TTSTS

d)   injective function f)   bijective functione)   surjective function

a)   function b)   not a function c)   not a function
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In these pictures we are viewing the elements of the left column as elements of the set S and the elements of
the right column as the elements of a set T . In order to be a function the graph must have exactly one edge
adjacent to each element of S. A function is injective if there is at most one edge adjacent to each point of
T . A function is surjective if there is at least one edge adjacent to each point of T .

Composition of Functions

(2.2.2) Definition.

• Let f : S → T and g: T → U be functions. The composition of f and g is the function g ◦ f given
by

(g ◦ f): S → U
s *→ g

(

f(s)
)

.

• Let S be a set. The identity map on a set S is the map given by

ιS : S → S
s *→ s.

• Let f : S → T be a function. An inverse function to f is a function f−1: T → S such that

f ◦ f−1 = ιT and

f−1 ◦ f = ιS

where ιT and ιS are the identity functions on T and S respectively.

If we visualize functions as graphs, the identity function ιS looks something like

S S

The   function ι
S

In the pictures below, if the left graph is a pictorial representation of a function f : S → T then the inverse
function to f , f−1: T → S, is represented by the graph on the right.

S T

f

ST

f -1
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(2.2.3) Proposition. Let f : S → T be a function. An inverse function to f exists if and only if f is
bijective.

Pictorially, the graph, below left, represents a function g: S → T which is not bijective. The inverse
function to g does not exist in this case; the graph of a possible candidate (below right) is not the graph of
a function.

TS

 g

T S

 not a function

Operations

(2.2.4) Definition.

• An operation on a set S is a map ◦: S×S → S. If s1, s2 ∈ S we write s1 ◦s2 instead of ◦
(

(s1, s2)
)

.

• An operation on a set S is associative if, for all s1, s2, s3 ∈ S,

(s1 ◦ s2) ◦ s3 = s1 ◦ (s2 ◦ s3).

• An operation on a set S is commutative if, for all s1, s2 ∈ S,

s1 ◦ s2 = s2 ◦ s1.

Example. The map +: ZII × ZII→ZII given by

+: ZII × ZII → ZII
(i, j) *→ i + j

is an operation. This operation is both commutative and associative.
The map −: ZII × ZII→ZII given by

−: ZII × ZII → ZII
(i, j) *→ i − j

is an operation. This operation is noncommutative and nonassociative.

Relations

(2.2.5) Definition.

• A relation on a set S is a subset of S × S. We write s1 ∼ s2 if the pair (s1, s2) is in this subset.

• A relation is reflexive if, for each s ∈ S,
s ∼ s.

4



• A relation is symmetric if
s1 ∼ s2 ⇐⇒ s2 ∼ s1.

• A relation is transitive if
s1 ∼ s2 and s2 ∼ s3 =⇒ s1 ∼ s3.

• An equivalence relation on a set S is a relation on S that is reflexive, symmetric and transitive.

Example. Let S be the set {1, 2, 6}. Then:
a) R1{(1, 1), (2, 6), (6, 1)} is a relation on S.
b) R1 is not reflexive, not symmetric, and not transitive.
c) R2 = {(1, 1), (2, 6), (6, 1), (2, 1)} is a relation on S.
d) R2 is transitive but not symmetric and not reflexive.

(2.2.6) Definition.

• Let S be a set and let ∼ be an equivalence relation on S. The equivalence class of an element
s ∈ S is the set

[s] = {t ∈ S | t ∼ s}.

• A partition of a set S is a collection of subsets Sα such that:
a) If s ∈ S then s ∈ Sα for some Sα.
b) If Sα ∩ Sβ &= ∅ then Sα = Sβ .

(2.2.7) Proposition.
a) Let S be a set and let ∼ be an equivalence relation on S. The set of equivalence classes of the

relation ∼ is a partition of S.
b) Let S be a set and let {Sα} be a partition of S. Then the relation defined by

s ∼ t if s and t are in the same Sα

is an equivalence relation on S.

Proposition 2.2.7 shows that the concepts of an equivalence relation on S and of a partition of S are essentially
the same. Each equivalence relation on S determines a partition on S and vice versa.

Example. Let S = {1, 2, 3, . . . , 10}. Let ∼ be the equivalence relation determined by

1 ∼ 5, 2 ∼ 3, 9 ∼ 10,

1 ∼ 7, 5 ∼ 8, 10 ∼ 4.

Since we are requiring that ∼ is an equivalence relation, we are assuming that we have all the other relations
we need so that ∼ is reflexive, symmetric, and transitive:

1 ∼ 1, 2 ∼ 2, . . . , 10 ∼ 10,

5 ∼ 7, 7 ∼ 8, 7 ∼ 5, 5 ∼ 1, . . . .

Then the equivalence classes are given by

[1] = [5] = [7] = [8] = {1, 5, 7, 8}

[2] = [3] = {2, 3}

[6] = {6}

[4] = [9] = [10] = {4, 9, 10},

and the sets
S1 = {1, 5, 7, 8}, S2 = {2, 3}, S3 = {6}, and S4 = {4, 9, 10}

form a partition of S.

Cardinality of Sets
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How big is a set?

(2.2.8) Definition.

• Let S and T be sets. S and T have the same cardinality, Card(S) = Card(T ), if there is a
bijective map from S to T .

Notation: Let S be a set. Then

Card(S) =

{

0 if S = ∅;
n if Card(S) = Card

(

{1, 2, . . . , b}
)

;
∞ otherwise.

Note: Even if Card(S) = ∞ and Card(T ) = ∞, one may have that Card(S) &= Card(T ).

(2.2.9) Definition.

• A set S is finite if Card(S) &= ∞.

• A set S is infinite if S is not finite.

• A set S is countable if either S is finite or if Card(S) = Card(IP).

• A set S is countably infinite if S is countable and not finite.

• A set S is uncountable if S is not countable.

HW: Show that Card(IR) = ∞ and Card(Q


) = ∞ and that Card(IR) &= Card(Q


).
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