Chapter 0. SETS AND FUNCTIONS

The basic building blocks of mathematics are sets and functions. Functions allow us to compare sets.

§1T. Sets

(0.1.1) Definition.

e A set is a collection of objects which are called elements. We write s € S if s is an element of a
set S.

e The emptyset, 0, is the set with no elements.

e A subset T of a set S is a set T such that if t € T then t € S. We write T'C S.

e Two sets S and T are equal if S CT and T'C S. We write T = S.

e Let S and T be sets. The union of S and T is the set SUT of all u such that u € S or u € T.

SUT ={u|ueSorueT}.

e Let S and T be sets. The intersection of S and T is the set SNT of all u such that v € S and
uel.
SNT={ulueSandueT}.
e Let S and T be sets. S and T are disjoint if SNT = ().
e Let S and T be sets. S is a proper subset of T if S C T and S # T. We write S;T.
e The product of two sets S and T is the set of all ordered pairs (s,t) where s € S and t € T,

SxT=A{(s,t)|se S teT}.
More generally, given sets Si,...,Sp, the product [][,.S; is the set of all tuples (s1,...,s,) such

that s; € S;.

e The elements of a set S are indexed by the elements of a set I if each element of S is labeled by
a unique element of I. If ¢ € I, s; denotes the corresponding element of S.

We will use the following notations:

Z={...,-2,-1,0,1,2,...} is the set of integers.
N={0,1,2,...} is the set of nonnegative integers.
P=1{1,2,...} is the set of positive integers.

1,n]={1,2,...,n} for each n €P.
Q={p/q|p€L,qeP} is the set of rational numbers.
IR is the set of real numbers.

C is the set of complex numbers.

Ezample. Let S,T,U, and V be the sets S = {1,2}, U = {1,2}, T ={1,2,3}, and V = {2,3}. Then

a) SCUCT. d)UNV={2}.
byU Z V. e) SxT=1{(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)}.
c)UUV =T.

HW: Show that the emptyset is a subset of every set.
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§2T. Functions

(2.2.1) Definition.

e Let S and T be sets. A map or function f: S — T is given by associating to each element s € S
a unique element f(s) € T
fr s - T
s = f(s).

Often in mathematics one will try to define a function without being exactly sure if what has been
defined really is a function. In order to check that a function is well defined one must check that

a) For every s € S, f(s) € T.

b) If s1 = so then f(s1) = f(s2).
Let S and T be sets. Two functions f: S — T and g: S — T are equal if

f(s) =g(s), forall seS.

We write f = g.
e Let S and T be sets and let f: S — T be a function. Let R C S. The restriction of f to R is the
function f|g given by
flet R — T
ro= o fr).

A map f:S — T is injective or one-to-one if it satisfies

If s1,s9 € S and f(s1) = f(s2) then s1 = sa.

e A map f:S — T is surjective or onto if for each element ¢ € T there exists s € S such that
fls) =t

e A map is bijective if it is both injective and surjective.

Ezamples. 1t is useful to visualize a function f: S — T as a graph with edges (s, f (s)) connecting elements
of s € S and f(s) € T. With this idea in mind we have the following.
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In these pictures we are viewing the elements of the left column as elements of the set S and the elements of
the right column as the elements of a set T'. In order to be a function the graph must have exactly one edge
adjacent to each element of S. A function is injective if there is at most one edge adjacent to each point of
T. A function is surjective if there is at least one edge adjacent to each point of T'.

Composition of Functions

(2.2.2) Definition.
o Let f:S — T and ¢g: T — U be functions. The composition of f and g is the function g o f given

by
(gof): 8§ — U
s = g(f(s))
e Let S be a set. The identity map on a set S is the map given by
tg: S — S
5 = s

e Let f: S — T be a function. An inverse function to f is a function f~1:7 — S such that
foft=ur and
fhof =us

where tp and tg are the identity functions on T and S respectively.

If we visualize functions as graphs, the identity function tg looks something like

L — e J

The function l

In the pictures below, if the left graph is a pictorial representation of a function f: S — T then the inverse
function to f, f~1:T — 9, is represented by the graph on the right.



(2.2.3) Proposition. Let f:S — T be a function. An inverse function to f exists if and only if f is
bijective.

Pictorially, the graph, below left, represents a function g: S — T which is not bijective. The inverse
function to g does not exist in this case; the graph of a possible candidate (below right) is not the graph of

a function.
.\. ./.
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g not a function
Operations

(2.2.4) Definition.
e An operation on a set S isa map o: S xS — S. If s1,s9 € S we write s; 0 s9 instead of 0((31, 32))

e An operation on a set S is associative if, for all s, s2, 83 € S,
(s1082) 083 =81 0(s2083).
e An operation on a set S is commutative if, for all s1,s5 € S,

81 082 = 8§20 87.

Ezample. The map +:Z x Z—Z given by

+: I xT — yA
(i,7) +— i+

is an operation. This operation is both commutative and associative.

The map —: & x Z—Z given by
— I xZ — V1

(t,j) = i—j

is an operation. This operation is noncommutative and nonassociative.
Relations

(2.2.5) Definition.
e A relation on a set S is a subset of S x S. We write s; ~ s if the pair (s, s2) is in this subset.

o A relation is reflexive if, for each s € S,



e A relation is symmetric if
§1 ~ 89 <— S ~ S1.

o A relation is transitive if
§1 ~ Sg and So ~ S3 => S1 ~ S3.

e An equivalence relation on a set S is a relation on S that is reflexive, symmetric and transitive.

Ezample. Let S be the set {1,2,6}. Then:
a) R1{(1,1),(2,6),(6,1)} is a relation on S.
b) R; is not reflexive, not symmetric, and not transitive.
¢) R, ={(1,1),(2,6),(6,1),(2,1)} is a relation on S.
d) Ry is transitive but not symmetric and not reflexive.
(2.2.6) Definition.

e Let S be a set and let ~ be an equivalence relation on S. The equivalence class of an element
s € S is the set
[s]={teS|t~s}

e A partition of a set S is a collection of subsets S, such that:
a) If s € S then s € S, for some S,.
b) If S, N Sg # 0 then S, = S;.

(2.2.7) Proposition.
a) Let S be a set and let ~ be an equivalence relation on S. The set of equivalence classes of the
relation ~ is a partition of S.
b) Let S be a set and let {S,} be a partition of S. Then the relation defined by

s~tifs andt are in the same S,

is an equivalence relation on S.
Proposition 2.2.7 shows that the concepts of an equivalence relation on S and of a partition of S are essentially
the same. Each equivalence relation on S determines a partition on S and vice versa.
Ezample. Let S ={1,2,3,...,10}. Let ~ be the equivalence relation determined by
1~5, 2~ 3, 9 ~ 10,
1~7, 5~ 8, 10 ~ 4.

Since we are requiring that ~ is an equivalence relation, we are assuming that we have all the other relations
we need so that ~ is reflexive, symmetric, and transitive:

1~1,2~2 ..., 10 ~ 10,
5~T,7T~8 Trb 51, ...

Then the equivalence classes are given by

8]
2] = 3] = {2,3}
[6] = {6}
[4] = [9] = [10] = {4,9, 10},

and the sets
S1 = {1,5,7,8}, So = {2,3}, Ss = {6}, and Sy = {4,9, 10}

form a partition of S.

Cardinality of Sets



How big is a set?

(2.2.8) Definition.
o Let S and T be sets. S and T have the same cardinality, Card(S) = Card(T), if there is a
bijective map from S to T'.

Notation: Let S be a set. Then

0 if S=0;
Card(S) = {n if Card(S) = Card({l, 2,..., b});

oo otherwise.

Note: Even if Card(S) = oo and Card(T') = oo, one may have that Card(S) # Card(T).

(2.2.9) Definition.
o A set S is finite if Card(S) # oc.
e A set S is infinite if S is not finite.
e A set S is countable if either S is finite or if Card(S) = Card(P).
e A set S is countably infinite if S is countable and not finite.

e A set S is uncountable if S is not countable.
HW: Show that Card(IR) = co and Card(Q) = oo and that Card(R) # Card(Q).



