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1 Interiors and closures

Let X be a topological space and let z € X. A neighborhood of z is a subset N of X such
that there exists an open subset U of X with x € U and U C N.

Let X be a topological space and let £ C X. A neighborhood of F is a subset N of X such
that there exists an open subset U of X with £ C U C N.

Let X be a topological space and let £ C X. The interior of F is the subset E° of E such that
(a) E° is open in X,

(b) If U is an open subset of E then U C E°.

Let X be a topological space and let E C X. The closure E of E is the subset E of X such
that

(a) E is closed,

(b) If V is a closed subset of X and V D E then V D E.

Let X be a topological space. Let £ C X. An interior point of E is a point x € X such that
there exists a neighborhood N, of x with N, C F.

Let X be a topological space. Let E C X. A close point to E is a point x € X such that If
N, is a neighborhood of of x then N, contains a point of E.

Theorem 1.1. Let X be a topological space. Let E C X.
(a) The interior of E is the set of interior points of E.

(b) The closure of E is the set of close points of E.

2 Hausdorff spaces

A Hausdorff space is a topological space X such that if x,y € Y and = # y then there exist a
neighborhood N, of z and a neighborhood N, of y such that N, U N, = 0.

Theorem 2.1. Let X be a topological space. Show that the following are equivalent:



(a) Any two distinct points of X have disjoint neighborhoods.

(b) The intersection of the closed neighborhoods of any point of X consist of that point alone.
(¢) The diagonal of the product space X x X is a closed set.

(d) For every set I, the diagonal of the product space Y = X' is closed in Y.

(e) No filter on X has more than one limit point.

(f) If a filter F on X converges to x then x is the only cluster point of x.

3 Limit points and cluster points

Theorem 3.1. Let X be a topological space and let (x1,x2,...) be a sequence in X. Then

(a) y is a limit point of (x1,x2,...) if and only if, if Ny is a neighborhood of y then there exists
nog € Zso such that x,, € Ny for all n € Z>p, n > ng.

(b) y is a cluster point of (x1,x2,...) if and only if, if Ny is a neighborhood of y and ng € Z=g
then there exists n € Z~o with n > ng such that x,, € Ny.

4 Compact sets

Let X be a set. A filter 7 on X is convergent if it has a limit point.
Theorem 4.1. Let X be a topological space. The following are equivalent.
(a) Every filter on X has at least one cluster point.
(b) Every ultrafilter on X is convergent.

(c) Every family of closed subsets of X whose intersection is empty contains a finite subfamily
whose intersection is empty.

(d) Every open cover of X contains a finite subcover.

Proof. (b) = (a): Let F be a filter and let F be an ultrafilter containing F. Let x be a limit
point of F. Then x is a limit point of F.

(a) = (b): Let F be an ultrafilter. Let = be a cluster point of 7. Then z is a limit point of F.
So F is convergent.

(a) = (c): Let C be a closed family with empty intersection. If every finite subfamily has empty
intersection then C generates a filter F. Let x be a cluster point of 7. Then z € C for every
set C'in C. This is a contradiction. So there exists a finite subfamily that does not have empty
intersection.

(c) = (a): If there exists a filter F without a cluster point then C = {F | f € F} is a family of
closed sets contradicting (c).

(¢) & (d) by taking complements.



Theorem 4.2. Let X be a metric space and let E be a subset of X. The set E is compact if
and only if every infinite subset of E has a limit point in E.

Proof. <: Let K be a compact set and let E be a infinite subset of K. If there is no limit point
of E in K then, for each p € K there is a neighborhood NN, which contains no other element of
E. Then the open cover

N = {Np | p € K}7
of K has no finite subcover.

=-: Let S be a infinite subset of E. The metric space E has a countable base. So every open
cover of F has a countable subcover C = {C1,Cy,...}. If C does not have a finite subcover then,
for each n, (C<p)® # 0 but (), C%,, = 0. Let S be a set which contains a point from each C<,,.
Then S has a limit point. But this is a contradiction. O

Theorem 4.3. Let X be a Hausdorff topological space and let K be a compact subset of X.
Then K is closed.

Proof. Let z € K. The neighborhood filter B(x) of = induces a filter Bx on K which has a
cluster point y € K. Since B(x) is coarser than B (considered as a filter base on X)) the point
y is a cluster point of B(z). So y = z since X is Hausdorff.

The proof in baby Rudin: We will show that K¢ is open. Let p € K¢. Let N be the open cover
of K given by
N ={N,|qe K}, where N, = B%d(nq)(q) | g € K}.

Let {Ng,,...,Ng,} be a finite subcover of K. Then
M= Mg N---NM,y, where M,= B%d(p’q)(p),

is an open set such that p € M C K€. So p is an interior point of K¢. So K is open. ]

Theorem 4.4. Let X be a metric space and let E be a compact subset of X. Then E is closed
and bounded.

Proof. Since a metric space is Hausdorff, E is closed. If F is not bounded then there is an
infinite sequence in £ that does not have a limit point. O

Theorem 4.5. (a) A k-cell is compact.
(b) Let E be a subset of RE. If E is closed and bounded then E is compact.

Proof. If F is closed and bounded then FE is a closed subset of a k-cell. Since closed subsets of
compact sets are compact F is compact. ]



