620-295 Real Analysis with Applications

Assignment 2: Due 5pm on 21 August

Lecturer: Arun Ram Department of Mathematics and Statistics University of Melbourne Parkville VÍC 3010 Australia aram@unimelb.edu.au

Due 5pm on 21 August in the appropriate assignment box on the ground floor of Richard Berry.

- 1. Let $f: S \rightarrow T$ be a function. Show that the inverse function to f exists if and only if f is bijective.
- 2. Add up the positive integers from 1 to 100. Then add up the squares 1^2 to 100^2 .
- 3. Let S be a set with an associative operation with identity. Show that the identity is unique. (This tells us that any commutative monoid has only one heart.)
- 4. Let S be a set with an associative operation with identity. Let $s \in S$ and assume that s has an inverse in S. Show that the inverse of s is unique. (This tells us that any element of an abelian group has only one mate.)
- 5. Let *S* be a ring. Show that if $s \in S$ then $s \cdot 0 = 0$.

6. Prove that
$$\sum_{k=1}^{n} k^2 = \frac{1}{6}n(n+1)(2n+1).$$

- 7. Define the following and give an example for each:

 - (a) order,(b) maximum,
 - (c) minimum,
 - (d) upper bound,
 - (e) lower bound,
 - (f) bounded above,
 - (g) bounded below,
 - (j) supremum,(k) infimum,
- 8. Prove that if $n \in \mathbb{Z}_{>0}$ then x y is a factor of $x^n y^n$.
- 9. For each of the following subsets of \mathbb{R} find the maximum, the minimum, an upper bound, a lower bound, the supremum, and the infimum:

(a)
$$\{2^{-m} - 3^n | m, n \in \mathbb{Z}_{\geq 0}\}$$

- (b) $\{x \in \mathbb{R} | x^3 4x < 0\},\$
- (c) $\{1 + x^2 | x \in \mathbb{R}\},\$
- 10. What is the triangle inequality and how do you justify it?