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1 Interiors and closures

Let X be a topological space and let x ∈ X. A neighborhood of x is a subset N of X such
that there exists an open subset U of X with x ∈ U and U ⊆ N .

Let X be a topological space and let E ⊂ X. A neighborhood of E is a subset N of X such
that there exists an open subset U of X with E ⊆ U ⊆ N .

Let X be a topological space and let E ⊂ X. The interior of E is the subset E◦ of E such that

(a) E◦ is open in X,

(b) If U is an open subset of E then U ⊆ E◦.

Let X be a topological space and let E ⊆ X. The closure Ē of E is the subset E of X such
that

(a) E is closed,

(b) If V is a closed subset of X and V ⊇ E then V ⊇ E.

Let X be a topological space. Let E ⊆ X. An interior point of E is a point x ∈ X such that
there exists a neighborhood Nx of x with Nx ⊆ E.

Let X be a topological space. Let E ⊆ X. A close point to E is a point x ∈ X such that If
Nx is a neighborhood of of x then Nx contains a point of E.

Theorem 1.1. Let X be a topological space. Let E ⊆ X.

(a) The interior of E is the set of interior points of E.

(b) The closure of E is the set of close points of E.

2 Hausdorff spaces

A Hausdorff space is a topological space X such that if x, y ∈ Y and x 6= y then there exist a
neighborhood Nx of x and a neighborhood Ny of y such that Nx ∪Ny = ∅.

Theorem 2.1. Let X be a topological space. Show that the following are equivalent:
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(a) Any two distinct points of X have disjoint neighborhoods.

(b) The intersection of the closed neighborhoods of any point of X consist of that point alone.

(c) The diagonal of the product space X ×X is a closed set.

(d) For every set I, the diagonal of the product space Y = XI is closed in Y .

(e) No filter on X has more than one limit point.

(f) If a filter F on X converges to x then x is the only cluster point of x.

3 Limit points and cluster points

Theorem 3.1. Let X be a topological space and let (x1, x2, . . .) be a sequence in X. Then

(a) y is a limit point of (x1, x2, . . .) if and only if, if Ny is a neighborhood of y then there exists
n0 ∈ Z>0 such that xn ∈ Nx for all n ∈ Z≥0, n ≥ n0.

(b) y is a cluster point of (x1, x2, . . .) if and only if, if Ny is a neighborhood of y and n0 ∈ Z>0

then there exists n ∈ Z>0 with n ≥ n0 such that xn ∈ Ny.

4 Compact sets

Let X be a set. A filter F on X is convergent if it has a limit point.

Theorem 4.1. Let X be a topological space. The following are equivalent.

(a) Every filter on X has at least one cluster point.

(b) Every ultrafilter on X is convergent.

(c) Every family of closed subsets of X whose intersection is empty contains a finite subfamily
whose intersection is empty.

(d) Every open cover of X contains a finite subcover.

Proof. (b) ⇒ (a): Let F be a filter and let F be an ultrafilter containing F . Let x be a limit
point of F . Then x is a limit point of F .
(a) ⇒ (b): Let F be an ultrafilter. Let x be a cluster point of F . Then x is a limit point of F .
So F is convergent.
(a) ⇒ (c): Let C be a closed family with empty intersection. If every finite subfamily has empty
intersection then C generates a filter F . Let x be a cluster point of F . Then x ∈ C for every
set C in C. This is a contradiction. So there exists a finite subfamily that does not have empty
intersection.
(c) ⇒ (a): If there exists a filter F without a cluster point then C = {F | f ∈ F} is a family of
closed sets contradicting (c).
(c) ⇔ (d) by taking complements.
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Theorem 4.2. Let X be a metric space and let E be a subset of X. The set E is compact if
and only if every infinite subset of E has a limit point in E.

Proof. ⇐: Let K be a compact set and let E be a infinite subset of K. If there is no limit point
of E in K then, for each p ∈ K there is a neighborhood Np which contains no other element of
E. Then the open cover

N = {Np | p ∈ K},

of K has no finite subcover.
⇒: Let S be a infinite subset of E. The metric space E has a countable base. So every open
cover of E has a countable subcover C = {C1, C2, . . .}. If C does not have a finite subcover then,
for each n, (C≤n)c 6= ∅ but

⋂
n Cc

≤n = ∅. Let S be a set which contains a point from each Cc
≤n.

Then S has a limit point. But this is a contradiction.

Theorem 4.3. Let X be a Hausdorff topological space and let K be a compact subset of X.
Then K is closed.

Proof. Let x ∈ K. The neighborhood filter B(x) of x induces a filter BK on K which has a
cluster point y ∈ K. Since B(x) is coarser than BK (considered as a filter base on X) the point
y is a cluster point of B(x). So y = x since X is Hausdorff.
The proof in baby Rudin: We will show that Kc is open. Let p ∈ Kc. Let N be the open cover
of K given by

N = {Nq | q ∈ K}, where Nq = B 1
2
d(p,q)(q) | q ∈ K}.

Let {Nq1 , . . . , Nq`
} be a finite subcover of K. Then

M = Mq1 ∩ · · · ∩Mq`
, where Mq = B 1

2
d(p,q)(p),

is an open set such that p ∈ M ⊆ Kc. So p is an interior point of Kc. So K is open.

Theorem 4.4. Let X be a metric space and let E be a compact subset of X. Then E is closed
and bounded.

Proof. Since a metric space is Hausdorff, E is closed. If E is not bounded then there is an
infinite sequence in E that does not have a limit point.

Theorem 4.5. (a) A k-cell is compact.

(b) Let E be a subset of Rk. If E is closed and bounded then E is compact.

Proof. If E is closed and bounded then E is a closed subset of a k-cell. Since closed subsets of
compact sets are compact E is compact.
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