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Abstract

Here are examples to use as models for problem solving in Calculus. At the same time these
examples provide a thorough treatment of results in the subject.
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1 Introduction

As a student of mathematics I always felt incapable of coming up with a solution to any given problem
on the homework. However, if someone showed me how to do that question then I was capable of
understanding the solution and reproducing it. I made it through my undergraduate math courses by
asking (many) people to show me how to do the various questions that I encountered. Eventually I
knew how to do so many of them that I could do well on any exam. It was a good way to succeed.

With that model in mind this is a compendium of examples designed for students that are like I
was. Here solutions to many types of problems are presented carefully and the problems are chosen to
be representative of most problems that could appear on an exam for a first year Calculus course. The
idea is that if you learn how to deliver these solutions yourself then you will have a good command of
Calculus.

Later, as a caclulus teacher I found that the greatest part of my task was to show the students
how to do problems of the type that might appear on the exam. I found this compendium of examples
helped greatly in preparing classes, lectures and problem sessions.

Although I had originally intended to include material from multivariable calculus I ran out of
steam and this compendium does not cover the standard multivariable calculus.

An important piece of my philosophy of mathematics and teaching is that the proof (convincing
explanation of why something is true) is always part of the endeavor. I think it always important to

justify the power rule for the derivative, the chain rule for the derivative, why cos
(
π
3

)
=

√
1
2 , etc etc.

The examples here are designed to include all those questions and justifications as example problems
and to complete them along the way as possible exam questions.

2 Algebra

The complex numbers is the number system

C = {x+ iy | x, y ∈ R} with i2 = −1,

The exponential

ex = 1 + x+ 1
2!x

2 + 1
3!x

3 + · · · is the most important function in mathematics.

Let i2 = −1. The trigonometric and hyperbolic functions are defined by

cos(x) = 1
2(−i)(eix+ e−ix), cosh(x) = 1

2(e
x+ e−x), sin(x) = 1

2(e
ix− e−ix), sinh(x) = 1

2(e
x− e−x)
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and

tan(x) =
sin(x)

cos(x)
, cot(x) =

1

tan(x)
, sec(x) =

1

cos(x)
, csc(x) =

1

sin(x)
,

and

tanh(x) =
sinh(x)

cosh(x)
, coth(x) =

1

tanh(x)
, sech(x) =

1

cosh(x)
, csch(x) =

1

sinh(x)
.

The derivative
d

dx
knows what to spit out by always following the rules:

(1)
dx

dx
= 1,

(2)
d(cf)

dx
= c

df

dx
, if c is a constant,

(3)
d(f + g)

dx
=

df

dx
+

dg

dx
,

(4)
d(fg)

dx
= f

dg

dx
+

df

dx
g.

The integral is the inverse ‘function’ to the derivative: the integral undoes the derivative. This means
that ∫

df

dx
dx = f and

d

dx

(∫
f dx

)
= f.

So
d(cf)

dx
= c

df

dx
gives

∫
(cf) dx = c

∫
f dx,

d(f + g)

dx
=

df

dx
+

dg

dx
gives

∫
(f + g)dx =

∫
f dx+

∫
g dx,

d(fg)

dx
=

df

dx
g + f

dg

dx
gives

∫
f dg = fg −

∫
g df,

d(f ◦ g)
dx

=
df

dg

dg

dx
gives

∫
g
du

dx
dx =

∫
g du,

d(fg)

dx
= fg

( g
f

df

dx
+ log f

dg

dx

)
gives

∫
fg−1

(
g
df

dx
+ f log f

dg

dx

)
dx = fg.

Like most inverse ‘functions’, the integral is not a function.

Other frequently used inverse functions:
√
x is the ‘function’ that undoes x2. This means that

√
x2 = x and (

√
x)2 = x.

log(x) is the ‘function’ that undoes ex. This means that

log(ex) = x and elog(x) = x.

sin−1(x) is the ‘function’ that undoes sin(x). This means that

sin−1(sin(x)) = x and sin(sin−1(x)) = x.

cos−1(x) is the ‘function’ that undoes cos(x). This means that

cos−1(cos(x)) = x and cos(cos−1(x)) = x.

3



Calculus Examples, Arun Ram, version: January 28, 2025

loga(x) is the ‘function’ that undoes ax. This means that

loga(a
√
7πi sin(32)) =

√
7πi sin(32) and aloga(

√
7πi sin(32)) =

√
7πi sin(32).

WARNING: sin2(x) is VERY DIFFERENT from sin(x)2. For example,

sin2
(π
4

)
= sin(sin(

π

4
)) = sin(

1√
2
) ≈ 0.6496369, BUT sin

(π
4

)2
=
( 1√

2

)2
=

1

2
.

WARNING: sin−1(x) is VERY DIFFERENT from sin(x)−1. For example,

sin−1(0) = sin−1(sin(0)) = 0, BUT sin(0)−1 =
1

sin(0)
=

1

0
= UNDEFINED IN C.

2.1 Derivatives and integrals

Example 2.1. Find
dy

dx
if y = 5x.

Proof.
dy

dx
=

d(5x)

dx
= 5

dx

dx
= 5 · 1 = 5.

Example 2.2. Find
dy

dx
if y = πx.

Proof.
dy

dx
=

d(πx)

dx
= π

dx

dx
= π · 1 = π.

Example 2.3. Prove that
d1

dx
= 0.

Proof.
d1

dx
=

d(1 · 1)
dx

= 1 · d1
dx

+
d1

dx
· 1 =

d1

dx
+

d1

dx
.

Subtract
d1

dx
from both sides. So

d1

dx
= 0.

Example 2.4. Find
dy

dx
if y = 5.

Proof.
dy

dx
=

d5

dx
=

d(5 · 1)
dx

= 5 · d1
dx

= 5 · 0 = 0.

Example 2.5. Find
dy

dx
if y = 6342.

Proof.
dy

dx
=

d 6342

dx
=

d(6342 · 1)
dx

= 6342 · d1
dx

= 6342 · 0 = 0.
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Example 2.6. Prove that if c is a constant then
dc

dx
= 0

Proof.
dc

dx
=

d(c · 1)
dx

= c · d1
dx

= c · 0 = 0.

Example 2.7. Find
dy

dx
if y = 3x+ 12.

Proof.
dy

dx
=

d(3x+ 12)

dx
=

d(3x)

dx
+

d12

dx
= 3

dx

dx
+ 0 = 3 · 1 + 0 = 3.

Example 2.8. Find
dy

dx
if y = x2.

Proof.
dy

dx
=

dx2

dx
=

d(x · x)
dx

= x
dx

dx
+

dx

dx
x = x · 1 + 1 · x = 2x.

Example 2.9. Find
dy

dx
if y = x3.

Proof.
dy

dx
=

dx3

dx
=

d(x2 · x)
dx

= x2
dx

dx
+

dx2

dx
x = x2 · 1 + 2x · x = 3x2.

Example 2.10. Find
dy

dx
if y = x4.

Proof.
dy

dx
=

dx4

dx
=

d(x3 · x)
dx

= x3
dx

dx
+

dx3

dx
x = x3 · 1 + 3x2 · x = 4x3.

. . . and we keep on going . . .

Example 2.11. Find
dy

dx
if y = x6342.

Proof.

dy

dx
=

dx6342

dx
=

d(x6341 · x)
dx

= x6341
dx

dx
+

dx6341

dx
x = x6341 · 1 + 6341x6340 · x = 6342x6341.

. . . and we keep on going . . .
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Example 2.12. Find
dxn

dx
for n ∈ {1, 2, 3, . . .}.

Proof. The base cases are dx
dx = 1 = 1x0 and Example 2.8- Example 2.10. The induction step is:

dy

dx
=

dxn

dx
=

d(xn−1 · x)
dx

= xn−1 dx

dx
+

dxn−1

dx
x

= xn−1 · 1 + (n− 1)xn−2 · x, since we already found
dxn−1

dx
= (n− 1)xn−2,

= nxn−1.

Example 2.13. Find
dxn

dx
for n = 0.

Proof.
dy

dx
=

dx0

dx
=

d1

dx
= 0 = 0x−1 = 0x0−1.

Example 2.14. Find
dx−6342

dx
.

Proof.
dx−6342 · x6342

dx
=

dx0

dx
=

d1

dx
= 0.

On the other hand,

dx−6342 · x6342

dx
= x−6342dx

6342

dx
+

dx−6342

dx
· x6342 = x−6342 · 6342x6341 + dx−6342

dx
· x6342.

So

0 = x−6342 · 6342x6341 + dx−6342

dx
· x6342.

Solve for
dx−6342

dx
.

dx−6342

dx
= −6342x−1x−6342 = (−6342)x−6343.

Example 2.15. Find
dx−n

dx
for n ∈ {1, 2, 3, . . .}.

Proof. Let n ∈ Z>0. Then
dx−n · xn

dx
=

dx0

dx
=

d1

dx
= 0.

On the other hand,

dx−n · xn

dx
= x−ndx

n

dx
+

dx−n

dx
· xn = x−n · nxn−1 +

dx−n

dx
· xn.

So

0 = x−n · nxn−1 +
dx−n

dx
· xn = nx−1 +

dx−n

dx
· xn.
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Solve for
dx−n

dx
.

dx−n

dx
= −nx−1x−n = (−n)x−n−1.

and thus we have found
dxn

dx
= nxn−1, for all integers n. (AMAZING!)

Example 2.16. Let y = 3x3 + 5x2 + 2x+ 7. Find
dy

dx
.

Proof.

dy

dx
=

d(3x3 + 5x2 + 2x+ 7)

dx

=
d(3x3)

dx
+

d(5x2 + 2x+ 7)

dx

=
d(3x3)

dx
+

d(5x2)

dx
+

d(2x)

dx
+

d7

dx

= 3
dx3

dx
+ 5

dx2

dx
+ 2

dx

dx
+ 7

d1

dx
= 3 · 3x2 + 5 · 2x+ 2 · 1 + 7 · 0
= 9x2 + 10x+ 2.

Example 2.17. Let y = −7x−13 + 5x−7 + (6 + 2i)x38. Find
dy

dx
.

Proof.

dy

dx
=

d(−7x−13 + 5x−7 + (6 + 2i)x38)

dx

=
d(−7x−13)

dx
+

d(5x−7)

dx
+

d((6 + 2i)x38)

dx

= −7
dx−13

dx
+ 5

dx−7

dx
+ (6 + 2i)

dx38

dx
= −7(−13)x−13−1 + 5(−7)x−7−1 + (6 + 2i)38x38−1

= 91x−14 − 35x−8 + (228 + 76i)x37.

Example 2.18. Find
dy

dx
if y = g2.

Proof.
dy

dx
=

dg2

dx
=

d(g · g)
dx

= g
dg

dx
+

dg

dx
g = 2g

dg

dx
=

dy

dg

dg

dx
.

Example 2.19. Find
dy

dx
if y = g3.
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Proof.

dy

dx
=

dg3

dx
=

d(g2 · g)
dx

= g2
dg

dx
+

dg2

dx
g = g2 · dg

dx
+ 2g

dg

dx
· g = 3g2

dg

dx
=

dy

dg

dg

dx
.

Example 2.20. Find
dy

dx
if y = g4.

Proof.

dy

dx
=

dg4

dx
=

d(g3 · g)
dx

= g3
dg

dx
+

dg3

dx
g = g3 · dg

dx
+ 3g2

dg

dx
· g = 4g3

dg

dx
=

dy

dg

dg

dx
.

. . . and we keep on going . . .

Example 2.21. Find
dy

dx
if y = g6342.

Proof.

dy

dx
=

dg6342

dx
=

d(g6341 · g)
dx

= g6341
dg

dx
+

dg6341

dx
g

= g6341 · dg
dx

+ 6341g6340
dg

dx
· g = 6342g6341

dg

dx
=

dy

dg

dg

dx
.

. . . and we keep on going . . .

Example 2.22. Find
dgn

dx
for n ∈ {1, 2, 3, . . .}.

Proof. The base cases are dg
dx = dg

dx = 1g0 dg
dx and Example 2.8- Example 2.20. The induction step: Let

y = gn. Then

dy

dx
=

dgn

dx
=

d(gn−1 · x)
dx

= gn−1 dg

dx
+

dgn−1

dx
x

= gn−1 · dg
dx

+ (n− 1)gn−2 dg

dx
· g, since we already found

dgn−1

dx
= (n− 1)gn−2 dg

dx
,

= ngn−1 dg

dx
=

dy

dg

dg

dx
.

Example 2.23. Find
dgn

dx
for n = 0.
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Proof. Let y = g0 = 1.

dy

dx
=

dg0

dx
=

d1

dx
= 0 = 0g−1 = 0g0−1 dg

dx
=

dy

dg

dg

dx
.

Example 2.24. Find
dg−6342

dx
.

Proof.
dg−6342 · g6342

dx
=

dg0

dx
=

d1

dx
= 0.

On the other hand,

dg−6342 · g6342

dx
= g−6342dg

6342

dx
+

dg−6342

dx
· g6342 = g−6342 · 6342g6341 + dg−6342

dx
· g6342.

So

0 = g−6342 · 6342g6341 + dg−6342

dx
· g6342.

Solve for
dg−6342

dx
.

dg−6342

dx
= −6342g−1g−6342 = (−6342)g−6343 dg

dx
.

So, if y = g−6342 then dy
dx = dy

dg
dg
dx .

Example 2.25. Find
dg−n

dx
for n ∈ {1, 2, 3, . . .}.

Proof. . Let n ∈ Z>0. Then
dg−n · gn

dx
=

dg0

dx
=

d1

dx
= 0.

On the other hand,

dg−n · gn

dx
= g−ndg

n

dx
+

dg−n

dx
· gn = g−n · ngn−1 dg

dx
+

dg−n

dx
· gn dg

dx
.

So

0 = g−n · ngn−1 +
dg−n

dx
· gn = ng−1 dg

dx
+

dg−n

dx
· gn.

Solve for
dg−n

dx
.

dg−n

dx
= −ng−1g−n dg

dx
= (−n)x−n−1 dg

dx
.

So, if y = g−6342 then dy
dx = dy

dg
dg
dx .

We have found
dgn

dx
= ngn−1 dg

dx
, for all integers n. (AMAZING!)

Example 2.26. Find
dy

dx
when y = (2x− 5)2.
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Proof. If g = 2x− 5 then y = g2.

dy

dx
=

dy

dg

dg

dx
=

dg2

dg

d(2x− 5)

dx
= 2g(2− 0) = 2(2x− 5) · 2

= 4(2x− 5) = 8x− 20.

Example 2.27. Find
dy

dx
when y = (3x− 4)3.

Proof. If g = 3x− 4 then y = g3. Then

dy

dx
=

dy

dg

dg

dx
=

dg3

dg

d(3x− 4)

dx
= 3g2(3− 0) = 9(3x− 4)2

= 9(9x2 − 24x+ 16) = 81x2 − 72x+ 144.

Example 2.28. Find
dy

dx
when y = (2x− 5)2(3x− 4)3.

Proof.

dy

dx
=

d(2x− 5)2(3x− 4)3

dx
= (2x− 5)2

d(3x− 4)3

dx
+

d(2x− 5)2

dx
(3x− 4)3

= (2x− 5)2 · 3(3x− 4)2 · 3 + 2(2x− 5) · 2(3x− 4)3

= (2x− 5)(3x− 4)2(9(2x− 5) + 4(3x− 4)) = (2x− 5)(3x− 4)2(30x− 61).

Example 2.29. Find
dy

dx
when y =

(
x−3
x−4

)2
.

Proof.

d
(
x−3
x−4

)2
dx

= 2
(x− 3

x− 4

)d (x−3
x−4

)
dx

= 2
(x− 3

x− 4

)d ((x− 3)(x− 4)−1
)

dx

= 2
(x− 3

x− 4

)(
(x− 3)

(x− 4)−1

dx
+

d(x− 3)

dx
(x− 4)−1

)
= 2
(x− 3

x− 4

)(
(x− 3)(−1)(x− 4)−2 (x− 4)

dx
+ 1 · (x− 4)−1

)
= 2
(x− 3

x− 4

)(
− (x− 3)

(x− 4)2
· 1 + 1

x− 4

)
= 2
(x− 3

x− 4

)(
− (x− 3)

(x− 4)2
· 1 + x− 4

(x− 4)2

)
= 2
(x− 3

x− 4

) (−1)

(x− 4)2
=

−2x+ 6

(x− 4)3
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Example 2.30. Find
d xm/n

dx
when m and n are integers and n ̸= 0.

Proof.

d(xm/n)n

dx
=

dxm

dx
= mxm−1. On the other hand

d(xm/n)n

dx
= n

(
xm/n

)n−1dxm/n

dx
.

So mxm−1 = n
(
xm/n

)n−1dxm/n

dx
and we can solve for

dxm/n

dx
.

dxm/n

dx
=

mxm−1

n
(
xm/n

)n−1 =
mxm−1

n
(
xm/n

)n(
xm/n

)−1

=
mxm−1

nxm 1
xm/n

=
(m
n

)
x−1xm/n =

(m
n

)
x(m/n)−1.

Example 2.31. Evaluate

∫ √
x dx.

Proof. ∫ √
x dx =

∫
x

1
2 dx =

x
3
2

3
2

+ c =
2

3
x

3
2 + c, where c is a constant,

since
d2
3x

3
2

dx
=

2

3
· 3
2
x

1
2 = x

1
2 .

Example 2.32. Evaluate

∫
3
√
x dx.

Proof. ∫
3
√
x dx =

∫
x

1
3 dx =

x
4
3

4
3

+ c =
3

4
x

4
3 + c, where c is a constant,

since
d3
4x

4/3

dx
=

3

4
· 4
3
x1/3 = x1/3.

Example 2.33. Evaluate

∫
x

362
431 dx.

Proof. ∫
x

362
431 dx =

x
362
431

+1

362
431 + 1

+ c =
x

793
431

793
431

+ c =
431

793
x

793
431 + c, where c is a constant,

since
d431
793x

793
431

dx
=

431

793
· 793
431

x
793
431

−1 = x
362
431 .

11
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Example 2.34. Find
dy

dx
when y =

x√
1− 2x

.

Proof.

dy

dx
=

d
x√

1− 2x

dx
=

d x
(√

1− 2x
)−1

dx
=

d x
(
(1− 2x)1/2

)−1

dx

=
d x(1− 2x)−(1/2)

dx
= x

d (1− 2x)−(1/2)

dx
+

dx

dx
(1− 2x)−(1/2)

= x
(
− 1

2

)
(1− 2x)−3/2 d (1− 2x)

dx
+ 1 · 1√

1− 2x

=
−x

2(1− 2x)3/2
· (−2) +

1

(1− 2x)1/2
=

x+ 1− 2x

(1− 2x)3/2
=

1− x

(1− 2x)3/2
.

Example 2.35. Find
dy

dx
when y =

√
1 + x2√
1− x2

.

Proof.

dy

dx
=

d

√
1 + x2√
1− x2

dx
=

d
(1 + x2)1/2

(1− x2)1/2

dx
=

d

(
1 + x2

1− x2

)1/2

dx

=
1

2
·
(
1 + x2

1− x2

)(1/2)−1 d

(
1 + x2

1− x2

)
dx

=
1

2
·
(
1 + x2

1− x2

)−(1/2)
d (1 + x2)(1− x2)−1

dx

=
1

2
·
(
1− x2

1 + x2

)1/2(
(1 + x2)

d (1− x2)−1

dx
+

d (1 + x2)

dx
(1− x2)−1

)
=

1

2

(
1− x2

1 + x2

)1/2(
(1 + x2)(−1)(1− x2)−2d (1− x2)−1

dx
+ 2x(1− x2)−1

)
=

1

2
·
(
1− x2

1 + x2

)1/2(
(−1)(1 + x2)(−2x)

(1− x2)2
+

2x

1− x2

)
=

1

2
·
(
1− x2

1 + x2

)1/2(
2x(1 + x2)

(1− x2)2
+

2x(1− x2)

(1− x2)2

)
=

1

2
·
(
1− x2

1 + x2

)1/2(
2x(1 + x2 + 1− x2)

(1− x2)2

)
=

1

2
· (1− x2)1/2

(1 + x2)1/2
· 4x

(1− x2)2
=

2x

(1 + x2)1/2(1− x2)3/2
.

Example 2.36. Differentiate
x2

1 + x2
with respect to x2.

Proof. This is the same problem as: Find
dz

dp
when z =

x2

1 + x2
and p = x2.

Since
dz

dx
=

dz

dp

dp

dx
then

dz

dp
=

(
dz/dx

)(
dp/dx

) .
12
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So

dz

dp
=

d

dx

(
x2

1 + x2

)
d

dx

(
x2
) =

d x2(1 + x2)−1

dx

d x2

dx

=

x2
d (1 + x2)−1

dx
+

dx2

dx
(1 + x2)−1

2x

=

x2(−1)(1 + x2)−2d (1 + x2)

dx
+ 2x(1 + x2)−1

2x
=

−x2

(1 + x2)2
· 2x+

2x

1 + x2

2x

=
−x2

(1 + x2)2
+

1

1 + x2
=

−x2 + 1 + x2

(1 + x2)2
=

1

(1 + x2)2
.

Example 2.37. Let a ∈ C. Find
dy

dx
when x4 + y4 = 4a2x2y2.

Proof.
d (x4 + y4)

dx
=

d (4a2x2y2)

dx
. So

dx4

dx
+

dy4

dx
= 4a2

dx2y2

dx
.

So 4x3 + 4y3
dy

dx
= 4a2

(
x2

dy2

dx
+

dx2

dx
y2
)
.

So 4x3 + 4y3
dy

dx
= 4a2

(
x22y

dy

dx
+ 2xy2

)
= 4a2x22y

dy

dx
+ 4a22xy2.

So 4x3 − 4a22xy2 = 4a2x22y
dy

dx
− 4y3

dy

dx
.

So 4x3 − 4a22xy2 =
(
4a2x22y − 4y3

)dy
dx

.

So
4x3 − 4a22xy2

4a2x22y − 4y3
=

dy

dx
.

So
dy

dx
=

x3 − 2a2xy2

2a2x2y − y3
.

All we did is take the derivative of both sides and then solve for
dy

dx
.

Example 2.38. Find
dy

dx

]
x=3

when y = (x+ 1)(x+ 2).

Proof. The notation
dy

dx

]
x=3

means: find
dy

dx
and then plug in x = 3.

dy

dx

]
x=3

=
d
(
(x+ 1)(x+ 2)

)
dx

]
x=3

=
(
(x+ 1)

d(x+ 2)

dx
+

d(x+ 1)

dx
(x+ 2)

)]
x−3

= ((x+ 1) + (x+ 2))
]
x=3

= (2x+ 3)
]
x=3

= 2 · 3 + 3 = 9.

Example 2.39. Let a ∈ C. Find
dy

dx
when x =

3at

1 + t3
and y =

3at2

1 + t3
.

13
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Proof. Since y =
3at2

1 + t3
=

(
3at

1 + t3

)
t = xt then

dy

dx
= x

dt

dx
+

dx

dx
· t = x

dt

dx
+ t.

What is
dt

dx
??

Since
dx

dx
=

dx

dt

dt

dx
then

dt

dx
=

(
dx/dx

)(
dx/dt

) =
1

dx/dt
.

So

dt

dx
=

1

dx/dt
=

1

d

dt

(
3at

1 + t3

) =
1

d (3at)(1 + t3)−1

dt

=
1

3at(−1)(1 + t3)−2d(1 + t3)

dt
+ 3a(1 + t3)−1

=
1

−3at

(1 + t3)2
3t2 +

3a

1 + t3

=
1

−9at3 + 3a(1 + t3)

(1 + t3)2

=
(1 + t3)2

−9at3 + 3a(1 + t3)
=

(1 + t3)2

3a− 6at3
.

So

dy

dx
= x

dt

dx
+ t =

3at

1 + t3
(1 + t3)2

3a(1− 2t3)
+ t

=
t(1 + t3)

1− 2t3
+

t(1− 2t3)

1− 2t3
=

t+ t4 + t− 2t4

1− 2t3
=

2t− t4

1− 2t3

Example 2.40. Compute

∫
4x− 5

2x2 − 5x+ 1
dx.

Proof. Let u = 2x2 − 5x+ 1. Then du
dx = 4x− 5. So∫

4x− 5

2x2 − 5x+ 1
dx =

∫
1

u

du

dx
dx =

∫
1

u
du

= log(u) + c = log(2x2 − 5x+ 1) + c,

where c is a constant.

Example 2.41. Compute

∫
tan(

√
x) sec(

√
x)2√

x
dx.

Proof. Let u = tan(
√
x). Then

du

dx
= sec(

√
x)2 · 1

2
x−

1
2 =

1

2

sec(
√
x)2√
x

.

So ∫
tan(

√
x) sec(

√
x)2√

x
dx =

∫
2u

du

dx
dx =

∫
2u du = u2 + c = tan(

√
x)2 + c,

where c is a constant.

14
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Example 2.42. Compute

∫
x
√
3x− 2 dx.

Proof. ∫
x
√
3x− 2 dx =

∫
1

3
3x

√
3x− 2 dx

=

∫
1

3
(3x− 2 + 2)

√
3x− 2 dx

=

∫
1

3

(
(3x− 2)

3
2 + 2(3x− 2)

1
2
)
dx

=
1

3

(2
5

(3x− 2)
5
2

3
+ 2

(3x− 2)
3
2

3

2

3

)
+ c

=
2

45
(3x− 2)

5
2 +

4

27
2(3x− 2)

3
2 + c,

where c is a constant.

Example 2.43. Compute

∫
x
√

x2 − 1 dx.

Proof. Let u = x2 − 1. Then du
dx = 2x. So∫

x
√

x2 − 1xd =

∫
1

2
2x
√

x2 − 1 dx =

∫
1

2

du

dx

√
u dx =

∫
1

2

√
u du =

∫
1

2
u

1
2 du

=
1

2

2

3
u

3
2 + c =

1

3
u

3
2 + c =

1

3
(x2 − 1)

3
2 + c,

where c is a constant.

Example 2.44. Compute

∫
cos(x)3 dx.

Proof. ∫
cos(x)3 dx =

∫
cos(x) cos(x)2 dx

=

∫
cos(x)(1− sin(x)2) dx

=

∫
(cos(x)− sin(x)2 cos(x)) dx

= sin(x)− sin(x)3

3
+ c,

where c is a constant.

Example 2.45. Compute

∫
log(x2)

x
dx.

Proof. Let u = log(x2). Then
du

dx
=

1

x2
2x =

2

x
.

15
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So ∫
1

2
2
log(x2)

x
dx =

∫
1

2

2

x
log(x2) dx

=

∫
1

2

du

dx
u dx

=

∫
1

2
u du

=
1

2

u2

2
+ c

=
u2

4
+ c

=
log(x2)2

4
+ c,

where c is a constant.

Example 2.46. Compute

∫
x√
1 + x

dx.

Proof. ∫
x√
1 + x

dx =

∫
x+ 1− 1√

1 + x
dx =

∫ ( x+ 1

(1 + x)
1
2

− 1

(1 + x)
1
2

)
dx

=

∫ (
(x+ 1)

1
2 − (x+ 1)−

1
2

)
dx =

2

3
(x+ 1)

3
2 − 2(x+ 1)

1
2 + c,

where c is a constant.

Example 2.47. Compute

∫
x
√
x− 1 dx.

Proof. ∫
x
√
x− 1 dx =

∫
(x− 1 + 1)

√
x− 1 dx =

∫ (
(x− 1)

√
x− 1 +

√
x− 1) dx

=

∫ (
(x− 1)

3
2 + (x− 1)

1
2
)
) dx =

2

5
(x− 1)

5
2 +

2

3
(x− 1)

3
2 + c,

where c is a constant.

Example 2.48. Compute

∫
(1− x)

√
1 + x dx.

Proof. ∫
(1− x)

√
1 + x dx =

∫
(−(1 + x) + 2)

√
1 + x dx

=

∫
(−(1 + x)

√
1 + x+ 2

√
1 + x) dx

=

∫
(−(1 + x)

3
2 + 2(1 + x)

1
2 ) dx

= −2

5
(1 + x)

5
2 + 2 · 2

3
(1 + x)

3
2 + c

= −2

5
(1 + x)

5
2 +

4

3
(1 + x)

3
2 + c,

16
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where c is a constant.

Example 2.49. Compute

∫
sin(x)

sin(x)− cos(x)
dx.

Proof. ∫
sin(x)

sin(x)− cos(x)
dx =

∫
sin(x)− cos(x) + sin(x) + cos(x)

sin(x)− cos(x)
· 1
2
dx

=
1

2

∫ (sin(x)− cos(x)

sin(x)− cos(x)
+

sin(x) + cos(x)

sin(x)− cos(x)

)
, dx

=
1

2

∫ (
1 +

sin(x) + cos(x)

sin(x)− cos(x)

)
dx

=
1

2

(
x+ log(sin(x)− cos(x)

)
+ c,

where c is a constant.

Example 2.50. Compute

∫
x3

1 + x8
dx.

Proof. ∫
x3

1 + x8
dx =

∫
x3

1 + (x4)2
dx =

∫
1

4
· 4x3

1 + (x4)2
dx =

1

4
tan−1(x4) + c,

where c is a constant, since

1
4 tan

−1(x4)

dx
=

1

4

1

1 + (x4)2
dx4

dx
=

1

4

4x3

1 + (x4)2
.

Example 2.51. Compute

∫
tan−1

( sin(2x)

1 + cos(2x)

)
dx.

Proof. ∫
tan−1

( sin(2x)

1 + cos(2x)

)
dx =

∫
tan−1

( 2 sin(x) cos(x)

1 + cos(x)2 − sin(x)2

)
dx

=

∫
tan−1

( 2 sin(x) cos(x)

cos(x)2 + cos(x)2

)
dx

=

∫
tan−1

(2 sin(x) cos(x)
2 cos(x)2

)
dx =

∫
tan−1

( sin(x)
cos(x)

)
dx

=

∫
tan−1(tan(x)) dx =

∫
x dx =

x2

2
+ c,

where c is a constant.

Example 2.52. Compute

∫
cos−1(sin(x)) dx.

17
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Proof. Let x = sin−1(y). Then dx
dy = 1√

1−y2
. So

∫
cos−1(sin(x)) dx =

∫
cos−1(sin(x))

dx

dy
dy

=

∫
cos−1(sin(sin−1(y)))

1√
1− y2

dy

=

∫
cos−1(y)

1√
1− y2

dy

= −
∫

cos−1(y)
−1√
1− y2

dy

= −(cos−1(y))2

2
+ c = −cos−1(sin(x))

2
+ c,

where c is a constant.

Another way: Let cos−1(sin(x)) = y then sin(x) = cos(y). So

y =
π

2
− x.

So
cos−1(sin(x)) =

π

2
− x.

So ∫
cos−1(sin(x)) dx =

∫ (π
2
− x
)
dx =

π

2
− x2

2
+ c,

where c is a constant.

2.2 Exponential, trigonometric and hyperbolic functions

Example 2.53. Assume yx = xy. Prove that

ex+y = exey.

Proof.

ex+y =

1
+ (x+ y)
+ 1

2!(x+ y)2

+ 1
3!(x+ y)3

+ 1
4!(x+ y)4

+
...

=

1
+ x+ y
+ 1

2!(x
2 + 2xy + y2)

+ 1
3!(x

3 + 3x2y + 3xy2 + y3)
+ 1

4!(x
4 + 4x3y + 6x2y2 + 4xy3 + y4)

+
...

=

1
+ x +y
+ 1

2!x
2 + 1

2!2xy + 1
2!y

2

+ 1
3!x

3 + 1
3!3x

2y + 1
3!3xy

2 + 1
3!y

3

+ 1
4!x

4 + 1
4!4x

3y + 1
4!6x

2y2 + 1
4!4xy

3 + 1
4!y

4

+
...

18
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=

1
+ x +y
+ 1

2!x
2 +xy + 1

2!y
2

+ 1
3!x

3 + 1
2!x

2y +x 1
2!y

2 + 1
3!y

3

+ 1
4!x

4 + 1
3!x

3y + 1
2!x

2 1
2!y

2 +x 1
3!y

3 + 1
4!y

4

+
...

= ex +exy +ex 1
2!y

2 +ex 1
3!y

3 +ex 1
4!y

4 · · ·
= ex(1 + y + 1

2!y
2 + 1

3!y
3 + 1

4!y
4 + · · · )

= exey.

Example 2.54. Let
ex = 1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + · · · .

Find
dex

dx
and

∫
ex dx.

Proof.

dex

dx
=

d

dx

(
1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + · · ·

)
= 0 + 1 + 1

2!2x+ 1
3!3x

2 + 1
4!4x

3 + · · ·
= 1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + · · · = ex.

Since
dex

dx
= ex then ∫

ex dx = ex + c, where c is a constant.

Example 2.55. Find a polynomial that converts addition into multiplication.

Proof. Let P (x) = a0 + a1x+ a2x
2 + · · · .

We want P (x+ y) = P (x)P (y).

Well

P (x+ y) = a0 + a1(x+ y) + a2(x+ y)2+

= a0 + a1x+ a1y + a2x
2 + 2a2xy + a2y

2 + · · · , and

P (x)P (y) = (a0 + a1x+ a2x
2 + · · · )(a0 + a1y + a2y

2 + · · · )
= a20 + a1a0x+ a0a1y + a2a0x

2 + a21xy + a0a2y
2 + · · ·

so that, if a0 ̸= 0 then
a0 = 1, a21 = 2a2, a1a2 = 3a3, . . .

and

P (x) = 1 + a1x+
1

2!
a21x

2 +
1

3!
a31x

3 + · · · = ea1x.
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Example 2.56. Find a polynomial whose derivative is itself.

Proof. Let Q(x) = c0 + c1x+ a2x
2 + · · · ∈ C[[x]]. Then

dQ(x)

dx
= c1 + 2c2x+ 3c3x

2 + 4c4x
3 + . . . , and

Q(x) = c0 + c1x+ c2x
2 + · · ·

so that
dQ(x)

dx
= Q(x) forces

c1 = c0, c2 =
1

2
c1 =

1

2
c0, c3 =

1

3
c2 =

1

3!
c0, . . . .

So Q(x) = c0 + c1x+ a2x
2 + · · · is equal to

Q(x) = c0 + c0x+
1

2!
c0x

2 +
1

3!
c0x

3 + · · · = c0e
x, with c0 ∈ C.

Example 2.57. Let i2 = −1. Explain why

eix = cos(x) + i sin(x), ex = cosh(x) + sinh(x),

e−ix = cos(x)− i sin(x), e−x = cosh(x)− sinh(x),

Proof.

cosh(x) + sinh(x) = 1
2(e

x + e−x) + 1
2(e

x − e−x) = 1
2(2e

x + 0e−x) = ex,

cosh(x)− sinh(x) = 1
2(e

x + e−x)− 1
2(e

x − e−x) = 1
2(0e

x + 2e−x) = e−x,

cos(x) + i sin(x) = 1
2(e

ix + e−ix) + i(−1
2 i(e

ix − e−ix)) = 1
2(e

ix + e−ix + eix − e−ix) = eix,

cos(x)− i sin(x) = 1
2(e

ix + e−ix)− i(−1
2 i(e

ix − e−ix)) = 1
2(e

ix + eix − eix + e−ix) = e−ix.

Example 2.58. Explain why

cos(−x) = cos(x), cosh(−x) = cosh(x),

sin(−x) = − sin(x), sinh(−x) = − sinh(x).

Proof. Let i2 = −1. Then

cos(−x) = 1
2(e

−ix + eix) = 1
2(e

ix + e−ix) = cos(x),

sin(−x) = −1
2 i(e

−ix − eix) = −(−1
2 i(e

ix − e−ix)) = − sin(x),

cosh(−x) = 1
2(e

−x + ex) = 1
2(e

x + e−x) = cosh(x),

sinh(−x) = −1
2(e

−x − ex) = −(−1
2(e

x − e−x)) = − sin(x).

Example 2.59. Explain why

cos2(x) + sin2(x) = 1 and cosh2(x)− sinh2(x) = 1.
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Proof. Let i2 = −1. Using that eix = cos(x)+ i sin(x) and e−ix = cos(x)− i sin(x) from Example 2.57
gives

1 = e0 = eix+(−ix)

= eixe−ix

= (cos(x) + i sin(x))(cos(x)− i sin(x))

= cos2(x)− i sin(x) cos(x) + i sin(x) cos(x)− i2 sin2(x)

= cos2(x)− (−1) sin2(x)

= cos2(x) + sin2(x).

Using that ex = cosh(x) + sinh(x) and e−x = cosh(x)− sinh(x) from Example 2.57 gives

1 = e0 = ex+(−x) = exe−x

= (cosh(x) + sinh(x))(cosh(x)− sinh(x)) = cosh2(x)− sinh2(x).

Example 2.60. Explain why

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y), sinh(x+ y) = sinh(x) cosh(y) + cosh(x) sinh(y).

Proof. Let i2 = −1.

cos(x+ y) + i sin(x+ y) = ei(x+y)

= eix+iy = eixeiy

= (cos(x) + i sin(x))(cos(y) + i sin(y))

= cos(x) cos(y) + i cos(x) sin(y) + i sin(x) cos(y) + i2 sin(x) sin(y)

=
(
cos(x) cos(y) + (−1) sin(x) sin(y)

)
+ i
(
cos(x) sin(y) + sin(x) cos(y)

)
.

Comparing terms on each side gives

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y), and sin(x+ y) = sin(x) cos(y) + cos(x) sin(y).

Next,

cosh(x) cosh(y) + sinh(x) sinh(y) =

(
ex + e−x

2

)(
ey + e−y

2

)
+

(
ex − e−x

2

)(
ey − e−y

2

)
=

exey + e−xey + exe−y + e−xe−y

4
+

exey − e−xey − exe−y + e−xe−y

4

=
2exey + 2e−xe−y

4
= 1

2(e
(x+y) + e−(x+y)) = cosh(x+ y)

and

sinh(x) cosh(y) + cosh(x) sinh(y) =

(
ex − e−x

2

)(
ey + e−y

2

)
+

(
ex + e−x

2

)(
ey − e−y

2

)
=

exey − e−xey + exe−y − e−xe−y

4
+

exey + e−xey − exe−y − e−xe−y

4

=
2ex+y − 2e−(x+y)

4
= 1

2(e
x+y − e−(x+y)) = sinh(x+ y).
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Example 2.61. Explain why

dex

dx
= ex,

d cosh(x)

dx
= sinh(x),

d sinh(x)

dx
= cosh(x),

d cos(x)

dx
= − sin(x),

d sin(x)

dx
= cos(x).

Proof. Let i2 = −1. Then

dex

dx
=

d

dx
(1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + 1

5!x
5 + 1

6!x
6 + 1

7!x
7 + · · · )

= 0 + 1 + 1
2!2x+ 1

3!3x
2 + 1

4!4x
3 + 1

5!5x
4 + 1

6!6x
5 + 1

7!7x
6 + · · · )

= 0 + 1 + x+ 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + 1
5!x

5 + 1
6!x

6 + 1
7!x

7 + · · ·
= ex,

d cosh(x)

dx
=

d

dx

(
1
2(e

x + e−x)
)
= 1

2

(
(ex − e−x)

)
= sinh(x),

d sinh(x)

dx
=

d

dx

(
1
2(e

x − e−x)
)
= 1

2

(
(ex + e−x)

)
= cosh(x),

d cos(x)

dx
=

d

dx

(
1
2(e

ix + e−ix)
)
= 1

2(ie
ix − ie−ix) = 1

2 i(e
ix − ie−ix)

= −
(
− 1

2 i(e
ix − ie−ix)

)
= − sin(x),

d sin(x)

dx
=

d

dx

(
− 1

2 i(e
ix − e−ix)

)
= −1

2 i(ie
ix + ie−ix)

)
= −1

2 i
2(eix + e−ix)

)
= 1

2(e
ix + e−ix)

)
= cos(x).

Example 2.62. Explain why

cosh(x) = 1 + 1
2!x

2 + 1
4!x

4 + 1
6!x

6 + 1
8!x

8 + · · · , sinh(x) = x+ 1
3!x

3 + 1
5!x

5 + 1
7!x

7 + 1
9!x

9 + · · · ,
cos(x) = 1− 1

2!x
2 + 1

4!x
4 − 1

6!x
6 + 1

8!x
8 − · · · , sin(x) = x− 1

3!x
3 + 1

5!x
5 − 1

7!x
7 + 1

9!x
9 − · · · ,

Proof.

cosh(x) = 1
2(e

x + e−x)

= 1
2

(
1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + 1

5!x
5 + 1

6!x
6 + 1

7!x
7 + · · ·

+1 + (−x) + 1
2!(−x)2 + 1

3!(−x)3 + 1
4!(−x)4 + 1

5!(−x)5 + 1
6!(−x)6 + 1

7!(−x)7 + · · ·

)

= 1
2

 1 + x+ 1
2!x

2 + 1
3!x

3 + 1
2!x

4 + 1
5!x

5 + 1
6!x

6 + 1
7!x

7 + · · ·

+1− x+ 1
2!x

2 − 1
3!x

3 + 1
4!x

4 − 1
5!x

5 + 1
6!x

6 − 1
7!x

7 + · · ·


= 1 + 1

2!x
2 + 1

4!x
4 + 1

6!x
6 + 1

8!x
8 + · · · .
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sinh(x) = 1
2(e

x − e−x)

= 1
2

(
1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + 1

5!x
5 + 1

6!x
6 + 1

7!x
7 + · · ·

+
(
1 + (−x) + 1

2!(−x)2 + 1
3!(−x)3 + 1

4!(−x)4 + 1
5!(−x)5 + 1

6!(−x)6 + 1
7!(−x)7 + · · ·

) )

= 1
2

 1 + x+ 1
2!x

2 + 1
3!x

3 + 1
2!x

4 + 1
5!x

5 + 1
6!x

6 + 1
7!x

7 + · · ·

−1− x− 1
2!x

2 + 1
3!x

3 − 1
4!x

4 + 1
5!x

5 − 1
6!x

6 + 1
7!x

7 − · · ·


= x+ 1

3!x
3 + 1

5!x
5 + 1

7!x
7 + 1

9!x
9 + · · · .

Graphing complex numbers

sines and cosines of the favorite angles
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Example 2.63. Explain why

ei0 =
√
4
2 +

√
0
2 i, cos(0) =

√
4
2 , sin(0) =

√
0
2 ,

eiπ/6 =
√
3
2 +

√
1
2 i, cos

(
π
6

)
=

√
3
2 , sin

(
π
6

)
=

√
1
2 ,

eiπ/4 =
√
2
2 +

√
2
2 i, cos

(
π
4

)
=

√
2
2 , sin

(
π
4

)
=

√
2
2 ,

eiπ/3 =
√
1
2 +

√
3
2 i, cos

(
π
3

)
=

√
1
2 , sin

(
π
3

)
=

√
3
2 ,

eiπ/2 =
√
0
2 +

√
4
2 i, cos

(
π
2

)
=

√
0
2 , sin

(
π
2

)
=

√
4
2 ,

Proof. The point at (1, 0) is at angle θ = 0 on a circle of radius 1 and so

ei0 = 1 + 0i, and cos(0) = 1 and sin(0) = 0.

The point at (−1, 0) is at angle θ = π on a circle of radius 1 and so

eiπ = −1 + 0i, and cos(π) = −1 and sin(π) = 0.

The point at (0, 1) is at angle θ = π
2 on a circle of radius 1 and so

eiπ/2 = 0 + i, and cos
(
π
2

)
= 0 and sin

(
π
2

)
= 1.

The point at (0, 1) is at angle θ = −π
2 on a circle of radius 1 and so

e−iπ/2 = 0− i, and cos
(
− π

2

)
= 0 and sin

(
− π

2

)
= −1.

Place a square with vertices (a, a), (a,−a), (−a, a) and −a,−a) inside a circle of radius 1 so that

a2 + a2 = 12. Then a2 = 1
2 and a = 1√

2
=

√
2
2 . The vertex at (a, a) is at angle π

4 on the circle of radius

1. So
eiπ/4 =

√
2
2 +

√
2
2 i, cos

(
π
4

)
=

√
2
2 and sin

(
π
4

)
=

√
2
2 .

Place a hexagon with vertices (1, 0), (a, b), (−a, b), (−1, 0), (−a,−b), (a,−b) inside a circle of radius
1 so that a2 + b2 = 12 and a is half way between 0 and 1. Then the point (a, b) is at angle π

3 on the
circle of radius 1 and

a = 1
2 =

√
1
2 and b =

√
1− a2 =

√
1−

(
1
2

)2
=
√

1− 1
4 =

√
3
2 .

So
eiπ/3 =

√
1
2 +

√
3
2 i, cos

(
π
3

)
=

√
1
2 and sin

(
π
3

)
=

√
3
2 .

Flip the previous picture of the inscribed hexagon about the line y = x so that now the hexagon has
vertices (b, a), (0, 1), (−b, a), (−b,−a), (0,−1) and (b,−a). Then the point (b, a) is at angle π

6 on the
circle of radius 1. So

eiπ/6 =
√
3
2 +

√
1
2 i, cos

(
π
6

)
=

√
3
2 and sin

(
π
3

)
=

√
1
2 .
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Example 2.64. Simplify eiπ + 1.

Proof. Using that cos(π) = −1 and sin(π) = 0 then

eiπ + 1 = cos(π) + i sin(π) + 1 = −1 + i · 0 + 1 = 0 + 0i = 0.

Example 2.65. Write z =
√
3− i and y =

√
3 + 3i in polar form.

Proof.

z =
√
3− i = 2 · (

√
3
2 − 1

2 i) = 2 · (cos
(−π

6

)
+ sin

(−π
6

)
i) = 2e−iπ/6

and

y =
√
3 + 3i = 2

√
3 · (12 +

√
3
2 i) = 2

√
3 · (cos

(
π
3

)
+ sin

(
π
3

)
i) = 2

√
3eiπ/3

Example 2.66. Simplify (
√
3− i)(

√
3 + 3i).

Proof. Using
√
3− i = 2e−iπ/6 and

√
3 + 3i = 2

√
3eiπ/3 gives

(
√
3− i)(

√
3 + 3i) = 2e−iπ/6 · 2

√
3eiπ/3 = 4

√
3eiπ/6

= 4
√
3 · (cos(π/6) + i sin(π/6)) = 4

√
3 · (

√
3

2
+

1

2
i) = 6 + 2

√
3i.

Example 2.67. Evaluate (
√
3 + 3i)30.

Proof. Using
√
3 + 3i = 2

√
3eiπ/3 gives

(
√
3 + 3i)30 =

(
2
√
3eiπ/3

)30
= 230330/2e30iπ/3 = 230315e10πi = 230315 · 1 = 230315.

Example 2.68. Express cos(θ)3 in terms of cos(nθ) with n ∈ Z.

Proof.

cos(θ)3 =
(eiθ + e−iθ

2

)3
= 1

8(e
3iθ + 3e2iθe−iθ + 3eiθe−2iθ + e−3iθ)

= 1
8(e

3iθ + 3eiθ + 3e−iθ + e−3iθ) = 1
8(e

3iθ + e−3iθ) + 3
8(e

iθ + e−iθ)

= 1
4 cos(3θ) +

3
4 cos(θ).

Example 2.69. Evaluate
d40

dt40

(
e−t cos(t)

) (
and

d40

dt40

(
e−t sin(t)

))
.
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Proof.

d40

dt40

(
e−t cos(t)

)
+ i

d40

dt40

(
e−t sin(t)

)
=

d40

dt40

(
e−t(cos(t) + i sin(t))

)
=

d40

dt40

(
e−teit

)
=

d40

dt40

(
e(−1+i)t

)
= (−1 + i)40e(−1+i)t =

( 2√
2
(−

√
2

2
+

√
2

2
i)
)40

e−teit

=
(√

2e−iπ/4
)40

e−teit = 220e−40iπ/4e−teit

= 220 · 1 · e−t(cos(t) + i sin(t)) = 220e−t cos(t) + i220e−t sin(t)).

So
d40

dt40

(
e−t cos(t)

)
= 220e−t cos(t) and

d40

dt40

(
e−t sin(t)

)
= 220e−t sin(t).

Example 2.70. Determine
d tan(x)

dx
and

d tanh(x)

dx
.

Proof.

d tanh(x)

dx
=

d

dx

( sinh(x)
cosh(x)

)
=

d

dx

(
sinh(x)(cosh(x))−1

)
= sinh(x)(−1) cosh(x))−2 sinh(x) + cosh(x)(cosh(x))−1

=
− sinh2(x)

cosh2(x)
+ 1 =

− sinh2(x) + cosh2(x)

cosh2(x)
=

1

cosh2(x)
= sech2(x)

and

d tan(x)

dx
=

d

dx

( sin(x)
cos(x)

)
=

d

dx

(
sin(x)(cos(x))−1

)
= sin(x)(−1) cos(x))−2(− sin(x)) + cos(x)(cos(x))−1

=
sin2(x)

cos2(x)
+ 1 =

sin2(x) + cos2(x)

cos2(x)
=

1

cos2(x)
= sec2(x).

Example 2.71. Determine
d sec(x)

dx
and

d sech(x)

dx
.

Proof.

d sec(x)

dx
=

d

dx

( 1

cos(x)

)
=

d

dx
(cos(x))−1 = (−1) cos(x))−2 d

dx
(cos(x))

= (−1) cos(x))−2(− sin(x)) =
sin(x)

cos(x)
· 1

cos(x)
= tan(x) sec(x),

and

d sech(x)

dx
=

d

dx

( 1

cosh(x)

)
=

d

dx
(cosh(x))−1 = (−1)(cosh(x))−2 · sinh(x)

= − sinh(x)

cosh(x)
· 1

cosh(x)
= − tanh(x)sech(x).
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Example 2.72. Determine
d csc(x)

dx
and

d csch(x)

dx
.

Proof.

d csc(x)

dx
=

d

dx

( 1

sin(x)

)
=

d

dx
(sin(x))−1 = (−1) sin(x))−2 d

dx
(sin(x))

= (−1) sin(x))−2 · cos(x) = −cos(x)

sin(x)
· 1

sin(x)
= − cot(x) csc(x),

and

d csch(x)

dx
=

d

dx

( 1

sinh(x)

)
=

d

dx
(sinh(x))−1 = (−1)(sinh(x))−2 · cosh(x)

= −cosh(x)

sinh(x)
· 1

sinh(x)
= −coth(x)csch(x).

Example 2.73. Determine

∫
sin(x) dx and

∫
tan(x) dx and

∫
sec(x) dx.

Proof. Since d cos(x)
dx = − sin(x) then∫

sin(x) dx =

∫
−(− sin(x))dx = −

∫
(− sin(x))dx = cos(x) + c, where c is a constant.

Let z = cos(x). Then∫
tan(x)dx =

∫
sin(x)

cos(x)
dx =

∫
1

cos(x)
sin(x)dx = −

∫
1

cos(x)
(− sin(x))dx = −

∫
1

y
· dy
dx

dx

= −
∫

1

y
dy = − log(y) + c,

where c is a constant.

Let y = tan(x) + sec(x). Then∫
sec(x)dx =

∫
sec(x)

sec(x) + tan(x)

sec(x) + tan(x)
dx =

∫
1

sec(x) + tan(x)
(sec2(x) + tan(x) sec(x))dx

=

∫
1

y

dy

dx
dx =

∫
1

y
dy = log(y) + c = log(tan(x) + sec(x)) + c,

where c is a constant.

Example 2.74. Assume cosh(x) = 13
2 and x ∈ R>0. Find sinh(x) and tanh(x).

Proof. Using that cosh2(x)− sinh2(x) = 1,

sinh(x) =

√
sinh2(x) =

√
cosh2(x)− 1 =

√(
13
2

)2 − 1 =

√
169

4
− 1 =

√
169− 4

4
=

√
165

2
,

and

tanh(x) =
sinh(x)

cosh(x)
=

√
165
2
13
2

=

√
165

13
.
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Example 2.75. Evaluate∫
ex dx,

∫
e10x dx, and

∫
e−31x dx.

Proof. ∫
ex dx = ex + c where c is a constant, since

dex

dx
= ex.

∫
e10x dx =

e10x

10
+ c where c is a constant, since

d
(
e10x

10

)
dx

=
1

10
e10x · 10 = e10x.

∫
e−31x dx =

e−31x

−31
+ c where c is a constant, since

d
(
e−31x

−31

)
dx

=
1

−31
e−31x · (−31) = e−31x.

Example 2.76. Evaluate

∫
2x dx.

Proof.∫
2x dx =

∫ (
elog(2)

)x
dx =

∫
ex log(2) dx =

ex log(2)

log(2)
+ c =

2x

log(2)
+ c, where c is a constant,

since
d 2x

log(2)

dx
=

d ex log(2)

log(2)

dx
=

1

log(2)
ex log(2) · log(2) = ex log(2) = 2x.

Example 2.77. Evaluate

∫
38x dx.

Proof.∫
38x dx =

∫ (
elog(38)

)x
dx =

∫
ex log(38) dx =

ex log(38)

log(38)
+ c =

38x

log(38)
+ c, where c is a constant,

since
d 38x

log(38)

dx
=

d ex log(38)

log(38)

dx
=

1

log(38)
ex log(38) · log(38) = ex log(38) = 38x.

Example 2.78. Evaluate

∫
cos(x)

sin(x)2
dx.

Proof.∫
cos(x)

sin(x)2
dx =

cos(x)

sin(x)
· 1

sin(x)
dx =

∫
cot(x) csc(x) dx = − csc(x) + c, where c is a constant.

Example 2.79. Evaluate

∫
1

1 + cos(x)
dx.
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Proof. ∫
1

1 + cos(x)
dx =

∫
1

1 + cos(x)

(1− cos(x))

(1− cos(x))
dx =

∫
1− cos(x)

sin(x)2
dx

=

∫ ( 1

sin(x)2
− cos(x)

sin(x)2

)
dx =

∫
(csc(x)2 − cot(x) csc(x)) dx

= − cot(x) + csc(x) + c, where c is a constant.

Example 2.80. Evaluate

∫
e3x sin(2x) dx

(
and

∫
e3x cos(2x) dx

)
.

Proof. ∫
e3x cos(2x) dx+ i

∫
e3x sin(2x) dx =

∫
e3x(cos(2x) + i sin(2x)) dx =

∫
e3xei2x dx

=

∫
e(3+2i)x dx =

1

3 + 2i
e(3+2i)x + (c1 + c2i) =

(3− 2i)

(3 + 2i)(3− 2i)
e3xe2ix + c1 + ic2

=
(3− 2i)

9 + 4
e3x(cos(2x) + i sin(2x)) + c1 + ic2

= 1
13e

3x(3 cos(2x) + i3 sin(2x)− i2 cos(2x) + 2 sin(2x)) + c1 + ic2

=
(

1
13e

3x(3 cos(2x) + 2 sin(2x)) + c1

)
+ i
(

1
13e

3x(3 sin(2x)− 2 cos(2x)) + c2

)
,

where c1 and c2 constants. So∫
e3x cos(2x) dx = e3x( 3

13 cos(2x) +
2
13 sin(2x)) + c1 and∫

e3x sin(2x) dx = e3x( 3
13 sin(2x)−

2
13 cos(2x)) + c2,

where c1 and c2 constants.

2.3 Inverse functions

Example 2.81. Explain why

e0 = 1 turns into log(1) = 0,

exey = ex+y turns into log(ab) = log(a) + log(b),

e−x =
1

ex
turns into log

(
1

a

)
= − log a, and

(ex)y = eyx turns into log(ab) = b log a.

Proof.

(a) log(1) = log(e0) = 0.

(b) log(ab) = log(elog(a) · elog(b)) = log(elog(a)+log(b)) = log(a) + log(b).

(c) log

(
1

a

)
= log

(
1

elog(a)

)
= log

(
e− log(a)

)
= − log(a).

(d) log(ab) = log
((

elog(a)
)b)

= log
(
eb log(a)

)
= b log(a).
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Example 2.82. Find
d log(x)

dx
.

Proof. Let y = log(x) so that ey = x. Taking the derivative d
dx of both sides gives

ey
dy

dx
= 1, and so

dy

dx
=

1

ey
=

1

x
.

So
d log(x)

dx
=

1

x
.

Example 2.83. Find lim
x→0

log(1 + x)

x
.

Proof. By example 2.82

d log(1 + x)

dx
=

1

1 + x
= 1− x+ x2 − x3 + x4 − x5 + · · · ,

since

(1+x)(1− x+ x2 − x3 + x4 − x5 + · · · )
= (1− x+ x2 − x3 + x4 − x5 + · · · ) + (x− x2 + x3 − x4 + x5 + · · · ) = 1.

So

log(1 + x) =

∫
d log(1 + x)

dx
dx =

∫
1

1 + x
dx =

∫
(1− x+ x2 − x3 + x4 − x5 + · · · )dx

= x− 1
2x

2 + 1
3x

3 − 1
4x

4 + 1
5x

5 + · · · .

So
log(1 + x)

x
= 1− 1

2x+ 1
3x

2 − 1
4x

3 + 1
5x

4 + · · · and lim
x→0

log(1 + x)

x
= 1.

Example 2.84. Prove that

arcsinh(x) = log(x+
√

x2 + 1), arcsin(x) = (−i) log(x+ i
√
x2 + 1),

arccosh(x) = log(x+
√

x2 − 1), arccos(x) = (−i) log(x+
√
x2 + 1),

arctanh(x) = 1
2 log

(1 + x

1− x

)
, arctan(x) = (−i)12 log

( i+ x

i− x

)
.

Proof. (a) Let y = arcsin(x). Then x = sinh(y) = (−i)12(e
iy − e−iy) and

2ix = eiy − e−iy and 2ixey = (eiy)2 − 1.

So (eiy)2 − 2ixey + 1 = 0 and

eiy =
2ix±

√
−4x2 − 4

2
= x±

√
−x2 − 1 and iy = log(x± i

√
x2 + 1).

So
arcsin(x) = (−i) log(x± i

√
x2 + 1).
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(b) Let y = arccos(x). Then x = cos(y) = 1
2(e

iy + e−iy) and

2x = eiy − e−iy and 2xeiy = (eiy)2 + 1.

So (eiy)2 − 2xeiy − 1 = 0 and

eiy =
2x±

√
4x2 + 4

2
= x±

√
x2 + 1 and iy = log(x±

√
x2 + 1).

So
arccos(x) = (−i) log(x±

√
x2 + 1).

(c) Let y = arctan(x) then

x = tan(y) =
1
2(e

iy − e−iy)

(−i)12(e
iy + e−iy)

= i
(eiy)2 − 1

(eiy)2 + 1
.

So
(eiy)2x+ x = i(eiy)2 − i and (i− x)(eiy)2 = i+ x.

So

e2iy =
i+ x

i− x
and 2iy = log

( i+ x

i− x

)
.

So

arctan(x) = (−i)12 log
( i+ x

i− x

)
.

(d) Let arcsinh(x) = y. Then x = sinh(y) and using cosh2 x− sinh2 x = 1,

log
(
x+

√
x2 + 1

)
= log

(
sinh(y) +

√
sinh2(y) + 1

)
= log

(
sinh(y) +

√
cosh2(y)

)
= log

(
sinh(y) + cosh(y)

)
= log

(ey − e−y

2
+

ey + e−y

2

)
= log

(2ey
2

)
= log(ey) = y = arcsinh(x).

Example 2.85. Explain why
d log(x)

dx
=

1

x
.

Proof. Since elog(x) = x then
delog(x)

dx
=

dx

dx
.

So elog(x)
d log(x)

dx
= 1. So x

d log(x)

dx
= 1. So

d log(x)

dx
=

1

x
.

Example 2.86. Find
d arcsin(x)

dx
.

Proof. Since sin(arcsin(x)) = x then
d sin(arcsin(x))

dx
=

dx

dx
.

So cos(arcsin(x))
d arcsin(x)

dx
= 1. So

d arcsin(x)

dx
=

1

cos(arcsin(x))
.

So we would like to “simplify” cos(arcsin(x)).
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Since 1− cos2(arcsin(x)) = sin2(arcsin(x)) then 1−
(
cos(arcsin(x))

)2
=
(
sin(arcsin(x))

)2
.

So 1−
(
cos(arcsin(x))

)2
= x2. So 1− x2 =

(
cos(arcsin(x))

)2
.

So cos(arcsin(x)) =
√
1− x2. So

d arcsin(x)

dx
=

1

cos(arcsin(x))
=

1√
1− x2

.

Example 2.87. Find
d arccos(x)

dx
.

Proof. Since cos(arccos(x)) = x then
d cos(arccos(x))

dx
=

dx

dx
.

So − sin(arccos(x))
d arccos(x)

dx
= 1. So

d arccos(x)

dx
=

−1

sin(arccos(x))
.

So we would like to “simplify” sin(arccos(x)).

Since 1− sin2(arccos(x)) = cos2(arccos(x)) then 1−
(
sin(arccos(x))

)2
=
(
cos(arccos(x))

)2
.

So 1−
(
sin(arccos(x))

)2
= x2. So 1− x2 =

(
sin(arccos(x))

)2
.

So sin(arccos(x)) =
√
1− x2. So

d arccos(x)

dx
=

−1

sin(arccos(x))
=

−1√
1− x2

.

Example 2.88. Find
d arctan(x)

dx
.

Proof. Since tan(arctan(x)) = x then
d tan(arctan(x))

dx
=

dx

dx
.

So sec2(arctan(x))
d arctan(x)

dx
= 1.

So
d arctan(x)

dx
=

1

sec2(arctan(x))
.

So we would like to “simplify” sec2(arctan(x)).

Since sin(x)2 + cos(x)2 = 1 then
sin(x)2

cos(x)2
+

cos(x)2

cos(x)2
=

1

cos(x)2
.

So tan(x)2 + 1 = sec(x)2.

So sec2(arctan(x)) = tan2(arctan(x)) + 1 =
(
tan(arctan(x))

)2
+ 1 = x2 + 1.

So
d arctan(x)

dx
=

1

x2 + 1
.

Example 2.89. Find
d arccot(x)

dx
.

Proof. Since cot(arccot(x)) = x then
d cot(arccot(x)

dx
=

dx

dx
.

So − csc2(arccot(x))
darccot(x)

dx
= 1.

So
darccot(x)

dx
=

−1

csc2(arccot(x))
.

So we would like to “simplify” csc2(arccot(x)).

Since sin(x)2 + cos(x)2 = 1 then
sin(x)2

sin(x)2
+

cos(x)2

sin(x)2
=

1

sin(x)2
.
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So 1 + cot(x)2 = csc(x)2.

So csc(arccot(x))2 = 1 + cot(arccot(x))2 = 1 +
(
cot(arccot(x))

)2
= 1 + x2.

So
darccot(x)

dx
=

−1

1 + x2
.

Example 2.90. Find
d arcsec(x)

dx
.

Proof. Since sec(arcsec(x)) = x then
d sec(arcsec(x))

dx
=

dx

dx
.

So tan(arcsec(x)) sec(arcsec(x))
d arcsec(x)

dx
= 1.

So tan(arcsec(x)) · x · d arcsec(x)

dx
= 1.

So
d arcsec(x)

dx
=

1

x tan(arcsec(x))
.

So we would like to “simplify” tan(arcsec(x)).

Since sin(x)2 + cos(x)2 = 1 then
sin(x)2

cos(x)2
+

cos(x)2

cos(x)2
=

1

cos(x)2
.

So tan(x)2 + 1 = sec(x)2.

So tan(arcsec(x))2 + 1 = sec(arcsec(x))2.

So
(
tan(arcsec(x))

)2
+ 1 =

(
sec(arcsec(x))

)2
.

So
(
tan(arcsec(x))

)2
+ 1 = x2.

So tan(arcsec(x)) =
√
x2 − 1.

So
d arcsec(x)

dx
=

1

x
√
x2 − 1

.

Example 2.91. Find
d arccsc(x)

dx
.

Proof. Since csc(arccsc(x)) = x,
d csc(arccsc(x))

dx
=

dx

dx
.

So − csc(csc−1 x) cot(arccsc(x))
d arccsc(x)

dx
= 1.

So −x cot(arccsc(x))
d arccsc(x)

dx
= 1.

So
d arccsc(x)

dx
=

−1

x cot(arccsc(x))
.

So we would like to “simplify” cot(arccsc(x)).

Since sin2 x+ cos2 x = 1 then
sin2 x

sin2 x
+

cos2 x

sin2 x
=

1

sin2 x
.

So 1 + cot2 x = csc2 x.

So 1 + cot2(arccsc(x)) = csc2(arccsc(x)).

So 1 +
(
cot(arccsc(x))

)2
=
(
csc(arccsc(x))

)2
.

So 1 +
(
cot(arccsc(x))

)2
= x2.
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So cot(arccsc(x)) =
√
x2 − 1.

So
d arccsc(x)

dx
=

−1

x
√
x2 − 1

.

Example 2.92. Simplify cosh(arcsinh(x)).

Proof. Let arcsinh(x) = y. Then x = sinh(y) and using cosh2 x− sinh2 x = 1,

cosh(arcsinh(x)) = cosh y =

√
1 + sinh2(y) =

√
1 + sinh2(arcsinh(x)) =

√
1 + x2.

Example 2.93. Prove that
d

dx
(arcsinh(x)) =

1√
x2 + 1

.

Proof. Let arcsinh(x) = y. Then x = sinh(y) and taking the derivative with respect to x gives

1 =
dx

dx
=

d sinh(y)

dx
= cosh(y)

dy

dx
.

Thus
d

dx
(arcsinh(x)) =

dy

dx
=

1

cosh(y)
=

1

cosh(arcsinh(x)
=

1√
x2 + 1

,

where the last equality uses cosh(arcsinh(x)) =
√
1 + x2 from Example 2.92.

2.4 Integration with square roots

Example 2.94. Let a ∈ C. Evaluate
∫ √

a2 − x2 dx.

Proof. ∫ √
a2 − x2 dx =

∫
a

√
1−

(
x
a

)2
dx =

∫
a
√

1− sin2 θ
dx

dθ
dθ, where x

a = sin θ,

=

∫
a
√
cos2 θ a cos θdθ =

∫
a2 cos2 θdθ =

∫
a2

2 (2 cos
2 θ − 1) + a2

2

)
dθ

=

∫ (
a2

2 cos(2θ) + a2

2

)
dθ = a2

2
1
2 sin(2θ) +

a2

2 θ + c

= a2

4 2 sin(θ) cos(θ) +
a2

2 θ + c = a2

2 sin(θ)
√
1− sin2 θ + a2

2 θ + c

= a2

2

x

a

√
1− (xa )

2 + a2

2 arcsin
(
x
a

)
+ c = a

2x
√

a2 − x2 + a2

2 arcsin
(
x
a

)
+ c,

where c is a constant.

Example 2.95. Evaluate

∫
1√

a2 − x2
dx.

Proof. ∫
1√

a2 − x2
dx =

∫
1

a
√
1−

(
x
a

)2 dx = arcsin
(
x
a

)
+ c, where c is a constant,

since
d

dx
(arcsin

(
x
a

)
) =

1√
1−

(
x
a

)2 · 1
a
.

34



Calculus Examples, Arun Ram, version: January 28, 2025

Example 2.96. Evaluate

∫
1

a2 + x2
dx.

Proof. ∫
1

a2 + x2
dx =

∫
1

a2(1 +
(
x
a

)2
)
dx =

1

a
arctan

(
x
a

)
+ c, where c is a constant,

since
d

dx
(arctan

(
x
a

)
) =

1√
1 +

(
x
a

)2 · 1
a
.

Example 2.97. Let a ∈ C. Evaluate
∫

1√
x2 − a2

dx.

Proof. ∫
1√

x2 − a2
dx =

∫ 1
a1√(
x
a

)2 − 1
dx =

∫ 1
a√

cosh(θ)2 − 1

dx

dθ
dθ, with

x

a
= cosh(θ),

=

∫ 1
a√

sinh(θ)2
a sinh(θ)dθ =

∫
1

sinh(θ)
sinh(θ)dθ =

∫
dθ

= θ + c = arccosh
(
x
a

)
+ c,

where c is a constant.

Example 2.98. Evaluate

∫
1√

x2 − 25
dx.

Proof. ∫
1√

x2 − 25
dx =

∫ 1
51√(
x
5

)2 − 1
dx

=

∫ 1
5√

cosh(θ)2 − 1

dx

dθ
dθ with

x

5
= cosh(θ),

=

∫ 1
5√

sinh(θ)2
5 sinh(θ)dθ =

∫
1

sinh(θ)
sinh(θ)dθ

=

∫
dθ = θ + c = arccosh

(
x
5

)
+ c,

where c is a constant.

Example 2.99. Evaluate

∫ 1

0

√
9− 4x2 dx.
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Proof.∫ 1

0

√
9− 4x2 dx =

∫ x=1

x=0
3
√

1− 4
9x

2 dx =

∫ 1

0
3

√
1−

(
2x
3

)2
dx

=

∫ x=1

x=0
3

√
1−

(
2x
3

)2
dx =

∫ x=1

x=0
3
√

1− sin(θ)2
dx

dθ
dθ where

2x

3
= sin(θ),

=

∫ x=1

x=0
3
√
cos(θ)

3

2
cos θdθ =

∫ x=1

x=0

9

2
cos(θ)dθ

=

∫ x=1

x=0

(
9
4(2 cos(θ)

2 − 1) + 9
4

)
dθ =

∫ x=1

x=0

(
9
4 cos(2θ) +

9
4

)
dθ

=
(
9
4
1
2 sin(2θ) +

9
4θ
)]x=1

x=0
=
(
9
4
1
22 sin(θ) cos(θ) +

9
4θ
)]x=1

x=0

=
(
9
4 sin(θ)

√
1− sin(θ)2 + 9

4θ
)]x=1

x=0
=
(
9
4
2
3x
√

1− (23x)
2 + 9

4arcsin
(
2
3x
))]x=1

x=0

= 3
2

√
1− 9

4 + 9
4arcsin(

2
3)− 0− 0 =

√
5

2
+ 9

4arcsin(
2
3).

2.5 Partial fractions and integration

Example 2.100. Find a, b such that
2x4 + 3x2

(x2 + 1)2(x2 + 2)
=

a

(x2 + 1)2
+

b

x2 + 2
.

Proof. Since (x2 + 1)2 = x2(x2 + 2) + 1 then

1 = (−x2)(x2 + 2) + (x2 + 1)2.

So

2x4 + 3x2

(x2 + 1)2(x2 + 2)
=

(2x2 − 1)(x2 + 2) + 2

(x2 + 1)2(x2 + 2)
=

2x2 − 1

(x2 + 1)2
+

2

(x2 + 1)2(x2 + 2)

=
2x2 − 1

(x2 + 1)2
+

2((−x2)(x2 + 2) + (x2 + 1)2)

(x2 + 1)2(x2 + 2)

=
2x2 − 1

(x2 + 1)2
+

−2x2

(x2 + 1)2
+

2

x2 + 2

=
−1

(x2 + 1)2
+

2

x2 + 2

Example 2.101. Find a, b, c such that
3x2 − 2x+ 1

(x+ 1)(x2 + 2x+ 2)
=

a

x+ 1
− b(2x+ 2)

x2 + 2x+ 2
− c

(x+ 1)2 + 1
.

Proof. Since x2 + 2x+ 2 = (x+ 1)(x+ 1) + 1 then

1 = (x2 + 2x+ 2)− (x+ 1)(x+ 1).
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So

3x2 − 2x+ 1

(x+ 1)(x2 + 2x+ 2)
=

3(x2 + 2x+ 2)− 8x− 5

(x+ 1)(x2 + 2x+ 2)
=

3

x+ 1
+

−8(x+ 1) + 3

(x+ 1)(x2 + 2x+ 2)

=
3

x+ 1
− 8

x2 + 2x+ 2
+

3((x2 + 2x+ 2)− (x+ 1)(x+ 1))

(x+ 1)(x2 + 2x+ 2)

=
3

x+ 1
− 8

x2 + 2x+ 2
+

3

x+ 1
− 3(x+ 1)

x2 + 2x+ 2

=
6

x+ 1
−

3
2(2x+ 2)

x2 + 2x+ 2
− 8

(x+ 1)2 + 1
.

Example 2.102. Find a, b such that
9x+ 1

(x− 3)(x+ 1)
=

a

x− 3
+

b

x+ 1
.

Proof. Since x+ 1 = (x− 3) + 4 then 4 = (x+ 1)− (x− 3) and

1 = 1
4(x+ 1)− 1

4(x− 3).

So

9x+ 1

(x− 3)(x+ 1)
=

9(x+ 1)− 8

(x− 3)(x+ 1)
=

9

x− 3
− 8

(x− 3)(x+ 1)

=
9

x− 3
−

8(14(x+ 1)− 1
4(x− 3)

(x− 3)(x+ 1)

=
9

x− 3
− 2

x− 3
+

2

x+ 1

=
7

x− 3
+

2

x+ 1
.

Example 2.103. Find a, b, c such that
4

x2(x+ 2)
=

a

x+ 2
+

b

x
+

c

x2
.

Proof. Since x2 − (x− 1)(x− 2) = 4 then

4

x2(x+ 2)
=

x2 − (x− 2)(x+ 2)

x2(x+ 2)
=

x2

x2(x+ 2)
− (x− 2)(x+ 2)

x2(x+ 2)

=
1

x+ 2
− x− 2

x2
=

1

x+ 2
− 1

x
+

2

x2

Example 2.104. Evaluate

∫
4

x2(x+ 2)
dx.
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Proof. Using x2 − (x− 2)(x+ 2) = 4 gives∫
4

x2(x+ 2)
dx =

∫
x2 − (x− 2)(x+ 2)

x2(x+ 2)
dx

=

∫
x2

x2(x+ 2)
dx−

∫
(x− 2)(x+ 2)

x2(x+ 2)
dx

=

∫
1

x+ 2
dx−

∫
x− 2

x2
dx

=

∫
1

x+ 2
dx−

∫
1

x
dx+

∫
2

x2
dx

= log(x+ 2) dx− log(x) + 2 · 1

−1
x−1 + c

= log(x+ 2) dx− log(x)− 2

x
+ c, where c is a constant.

Example 2.105. Evaluate

∫
5x4 + 13x3 + 6x2 + 4

x3 + 2x2
dx.

Proof.∫
5x4 + 13x3 + 6x2 + 4

x3 + 2x2
dx =

∫
5x(x3 + 2x2) + 3x3 + 6x2 + 4

x3 + 2x2
dx

=

∫
5x(x3 + 2x2) + 3(x3 + 2x2) + 4

x3 + 2x2
dx

=

∫
(5x+ 3) dx+

∫
4

x2(x+ 2)
dx

=
5

2
x2 + 3x+ log(x+ 2)− log(x)− 2

x
+ c, where c is a constant,

and the last line uses Example 2.104.

Example 2.106. Evaluate

∫
4x

(x2 + 4)(x− 2)
dx.

Proof. Using (x2 + 4)− (x− 2)(x− 2) = 4x gives∫
4x

(x2 + 4)(x− 2)
dx =

∫
(x2 + 4)− (x− 2)(x− 2)

(x2 + 4)(x− 2)
dx

=

∫
(x2 + 4)

(x2 + 4)(x− 2)
dx−

∫
(x− 2)(x− 2)

(x2 + 4)(x− 2)
dx

=

∫
1

x− 2
dx−

∫
x− 2

(x2 + 4)
dx

=

∫
1

x− 2
dx−

∫
1

2

2x

(x2 + 4)
dx−

∫
−2

x2 + 4
dx

=

∫
1

x− 2
dx− 1

2

∫
2x

(x2 + 4)
dx+ 2

∫ 1
4(

x
2

)2
+ 1

dx

=

∫
1

x− 2
dx− 1

2

∫
2x

(x2 + 4)
dx+

∫ 1
2(

x
2

)2
+ 1

dx

= log(x− 2)− 1
2 log(x

2 + 4) + arctan
(
x
2

)
+ c,
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where c is a constant.

2.6 Other integration examples

Example 2.107. Evaluate

∫
(6x2 + 10) sinh(x3 + 5x− 2) dx.

Proof. ∫
(6x2 + 10) sinh(x3 + 5x− 2) dx =

∫
2 sinh(x3 + 5x− 2)(3x2 + 5) dx

=

∫
2 sinh(y)

dy

dx
dx (with y = x3 + 5x+ 2)

=

∫
2 sinh(y) dy

= 2 cosh(y) + c = 2 cosh(x3 + 5x+ 2) + c,

where c is a constant.

Example 2.108. Evaluate

∫
sech2(3x)

10 + 2 tanh(3x)
dx.

Proof.∫
sech2(3x)

10 + 2 tanh(3x)
dx =

∫ 1
33 · 2sech

2(3x)

10 + 2 tanh(3x)
dx =

∫
1
3 · 1

10 + 2 tanh(3x)
· 3 · 2sech2(3x) dx

= 1
3

∫
1

y
· dy
dx

dx (with y = 10 + 2 tanh(3x))

= 1
3(log(y) + c′) = 1

3 log(y) + c = 1
3 log(10 + 2 tanh(3x)) + c,

where c and c′ are constants.

Example 2.109. Evaluate

∫
xe5x dx.

Proof.∫
xe5x dx = 1

5

∫
x5e5x dx = 1

5

∫
(x · 5e5x + e5x − e5x)dx = 1

5

∫
(x · 5e5x + e5x) dx− 1

5

∫
e5xdx

= 1
5

∫
d(xe5x)

dx
dx− 1

5

∫
e5xdx = 1

5(xe
5x)− 1

5 · 1
5e

5x + c

= 1
5xe

5x − 1
25 e5x + c,

where c is a constant.

Example 2.110. Evaluate

∫
x2 log(x) dx.
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Proof. Using backwards of the product rule,∫
x2 log(x) dx = 1

3

∫
3x2 log(x) dx = 1

3

∫
(3x2 log(x) + x3 1

x − x3 1
x) dx

= 1
3

∫
(3x2 log(x) + x3 1

x) dx− 1
3

∫
x3 1

x dx

= 1
3

∫
(3x2 log(x) + x3 1

x) dx− 1
3

∫
x2 dx

= 1
3x

3 log(x)− 1
3 · 1

3x
3 + c = 1

3x
3 log(x)− 1

9x
3 + c,

where c is a constant.
An alternate method would be to put x = ez so that dx

dz = ez. Then the integral becomes∫
x2 log(x)dx =

∫
e2z log(ez)

dx

dz
dz =

∫
e2zzezdz =

∫
ze3zdz = 1

3ze
3z − 1

9e
3z + c.

Example 2.111. Evaluate

∫
log(x) dx.

Proof. Using backwards of the product rule,∫
log(x) dx =

∫
(log(x) + x · 1

x
− x

1

x
) dx =

∫
(log(x) + x · 1

x
) dx−

∫
x
1

x
dx

=

∫
(log(x) + x · 1

x
) dx−

∫
1 dx = x log(x)− x+ c,

where c is a constant.

Example 2.112. Evaluate

∫
e3x sin(2x) dx.

Proof. This is a repeat of Example 2.80. This time do it by backwards of the product rule.∫
e3x cos(2x) dx = 1

3

∫
3e3x cos(2x) dx = 1

3

∫ (
3e3x cos(2x)− 2e3x sin(2x)) + 2e3x sin(2x)

)
dx

= 1
3

∫ (
3e3x cos(2x)− 2e3x sin(2x)

)
dx+ 2

9

∫
3e3x sin(2x) dx

= 1
3e

3x cos(2x) + 2
9

∫ (
(3e3x sin(2x) + 2e3x cos(2x))− 2e3x cos(2x)

)
dx

= 1
3e

3x cos(2x) + 2
9e

3x sin(2x)− 4
9

∫
e3x cos(2x) dx

then
13
9

∫
e3x cos(2x) dx = 1

3e
3x cos(2x) + 2

9e
3x sin(2x) + c′, where c′ is a constant.

So ∫
e3x cos(2x) dx = 3

13e
3x cos(2x) + 2

13e
3x sin(2x) + c, where c is a constant.

Example 2.113. Evaluate

∫
cosh4(θ) dθ.
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Proof. ∫
cosh4(θ) dθ =

∫ (1
2
(eθ + e−θ)

)4
dθ

=

∫
1

24
(
e4θ + 4e(3−1)θ + 6e(2−2)θ + 4e(1−3)θ + e−4θ

)
dθ

=

∫
1

24
(
2 cosh(4θ) + 4 · 2 cosh(2θ) + 6

)
dθ

=
1

24
(
2
1

4
sinh(4θ) + 4 · 2 · 1

2
sinh(2θ) + 6θ

)
+ c

=
1

25
sinh(4θ) +

1

22
sinh(2θ) +

3

23
θ + c, where c is a constant.

Example 2.114. Evaluate

∫
sinh5(x) cosh6(x) dx.

Proof.∫
sinh5(x) cosh6(x) dx =

∫
sinhx sinh4(x) cosh6(x) dx

=

∫
sinhx(sinh2(x))2 cosh6(x) dx

=

∫
sinhx(1− cosh2(x))2 cosh6(x) dx

=

∫
sinhx(1− 2 cosh2(x) + cosh4(x)) cosh6(x) dx

=

∫
sinhx(cosh6(x)− 2 cosh8(x) + cosh10(x)) dx

=
1

7
cosh7(x)− 2

9
cosh9(x) +

1

11
cosh11(x) + c, where c is a constant.

Example 2.115. Evaluate

∫
sinh5(x) cosh7(x) dx.

Proof.∫
sinh5(x) cosh7(x) dx =

∫
sinh(x) sinh4(x) cosh7(x) dx

=

∫
sinh(x)(1− cosh2(x))2 cosh7(x) dx

=

∫
sinh(x)(1− 2 cosh2(x) + cosh4(x)) cosh7(x) dx

=

∫
sinh(x)(cosh7(x)− 2 cosh9(x) + cosh11(x)) dx

=
1

8
cosh8(x)− 2

10
cosh10(x) +

1

12
cosh12(x) + c, where c is a constant.
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Example 2.116. Evaluate

∫
ex cos(3x)dx.

Proof. ∫
ex cos(3x)dx =

∫
ex

1

2
(e3ix + e−3ix)dx =

1

2

∫
(e(1+3i)x + e(1−3i)x)dx

=
1

2(1 + 3i)
e(1+3i)x +

1

2(1− 3i)
e(1−3i)x + c

=
(1− 3i)

2(1 + 9)
e(1+3i)x +

(1 + 3i)

2(1 + 9)
e(1−3i)x + c

=
1

20
ex
(
(1− 3i)e3ix + (1 + 3i)e−3ix

)
+ c

=
1

20
ex
(
e3ix + e−3ix − 3i(e3ix − e−3ix)

)
+ c

=
1

10
ex
(
cos(3x) + 3 sin(3x)

)
+ c

=
1

10
ex cos(3x) +

3

10
ex sin(3x) + c

Check:

d

dx
(
1

10
ex cos(3x) +

3

10
ex sin(3x)) =

1

10
ex(−3 sin(3x) + 9 cos(3x)) +

1

10
ex(cos(3x) + 3 sin(3x)

Example 2.117. Evaluate

∫
e−2x sin(11x)dx

Proof.∫
e−2x sin(11x)dx =

∫
e−2x 1

2
(−i)(e11ix − e−11ix)dx = (−i)

1

2

∫
(e(−2+11i)x − e(−2−11i)x)dx

= (−i)
1

2(−1 + 11i)
e(−2+11i)x − 1

2(−2− 11i)
e(−2−11i)x + c

= (−i)
(−2− 11i)

2(4 + 121)
e(−2+11i)x − (−2 + 11i)

2(4 + 121)
e(−2−11i)x + c

= (−i)
1

125
· 1
2
e−2x

(
(−2− 11i)e11ix − (−2 + 11i)e−11ix

)
+ c

= (−i)
1

125
· 1
2
e−2x

(
(−2)(e11ix − e−11ix)− 11i(e11ix + e−11ix)

)
+ c

=
1

125
e−2x

(
(−2) sin(11x)− 11 cos(11x)

)
+ c

=
−2

125
e−2x sin(11x)− 11

125
e−2x cos(11x) + c

Check:

d

dx
(
−2

125
e−2x sin(11x) +

−11

125
e−2x cos(11x))

=
1

125
e−2x(−22 cos(11x) + 121 sin(11x)) +

1

125
e−2x(−2)(−2 sin(11x)− 11 cos(11x)

Example 2.118. Evaluate

∫
e5x cos(7t)dt.
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2.7 Additional derivative examples

Example 2.119. Find
dy

dx
when y = logx 10.

Proof.
xy = xlogx 10 = 10.

Take the derivative:

d xy

dx
=

d (elog(x))y

dx
=

d ey log(x)

dx
= ey lnx

(
y · 1

x
+

dy

dx
log(x)

)
=

d10

dx
= 0.

So ey log(x)
(
y · 1

x
+

dy

dx
log(x)

)
= 0.

Solve for
dy

dx
.

ey log(x)
dy

dx
log(x) =

−ey log(x)y

x
. So

dy

dx
=

−ey log(x)y

xey log(x) log(x)
=

−y

x log(x)
=

logx 10

x log(x)
.

Example 2.120. Find the third derivative of 2x with respect to x.

Proof. y = 2x.

dy

dx
=

d2x

dx
=

2(elog(2))x

dx
=

dex log(2)

dx
= ex log(2)(log(2)) = (elog(2))x log(2) = 2x log(2).

d2y

dx2
=

d

dx

(
dy

dx

)
=

d2x log(2)

dx
= log(2) · 2x log(2) = (log(2))22x.

d3y

dx3
=

d

dx

(
d2y

dx2

)
=

d

dx

(
log(2))22x

)
= (log(2))22x log(2) = (log(2))32x.

Example 2.121. Let a, b ∈ C. Show that if y = a cos(log(x)) + b sin(log(x)) then

x2
d2y

dx2
+ x

dy

dx
+ y = 0.

Proof.

dy

dx
= a(− sin(log(x)))

1

x
+ b cos(log(x))

1

x
= −a sin(log(x))x−1 + b cos(log(x))x−1,

d2y

dx2
= −a cos(log(x))

1

x
x−1 +−a sin(log(x))(−1)x−2 + −b sin(log(x))

1

x
x−1 + b cos(log(x))(−1)x−2

=
−a cos(log(x)) + a sin(log(x))− b sin(log(x))− b cos(log(x))

x2

=
1

x2
(
(a− b) sin(log(x))− (a+ b) cos(log(x))

)
.
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So

LHS = x2
d2y

dx2
+ x

dy

dx
+ y

= x2
1

x2
(
(a− b) sin(log(x))− (a+ b) cos(log(x))

)
+ x
(
− a sin(log(x))x−1 + b cos(log(x))x−1

)
+ a cos(log(x)) + b sin(log(x))

= (a− b) sin(log(x))− (a+ b) cos(log(x))

− a sin(log(x)) + b cos(log(x))

+ b sin(log(x)) + a cos(log(x))

= 0.

Example 2.122. Let a, b ∈ C. Find
dy

dx
when a sin(xy) + b cos

(
x
y

)
= 0.

Proof. Take the derivative:

0 = a cos(xy)

(
x
dy

dx
+ 1 · y

)
+ −b sin

(
x

y

)(
x(−1)y−2 dy

dx
+ 1 · y−1

)
= a cos(xy)x

dy

dx
+ a cos(xy)y + b sin

(
x

y

)
x

y2
dy

dx
− b sin

(
x

y

)
y−1.

Solve for
dy

dx
.

a cos(xy)x
dy

dx
+ b sin

(
x

y

)
x

y2
dy

dx
= a cos(xy)y − b sin

(
x

y

)
y−1.

So

dy

dx
=

a cos(xy)y − b sin

(
x

y

)
y−1

a cos(xy)x+ b sin

(
x

y

)
x

y2

=

a cos(xy)y3 − b sin

(
x

y

)
y

a cos(xy)xy2 + b sin

(
x

y

)
x

Example 2.123. Let a ∈ C. Find
dy

dx
when y = tan−1

(a
x

)
· cot−1

(x
a

)
.
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Proof.

dy

dx
= tan−1

(a
x

)( −1

1 +
(x
a

)2
)
1

a
+

1

1 +
(x
a

)2 (−1)ax−2 cot−1
(x
a

)

=
− tan−1

(a
x

)
a+

x2

a

+
− cot−1

(x
a

)
a

x2 + a2

=
− tan−1

(a
x

)
a

a2 + x2
+

− cot−1
(x
a

)
a

x2 + a2

=

(
−a

a2 + x2

)(
tan−1

(a
x

)
+ cot−1

(x
a

))
.

If
a

x
= tan z then

x

a
= cot z and z = tan−1

(a
x

)
= cot−1

(x
a

)
.

So

dy

dx
=

(
−a

a2 + x2

)(
tan−1

(a
x

)
+ tan−1

(a
x

))
=

−2a tan−1
(a
x

)
a2 + x2

.

Example 2.124. Find dy
dx when y =

(x+ 2)
5
2

(x+ 6)
1
2 (x+ 3)

7
2

.

Proof. Sometimes it can simplfy calculations to take the log of both sides before taking the derivative.

log(y) = log
( (x+ 2)

5
2

(x+ 6)
1
2 (x+ 3)

7
2

)
= log

(
(x+ 2)

5
2
)
− log

(
(x+ 6)

1
2
)
− log

(
(x+ 3)

7
2
)

=
5

2
log(x+ 2)− 1

2
log(x+ 6)− 7

2
log(x+ 3).

So, by taking the derivative with respect to x,

1

y
· dy
dx

=
5

2

1

(x+ 2)
− 1

2
· 1

(x+ 6)
− 7

2

1

(x+ 3)
.

So

dy

dx
= y
(5
2

1

(x+ 2)
− 1

2
· 1

(x+ 6)
− 7

2

1

(x+ 3)

)
=

(x+ 2)
5
2

(x+ 6)
1
2 (x+ 3)

7
2

(5
2

1

(x+ 2)
− 1

2
· 1

(x+ 6)
− 7

2

1

(x+ 3)

)

Example 2.125. If xmyn = (x+ y)m+n show that dy
dx = yx.
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Proof. Sometimes it can simplfy calculations to take the log of both sides before taking the derivative.
Since

log(xmyn) = log((x+ y)m+n) then log(xm) + log(yn) = (m+ n) log(x+ y)

and
m log(x) + n log(y) = (m+ n) log(x+ y).

Take the derivative with respect to x.

m

x
+

n

y

dy

dx
= (m+ n)

1

x+ y

(
1 +

dy

dx

)
.

So
m

x
+

n

y

dy

dx
=

(m+ n)

x+ y
+

(m+ n)

x+ y

dy

dx
.

So (n
y
− m+ n

x+ y

)dy
dx

=
m+ n

x+ y
− m

x
.

So (nx+ ny −my − ny

y(x+ y)

)dy
dx

=
mx+ nx−mx−my

x(x+ y)
.

So (nx−my

y

)dy
dx

=
nx−my

x
.

So
dy

dx
=

y

x
.

Example 2.126. Let a ∈ C. Find
dy

dx
when y = ax + etan(x) + (cot(x))cos(x).

Proof. Since

y = (elog(a))x + etan(x) +
(
elog(cot(x))

)cos(x)
= ex log(a) + etan(x) + ecos(x) log(cot(x))

then

dy

dx
= ex log(a) log(a) + etan(x) sec(x)2 + ecos(x) log(cot(x))

(cos(x)(− csc(x)2)

cot(x)
+ (− sin(x)) log(cot(x))

)
= ex log(a) log(a) + etan(x) sec(x)2 + ecos(x) log(cot(x))

(cos(x) −1
sin(x)2

cos(x)
sin(x)

+ (− sin(x)) log(cot(x))
)

= ax log(a) + etan(x) sec(x)2 + (cot(x))cos(x)
(
− csc(x)− sin(x) log(cot(x))

)
.

Example 2.127. Find dy
dx when y = xx

x
. .

.

.
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Proof. Since y = xy then y = (elog(x))y = ey log(x). So

dy

dx
= ey log(x)

d(y log(x)

dx
= ey log(x)

(y
x
+

dy

dx
log(x)

)
.

So
dy

dx
=

y

x
ey log(x) + log(x)ey log(x)

dy

dx
.

So

(1− log(x)ey log(x))
dy

dx
=

y

x
xy.

So
dy

dx
=

yxy

x

1− log(x) · xy
=

yxy

x(1− xy log(x))
.

2.8 Equations

Example 2.128. Solve the equation
d2y

dx2
= 0.

Proof. If y = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + · · · then

0 =
d2y

dx2
= 2c2 + 3 · 2c3x+ 4 · 3c4x2 + · · · so that y = c0 + c1x,

since c2c2 = 0, 6c3 = 0, 12c4 = 0, . . .. So

y = c0 + c1x, where c0 and c1 are constants.

Example 2.129. Solve the equation
dy

dx
= cos(x).

Proof. Since∫
dy

dx
dx =

∫
cos(x)dx then y = sin(x) + C, where C is a constant.

Let’s check this answer: Let y = sin(x) + C. Then

dy

dx
=

d

dx
(sin(x) + C) = cos(x) + 0 = cos(x).

Example 2.130. Solve the equation
dy

dx
= y.

Proof. Since
1

y
· dy
dx

= 1 then

∫
1

y

dy

dx
dx =

∫
1 dx.

So
log(y) = x+ C, where C is a constant.

47



Calculus Examples, Arun Ram, version: January 28, 2025

So
y = ex+C = eCex = cex, where c is a constant.

where c is a constant.

Let’s check this answer: Let c be a constant and let y = cex. Then

dy

dx
=

d

dx
(cex) = c

dex

dx
= cex = y.

Example 2.131. Solve the equation
dy

dx
= y

1
3 .

Proof. Since

y−
1
3
dy

dx
= 1 then

∫
y−

1
3
dy

dx
dx =

∫
1 dx.

So
3
2y

2/3 = x+ C, where C is a constant.

So
y2/3 = 2

3x+ c and y = (23x+ c)3/2,

where c is a constant.

Let’s check this answer: Let c be a constant and let y = (23x+ c)3/2. Then

dy

dx
=

d

dx

(
(23x+ c)3/2

)
= 3

2(
2
3x+ c)

1
2 · 2

3 = (23x+ c)
1
2 and

y1/3 = ((23x+ c)3/2)
1
3 = (23x+ c)1/2.

So
dy

dx
= y

1
3 .

Example 2.132. Verify by substitution that y = x2 + 2
x is a solution of the equation dy

dx + y
x = 3x.

Proof. Letting y = x2 + y
x then

dy

dx
+

y

x
= (2x− 2x−2) +

1

x
(x2 +

2

x
) = 2x− 2x−2 + x+ 2x−2 = 3x,

which verifies that y satisfies the equation
dy

dx
+

y

x
= 3x.

Example 2.133. Solve the equation
dy

dx
= x3.

Proof.

y =

∫
dy

dx
dx =

∫
x3 dx = 1

4x
4 + c, where c is a constant.
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Sample graphs of the real solutions of these equations for c ∈ {−2, 0, 2, 4} are

Graphs of y = 1
4x

4 + c

Example 2.134. Solve the equation
dy

dx
= x3 given that y(0) = 2.

Proof. Since dy
dx = x3 then

y =

∫
dy

dx
dx =

∫
x3 dx = 1

4x
4 + c, where c is a constant.

Since y(0) = 2 then 1
40

4 + c = 2 and c = 2.
So y = 1

4x
4 + 2.

Example 2.135. Solve the equation
dy

dx
=

y

1 + x
.

Proof. Integrating both sides of
1

y

dy

dx
=

1

1 + x
gives∫

1

y

dy

dx
dx =

∫
1

1 + x
dx and log(y) = log(1 + x) + c, where c is a constant.

So
y = elog(y) = elog(1+x)+c = ecelog(1+x) = A(1 + x), where A is a constant.

Sample graphs of the real solutions of these equations for A ∈ {−2,−1, 1, 2} are

Real solutions of y = A(1 + x)
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Example 2.136. Solve the equation
dy

dx
=

−x

y
with y(0) = 3.

Proof. Integrating both sides of y
dy

dx
= −x gives∫

y
dy

dx
dx =

∫
−x dx and

1

2
y2 = −1

2
x2 + c, where c is a constant.

So y2 = −x2 + d, where d is a constant. Sample graphs of real solutions these equations for d ∈
{1, 2, 3, 4} are

Real solutions of y2 = −x2 + d

Since y(0) = 3 then −02 + 2c = 32 and 2c = 9. So y =
√
−x2 + 2 =

√
9− x2. The graph of this

solution is the blue semicircle going through (0, 3).

Example 2.137. Solve x
dy

dx
+ y = ex.

Proof. Since
d

dx
(xy) = x

dy

dx
+ y = ex then integrating both sides with respect to x gives∫

d

dx
(xy) dx =

∫
ex dx and xy = ex + c, where c is a constant.

So y = 1
xe

x + c 1x , where c is a constant.

Example 2.138. Solve the equation
dy

dx
+

y

x
= sinx.

Proof. Since x
dy

dx
+ y = x sinx then integrating both sides gives

xy =

∫
x sinx dx

∫
((x sinx− cosx) + cosx

)
dx = −x cosx+

∫
cosx dx = −x cosx+ sinx+ c,

where c is a constant. So

y = − cosx+
1

x
sinx+ c

1

x
, where c is a constant.
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Example 2.139. Solve 1
2

dy

dx
− xy = x with y(0) = −3.

Proof. Since
1

2

dy

dx
= x(y + 1) then

1

2

1

(y + 1)

dy

dx
= x and integrating both sides with respect to x gives

∫
1

2

1

(y + 1)

dy

dx
dx =

∫
x dx and 1

2 log(y + 1) = 1
2x

2 + c, where c is a constant.

Since y(0) = −3 then 1
2 log(−3 + 1) = 1

20
2 + c and 2c = log(−3 + 1). Thus

log(y + 1) = x2 + log(−2) and y + 1 = ex
2+log(−2) = ex

2
elog(−2) = ex

2
(−2) = −2ex

2
.

Thus
y = −1− 2ex

2
.

Example 2.140. Solve the differential equation
dy

dx
=

y

x
+ cos

( y
x

)2
by substituting u = y

x .

Proof. If u = y
x then xu = y and

dy

dx
= x

du

dx
+ u. So

dy

dx
=

y

x
+ cos

(y
x

)2
is the same as x

du

dx
+ u = u+ cos(u)2.

So
1

cos(u)2
du

dx
=

1

x
, or equivalently sec(u)2

du

dx
=

1

x
,

and integrating both sides with respect to x gives

tan(u) = log(x) + c, where c is a constant.

So u = arctan(log(x) + c) and y
x = arctan(log(x) + c) and

y = x arctan(log(x) + c), where c is a constant.

Example 2.141. Let y′ = dy
dx . Solve the equation y′ + 3y = 0.

Proof. Let D = d
dx . Then the equation is

(D + 3)y = 0 or, equivalently, Dy = −3y.

Solutions are
y = c2e

−3x, where c2 is a constant,

Let’s check this answer: Let c2 be a constant and let y = c2e
−3x. Then

dy

dx
=

d

dx
(c2e

−3x) = (−3)e−3x = −3y.

Example 2.142. Let y′ = dy
dx . Solve the equation y′ + 4y = 0.
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Proof. Let D = d
dx . Then the equation is

(D + 4)y = 0 or, equivalently, Dy = −4y.

Solutions are
y = c1e

−4x, where c1 is a constant,

Let’s check this answer: Let c1 be a constant and let y = c1e
−4x. Then

dy

dx
=

d

dx
(c1e

−4x) = c1(−4)e−4x = −4y.

Example 2.143. Let y′ = dy
dx and y′′ = d2y

dx2 . Solve the equation y′′ + 7y′ + 12y = 0.

Proof. Let D = d
dx . Then D2 = d2

dx2 and the equation is (D2 + 7D + 12)y = 0. So the equation is

(D + 4)(D + 3)y = 0, or, equivalently (D + 3)(D + 4)y = 0,

From Example 2.141 and Example 2.142, the equation (D + 3)(D + 4)y = 0 has solutions

y = c1e
−4x + c2e

−3x, where c1 and c2 are constants.

Let’s check this answer: Let c1 and c2 be constants and let y = c1e
−4x + c2e

−3x. Then

(D + 4)(D + 3)y = (D + 4)(D + 3)(c1e
−4x + c2e

−3x)

= (D + 4)(D + 3)c1e
−4x + (D + 3)(D + 4)c2e

−3x

= (D + 4)0 + (D + 3)0 = 0 + 0 = 0.

Example 2.144. Solve the equation y′′ + 2y′ + y = 0.

Proof. Let D = d
dx . Then D2 = d2

dx2 and the equation is

(D2 + 2D + 1)y = 0, or, equivalently, (D + 1)2y = 0.

Let z = exy so that y = e−xz. By the product rule

(D + 1)e−xz = e−x(Dz) + (D(e−x))z + e−xz = e−xDz − e−xz + e−xz = e−xDz.

So
0 = (D + 1)2y = (D + 1)(D + 1)exz = (D + 1)exDz = exDDz = exD2z.

So the equation
(D + 1)2y = 0 is equivalent to D2z = 0.

Since the equation D2z = 0 has solutions z = c1+c2x where c1 and c2 are constants then the equation
(D + 1)2y = 0 has solutions

y = e−xz = c1e
−x + c2xe

−x, where c1 and c2 are constants.
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Example 2.145. Let y′ = dy
dx and y′′ = d2y

dx2 . Solve the equation

y′′ − 4y′ + 13y = 0 subject to y(0) = 1 and y′(0) = 6.

Proof. Let D = d
dx . Then D2 = d2

dx2 and the equation (D2 − 4D + 13)y = 0 is

(D − (2 + 3i))(D − (2− 3i))2y = 0, which has solutions y = c1e
(2+3i)x + c2e

(2−3i)x

with c1, c2 ∈ C. Then
y′ = (2 + 3i)c1e

(2+3i)x + (2− 3i)c2e
(2−3i)x

and
1 = y(0) = c1e

0 + c2e
0 = c1 + c2 and 6 = y′(0) = (2 + 3i)c1 + (2− 3i)c2.

Solving for c1 and c2 gives 6 = 2 · 1 + 3i(c1 − c2) so that c1 + c2 = 1 and c1 − c2 = −4
3 i.

So c1 =
1
2 − 2

3 i and c2 =
1
2 + 2

3 i and

y = (12 − 2
3 i)e

(2+3i)x + (12 + 2
3 i)e

(2−3i)x = 1
2e

2(e3ix + e−3ix)− 2
3 ie

2(e3ix − e−3ix)

= e2 cos(3x)− 4
3e

2 sin(3x).

Example 2.146. Solve the equation y′′ + 2y′ − 8y = 1− 8x2.

Proof. Let D = d
dx . Then the equation (D2 + 2D − 8)y = 0 is

(D − 2)(D + 4)y = 0 which has solutions y = c1e
2x + c2e

−4x,

where c1, c2 ∈ C.
Let y = ax2 + bx+ c so that y′ = 2ax+ b and y′′ = 2a. Then

1− 8x2 = y′′ + 2y′ − 8y = 2a+ 2(2ax+ b)− 8(ax2 + bx+ c) = −8ax2 + (4a− 8b)x+ (2a+ 2b− 8c)

so that a = 1 and 4a− 8b = 0 and 2a+ 2b− 8c = 1. So a = 1 and b = 1
2 and c = 1

4 and

y = x2 + 1
2x+ 1

4 is a particular solution.

So the general solution to y′′ + 2y′ − 8y = 1− 8x2 is

y = c1e
2x + c2e

−4x + x2 + 1
2x+ 1

4 , with c1, c2 ∈ C.

Example 2.147. Solve the equation y′′ + 2y′ − 8y = e3x.

Proof. Let D = d
dx . Then the equation (D2 + 2D − 8)y = 0 is

(D − 2)(D + 4)y = 0 which has solutions y = c1e
2x + c2e

−4x,

where c1, c2 ∈ C.
Let y = ae3x so that y′ = 3ae3x and y′′ = 9ae3x. Then

e3x = y′′ + 2y′ − 8y = 9ae3x + 6ae3x − 8ae3x = 7ae3x gives a = 1
7 .

So
y = 1

7e
3x is a particular solution.

So the general solution to y′′ + 2y′ − 8y = e3x is

y = c1e
2x + c2e

−4x + 1
7e

3x, with c1, c2 ∈ C.
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Example 2.148. Solve the equation y′′ + 2y′ − 8y = 85 cos(x).

Proof. Let D = d
dx . Then the equation (D2 + 2D − 8)y = 0 is

(D − 2)(D + 4)y = 0 which has solutions y = c1e
2x + c2e

−4x,

where c1, c2 ∈ C.
(c) Let y = a cos(x) + b sin(x) so that y′ = −a sin(x) + b cos(x) and y′′ = −a cos(x)− b cos(x) and

85 cos(x) = y′′ + 2y′ − 8y = −a cos(x)− b sin(x)− 2a sin(x) + 2b cos(x)− 8a cos(x)− 8b sin(x)

= (−a+ 2b− 8a) cos(x) + (−b− 2a− 8b) sin(x) = (−9a+ 2b) cos(x) + (−2a− 9b) sin(x),

giving 9b = −2a and 85 = −9a+ 2b = (−9)−9
2 b+ 2b = 85

2 b. So b = 2 and a = −9
2 · 2 = −9. So

y = −9 cos(x) + 2 sin(x) is a particular solution.

The general solution to y′′ + 2y′ − 8y = 85 cos(x) is

y = c1e
2x + c2e

−4x − 9 cos(x) + 2 sin(x), with c1, c2 ∈ C.

Example 2.149. Solve the equation y′′ + 2y′ − 8y = 3− 24x2 + 7e3x.

Proof. Let D = d
dx . Then the equation (D2 + 2D − 8)y = 0 is

(D − 2)(D + 4)y = 0 which has solutions y = c1e
2x + c2e

−4x,

where c1, c2 ∈ C.
Since 3−24x2+7e3x = 3(1−8x2)+7e3x, the particular solutions for Example 2.146 and Example

2.147 give that
y = 3(12x+ 1

4) + 7 · 1
7e

3x is a particular solution

of y′′ + 2y′ − 8y = 3(1− 8x2) + 7e3x. The general solution to y′′ + 2y′ − 8y = 3(1− 8x2) + 7e3x is

y = c1e
2x + c2e

−4x + 3
2x+ 3

4 + e3x, with c1, c2 ∈ C.

Example 2.150. Solve the equation y′′ − y = ex.

Proof. Let D = d
dx . Then the equation (D2 − 1)y = 0 is

(D − 1)(D + 1)y = 0 which has solutions y = c1e
x + c2e

−x,

where c1, c2 ∈ C. If y = axex then y′ = axex + aex and y′′ = axex + aex + axe and

ex = y′′ − y = axex + 2aex − axex gives a = 1
2 ,

so that
y = 1

2xe
x is a particular solution.

The general solution to y′′ − y = ex is

y = c1e
x + c2e

−x + 1
2xe

x, with c1, c2 ∈ C.
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Example 2.151. Solve the equation y′′ + 2y′ + y = e−x.

Proof. Let D = d
dx . Then the equation (D2 + 2D + 1))y = 0 is

(D + 1)2y = 0 which has solutions y = c1e
−x + c2xe

−x,

where c1, c2 ∈ C. If y = ax2e−x then y′ = 2axe−x−ax2e−x = (2ax−ax2)e−x and y′′ = (2a−2ax)e−x−
(2ax− ax2)e−e = (2a− 4ax+ ax2)e−x and

e−x = y′′ + 2y′ + y = (2a− 4ax+ ax2 + 4ax− 2ax2 + ax2)e−x = 2ae−x gives a = 1
2 ,

so that
y = 1

2x
2e−x is a particular solution.

The general solution to y′′ + 2y′ + y = e−x is

y = c1e
−x + c2xe

−x + 1
2x

2e−x, with c1, c2 ∈ C.

Example 2.152. Solve the equation y′′ + 49y = 28 sin(7t).

Proof. Let D = d
dx . Then the equation (D2 + 2D + 1))y = 0 is

(D + 7i)(D − 7i)y = 0 which has solutions y = c1e
7it + c2e

−7it,

where c1, c2 ∈ C. Another way to write y = c1e
7it + c2e

−7it is

y = A cos(7t) +B sin(7t), where A and B are constants.

If y = at cos(7t) + bt sin(7t) then

y = at cos(7t) + bt sin(7t),

y′ = −7at sin(7t) + a cos(7t) + 7bt cos(7t) + b sin(7t)

= (7bt+ a) cos(7t) + (−7at+ b) sin(7t),

y′′ = −7(7bt+ a) sin(7t) + 7b cos(7t) + 7(−7at+ b) cos(7t) + (−7a) sin(7t)

= (−49at+ 14b) cos(7t) + (−49bt− 14a) sin(7t),

so that
y′′ + 49y = 14b cos(7t)− 14a sin(7t) giving b = 0 and a = −2.

Thus
y = −2t cos(7t) is a particular solution

and the general solution to y′′ + 49y = 28 sin(7t) is

y = A cos(7t) +B sin(7t)− 2t cos(7t), where A and B are constants.
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3 Graphing

3.1 Basic graphs

Example 3.1. Graph the lines {(x, y) ∈ R2 | y = x} and {(x, y) ∈ R2 | y = −x}.

Proof.

The line y = x the line y = −x

Example 3.2. Graph the parabolas {(x, y) ∈ R2 | y = x2} and {(x, y) ∈ R2 | y2 = x}.

Proof. These two graphs are flips of each other around the line y = x. The first graph is obtained
by plotting the points (0, 0), (1, 1), (−1, 1), (2, 4), (−2, 4) and connecting these points with a smooth
continuous curve.

The parabola y = x2 the parabola y2 = x

Example 3.3. Graph the circle {(x, y) ∈ R2 | x2 + y2 = 1}.

Proof. The set {(x, y) ∈ R2 | x2+y2 = 1} is the set of points in R2 that are distance 1 from the origin.

All points in R2 that are distance 1 from the origin.

The circle x2 + y2 = 1

Example 3.4. Graph the hyperbola {(x, y) ∈ R2 | x2 − y2 = 1}.
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Proof.

The hyperbola x2 − y2 = 1

Graphing notes:

(a) If y = 0 then x2 = 1. So x = ±1.

(b) If x = 0 then −y2 = 1 which is impossible for y ∈ R.

(c) The equation is 1−
( y
x

)2
=
(
1
x

)2
.

If x gets very big then 1
x gets closer and closer to 0 and the equation gets closer and closer to

1−
( y
x

)2
= 0. This is the same as

( y
x

)2
= 1, which is the same as y

x = ±1, i.e. y = ±x. So, as x gets
very large the equation gets closer and closer to y = x and y = −x. As x gets very negative the basic
hyperbola gets closer and closer to y = x and y = −x.

Asymptotes:
y = x is an asymptote of the basic hyperbola as x → +∞
y = −x is an asymptote of the basic hyperbola as x → +∞
y = x is an asymptote of the basic hyperbola as x → −∞
y = −x is an asymptote of the basic hyperbola as x → −∞.

Example 3.5. Graph {(x, y) ∈ R2 | y = ex} and {(x, y) ∈ R2 | y = log(x)}.

Proof. The graph of solutions of y = ex is obtained by plotting the points (−2, e−2), (−1, e−1), (0, 1),
(1, e), (2, e2) and connecting these points with a smooth continuous curve. As x → −∞ the value of
ex is positive and gets closer and closer to 0.

Real solutions of y = ex
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The functions ex and log(x) are inverse functions since

elog(x) = x and log(ex) = x.

Since ex and log(x) are inverse functions then the graph of solutions of y = log(x) is the graph of
solutions of y = ex except flipped about the line y = x.

Real solutions of y = log(x)

Example 3.6. Graph {(x, y) ∈ R2 | y = cos(x)} and {(x, y) ∈ R2 | y = sin(x)}.

Proof. The value of cos(x) is the x-coordinate of the point at angle x on a circle of radius one. If x
starts at 0 and increases then cos(x) starts at 1 and oscillates between 1 and -1, returning to 1 each
time x reaches a multiple of 2π completing a revolution around the circle.

Real solutions of y = cos(x)

Since sin(x) = cos(x+ π
2 ) the graph of solutions of y = sin(x) is the same as the graph of solutions of

y = cos(x) except which the x-axis shifted by π
2 .

Real solutions of y = sin(x)
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Example 3.7. Graph {(x, f(x)) ∈ R2} where f : R → R is given by

f(x) = |x| =

{
x if x ≥ 0,

−x, if x ≤ 0.

Proof. Use the line y = x for x ∈ R≥0 and the line y = −x for x ∈ R≤0 to obtain the graph of solutions
of y = |x|.

Real solutions of y = |x|

Example 3.8. Graph {(x, y) ∈ R2 | y = x3} and {(x, y) ∈ R2 | y = x1/3}.

Proof. Determine the graph of solutions of y = x3 by connecting the points (−2,−8), (−1,−1), (0, 0),
(1, 1), (2, 8) with a smooth continuous curve. As x → ∞ the value of x3 gets very large positive and
as x → −∞ the value of x3 is very large and negative.

Real solutions of y = x3

The functions x3 and x
1
3 are inverse ‘function’s since

(x
1
3 )3 = x and (x3)

1
3 = x.

Since x3 and x
1
3 are inverse ‘function’s then the graph of solutions of y = x

1
3 is the graph of solutions
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of y = x3 except flipped about the line y = x.

Real solutions of y = x
1
3

Example 3.9. Graph {(x, y) ∈ R2 | (x− 3)2 + (y − 2)2 = 1}.

Proof.

To graph solutions of (x− 3)2 + (y − 2)2 = 1:
(a) x2 + y2 = 1 is a basic circle of radius 1.
(b) The center is shifted by

3 to the right in the x-direction,
2 upwards in the y-diection.

A circle of radius 1 and center (3, 2)

Example 3.10. Graph {(x, y) ∈ R2 | 2y = sin 3x}.

Proof.

To graph solutions of 2y = sin(3x):
(a) y = sinx is the basic graph.
(b) The x-axis is scaled (squished) by 3.
(c) The y-axis is scaled by 2.

Solutions of 2y = sin(3x) in R2

Example 3.11. Let a, b ∈ R>0. Graph {(x, y) ∈ R2 | 1
a2
x2 + 1

b2
y2 = 1.
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Proof.

To graph solutions of 1
a2
x2 + 1

b2
y2 = 1:

(a) x2 + y2 = 1 is a basic circle of radius 1.
(b) The x-axis is scaleld by a.
(c) The y-axis is scaleld by b.

An ellipse with width 2a and hieght 2b

Example 3.12. Graph {(x, y) ∈ R2 | y = e−x}.

Proof. The solutions of y = e−x in R2 are the solutions of y = ex flipped about the line y = 0.

the solutions of y = ex and y = e−x from Wolfram alpha

Example 3.13. Graph {(x, y) ∈ R2 | y = −e−x}.

Proof.

To graph solutions of y = −e−x:
(a) y = ex is the basic graph.
(b) y = −e−x is the same as −y = e−x.
(c) The x-axis is flipped (around x = 0).
(d) The y-axis is flipped (around y = 0).

Solutions of y = −e−x

61



Calculus Examples, Arun Ram, version: January 28, 2025

Example 3.14. Graph {(x, y) ∈ R2 | y = sinh(x)} and {(x, y ∈ R2 | y = cosh(x)}.

Proof. Since
cosh(x) = 1

2(e
x + e−x) and sinh(x) = 1

2(e
xe−x)

then the graph of coshx is halfway between the graph of ex and the graph of e−x and
The graph of sinhx is halfway between the graph of ex and the graph of −e−x.

PICTURES

Example 3.15. Graph {(x, y) ∈ R2 | y = sin
(
1
x

)
.

Proof.

The graph of y = sin
(
1
x

)
To graph y = sin

(
1
x

)
:

(a) y = sinx is the basic graph.

(b) The positive x axis is flipped (around x = 1).

(c) The negative x axis is flipped (around x = −1).

(d) As x → ∞ then sin
(
1
x

)
is positive and gets closer and closer to 0.

(e) As x → −∞ then sin
(
1
x

)
is negative and gets closer and closer to 0.

(f) As x → 0 and is positive then sin
(
1
x

)
oscillates between +1 and −1.

Example 3.16. Graph {(x, y) ∈ R2 | y = arcsin(x)}.

Proof.

To graph solutions of y = arcsin(x):
(a) The graph of solutions of y = sin(x) is the basic graph.
(b) Solutions of y = arcsin(x) is the same as solutions of sin(y) = x.

So the x and y axis are switched from y = sin(x).
So flip the graph of solutions of y = sin(x) across the line x = y.

Solutions of y = arcsin(x)
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Example 3.17. Graph {(x, y) ∈ R2 | y = 1
x}.

Proof.

(a) As x gets large 1
x gets closer and closeer to 0.

(b) As x gets closer to 0 (from the positive side)
then 1

x gets larger and larger.
(c) As x gets closer to 0 (from the negative side)
then 1

x gets more and more negative.
(d) As x gets more and more negative 1

x gets closer and closer to 0.
(e) If x = 1 then y = 1.
(f) If x = −1 then y = −1.

Solutions of y = 1
x

Asymptotes:

y = 0 (the x axis) is an asymptote to real solutions of y = 1
x as x → +∞

y = 0 (the x axis) is an asymptote to y = 1
x as x → −∞

x = 0 (the y axis) is an asymptote to solutions of y = 1
x as x → 0+

x = 0 (the y axis) is an asymptote to real solutions of y = 1
x as x → 0−.

Example 3.18. Graph {(x, g(x)) ∈ R2} and {(x, h(x)) ∈ R2} where

g : R → R is given by g(x) = 2x and h : R ̸=1 → R is given by h(x) = 2x.

Proof. Removing the point x = 1 from the source of the function g : R → R given by g(x) = 2x gives
the function h : R ̸=1 → R given by h(x) = 2x.

PICTURE
the graph of g : R → R given by

g(x) = 2x

PICTURE
the graph of h : R ̸=1 → R given by

h(x) = 2x

Example 3.19. Graph {(x, y) ∈ R2 | y = x2} and {(x, y) ∈ R2 | y = 1
x2 }.

Proof. If a ∈ R≥1 then 1
a ∈ R(0,1]. The graph of 1

x2 is the same as the graph of x2 with the region R≥1

flipped with the region R(0,1] on the y-axis.

the graph of 1
x2 and the graph of x2 with

the region R≥1 flipped with the region R(0,1] on the y-axis

screenshot from Wolfram alpha
plot x^2 and 1/x^2 with x from -5 to 5 and y from -3 to 3
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Example 3.20. Let c ∈ R and graph {(x, y) ∈ R2 | y = (x− 3)2 + c}.

Proof. The graph of (x−3)2 is the graph of x2 shifted 3 units to the right and the graph of (x−3)2+c
is the graph of (x− 3)2 shifted c units up.

PICTURE
The graph of x2, the graph of (x− 3)2,

and the graph of (x− 3)2 + c

3.2 Additional graphing examples

Example 3.21. Let f : R → R be given by

f(x) =


1− cos(x)

x2
, if x ̸= 0,

1 if x = 0.

Graph {(x, f(x)) ∈ R2} and determine if f(x) is continuous at x = 0.

Proof. Since

lim
x→0

1− cos(x)

x2
= lim

x→0

1−
(
1− 1

2!x
2 + 1

4!x
4 − 1

6!x
6 + · · ·

)
x2

= lim
x→0

1
2!x

2 − 1
4!x

4 + 1
6!x

6 − · · ·
x2

= lim
x→0

(
1
2! −

1
4!x

2 + 1
6!x

4 − · · ·
)

= 1
2 − 0 + 0− 0 + · · · = 1

2

then
lim
x→0

f(x) = 1
2 . Since f(0) = 1 then lim

x→0
f(x) ̸= f(0).

So f(x) is not continuous at x = 0. Use the graphs
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to build the graph of y = f(x).

To graph y = f(x):

(a) As x → 0 then 1−cos(x)
x2 → 1

2 .
(b) f(0) = 1.
(c) At the peaks of 1− cos(x)

there is an equality 1−cos(x)
x2 = 2

x2 .
(d) The dotted curve is the graph of y = 2

x2 .

The graph of y = f(x)

Example 3.22. Graph

{
(x, y) ∈ R2

∣∣∣ y =
x2 − 1

x3 − 4x

}
.

Proof. Notes:

(a) y =
x2 − 1

x3 − 4x
=

(x+ 1)(x− 1)

x(x2 − 4)
=

(x+ 1x)(x− 1)

x(x+ 2)(x− 2)
.

(b) If x = 1 then y = 0.

(c) If x = −1 then y = 0.

(d) If x > 2 and x is close to 2 then y is very large and positive .
( pos · pos
pos · pos · pos

)
(e) If x < 2 and x is close to 2 then y is very large and negative.

( pos · pos
pos · pos · neg

)
(f) If x > 0 and x is close to 0 then y is very large and positive.

( pos · neg
pos · pos · neg

)
(g) If x < 0 and x is close to 0 then y is very large and negative.

( pos · neg
neg · pos · neg

)
(h) If x > −2 and x is close to −2 then y is very large and positive.

( neg · neg
neg · pos · neg

)
(i) If x < −2 and x is close to −2 then y is very large and negative.

( neg · neg
neg · neg · neg

)
(j) y =

x2 − 1

x3 − 4x
is the same as (−y) =

(−x)2 − 1

(−x)3 − 4(−x)
so if y is flipped to −y and x is flipped to

−x then the graph stays the same.
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(k) As x → ∞ then y is positive and gets close to 0

(k) As x → −∞ then y is negative and gets close to 0

Real solutions of y =
x2 − 1

x3 − 4x

Example 3.23. Graph {(x, y) ∈ R2 |
√
x+

√
y = 1}.

Proof. Notes:

(a) If x and y are switched this graph stays the same.

(b) If x = 0 then
√
y = 1 and y = 11 = 1.

(c) If y = 0 then x = 1.

(d) If x = y then
√
x+

√
x = 1 and

√
x = 1

2 so that x = 1
4 .

(e) This graph should be similar to x2 + y2 = 1 and x+ y = 1.

Real solutions of y = x2 + y2 = 1 Real solutions of y = x+ y = 1
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Real solutions of y =
√
x+

√
y = 1

Example 3.24. Graph
{
(x, y) ∈ R2

∣∣ y =
x2 − 1

x2 + 1

}
.

Proof. Notes:

(a) y =
x2 − 1

x2 + 1
=

x2 + 1− 2

x2 + 1
= 1− 2

x2 + 1
.

Notes for the graph of
{
(x, y) ∈ R2

∣∣ y =
1

x2 + 1

}
:

(a) If x = 0 then y = 1
02+1

= 1
1 = 1.

(b) If x → ∞ then y is positive and close to 0.

(c) If x → −∞ then y is positive and close to 0.

(d) Since y = 1
x2+1

= 1
(−x)2+1

then the graph stays the same if x is flipped to −x.

Real solutions of y =
1

x2 + 1
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Then

Real solutions of y =
−2

x2 + 1
Real solutions of y =

x2 − 1

x2 + 1

Example 3.25. Graph {(x, f(x)) ∈ R×Z} where f : R → R is f(x) = ⌊x⌋, the round down function,
given by

f(x) = (maximal integer such that n ≤ x).

For example f(3.2) = ⌊3.2⌋ = 3.

Proof.

The function f(x) is continuous if x ̸∈ Z. Then

lim
x→1−

⌊x⌋ = 0 and lim
x→1+

⌊x⌋ = 1.

The function g : R → R denoted g(x) = ⌈x⌉ is the round up function having ⌈3.2⌉ = 4.

Example 3.26. Graph {(x, y) ∈ R2 | y = log(4− x2)}.

Proof. Notes:
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(a) y = log(4− x2) = log((2 + x)(2− x)) = log(2 + x) + log(2− x).

(b) Since y = log(4− x2) = log(4− (−x)2) then the graph stays the same when x is flipped to −x.

Real solutions of y = log(x) Real solutions of y = log(−x)

Real solutions of y = log(x+ 2) Real solutions of y = log(2− x)

Real solutions of y = log(4− x2)

Example 3.27. Graph {(x, y) ∈ R2 | y = x
2
3 (6− x)

1
3 .

Proof. Notes:

(a) If x = 0 then y = 0.
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(b) If x = 6 then y = 0.

(c) If x → ∞ then y gets close to x
2
3 (−x)

1
3 = .− x.

(d) If x → −∞ then y → ∞ (and y gets close to −x again).

Real solutions of y = x3 Real solutions of y = x
1
3

Real solutions of y = x
2
3 Real solutions of y = (−x)

1
3

Real solutions of y = (6− x)
1
3 Real solutions of y = x

2
3 (6− x)

1
3

Example 3.28. Graph {(x, f(x)) ∈ R2} where f : R → R is given by f(x) = 3x2 − 2x− 1.

Proof. Notes:
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(a) The x2 indicates this is a parabola.

(b) Since the coefficient of x2 is positive this is a concave up parabola.

(c) There is a factorization: 3x2 − 2x− 1 = (x− 1)(3x+ 1). We know x− 1 should be. factor since
when you plug in 1 you get 3 · 12 − 2 · 1− 1 = 0.

(d) The value f(x) is 0 if x− 1 or if x = −1
3 .

(e) The minimum will be where df
dx

]
x=a

is 0. Since df
dx

]
x=a

= (6x− 2)
]
x=a

− 6a− 2. So df
dx

]
x=a

is 0

when a = 1
3 . Then

f(13) = 3
(
1
3

)2 − 2
(
1
3

)
− 1 = 1

3 − 2
3 − 1 = −4

3 .

Real solutions of y = 3x2 − 2x− 1

Example 3.29. Graph {(x, f(x)) ∈ R2} where f : R → R is given by f(x) = 2x3 − 21x2 + 36x− 20.

Proof. Notes:

(a) If x → ∞ then f(x) → ∞.

(b) If x → −∞ then f(x) → −∞.

(c) Since df
dx = 6x2− 42x+36 = 6(x2− 7x+6) = 6(x− 6)(x− 1) then df

dx is 0 when x = 6 and when
x = 1.

f(6) = 2 · 63 − 21 · 62 + 36 · 6− 20 = 62(12− 21 + 6)− 20 = 62(−3)− 20− 128,

f(1) = 2− 21 + 36− 20 = 38− 41 = −3.

(d) Since

d2f

dx2
]
x=6

= (12x− 42)
]
x=6

= 72− 42 = 30 > 0,

d2f

dx2
]
x=1

= (12x− 42)
]
x=1

= 12− 42 = −30 < 0,

so that the graph is concave up when x = 6 and the graph is concave down when x = 1.
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Real solutions of y = 2x3− 21x2 + 36x− 20

Example 3.30. Graph {(x, f(x)) ∈ R2} where f : R → R is given by f(x) = x3 − x+ 1.

Proof. Notes:

(a) This graph is the graph of solutions of y = x3 − x shifted up by 1.

(b) x3 − x = x(x2 − 1) = x(x+ 1)(x− 1).

(c) Since d(x3−x)
dx = 3x2 − 1 then d(x3−x)

dx

]
x=a

is 0 when a = ± 1√
3
.

Real solutions of y = x3 − x Real solutions of y = x3 − x+ 1

Example 3.31. Graph {(x, y) ∈ R2 | y = x− x2 − 27}.

Proof. Notes: The −x2 indicates to us that this graph is a concave down parabola.

x− x2 − 27 = −(x2 − x+ 27) = −(x2 − x+ 1
4 − 1

4 + 27) = −((x− 1
2)

2 + 263
4).
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Real solutions of y = x2 Real solutions of y = (x− 1
2)

2

Real solutions of y = (x− 1
2)

2 + 263
4 Real solutions of y = x− x2 − 27

Example 3.32. Let a ∈ R>0. Graph {(x, f(x)) ∈ R2} where f : R → R is given by

f(x) =


|x− a|
x− a

, if x ̸= a,

1, if x = a.

For which values of x is f(x) continuous?

Proof.

f(x) =


|x− a|
x− a

, if x ̸= a,

1, if x = a,

=


x− a

x− a
, if x ̸= a and x− a ∈ R>0,

−(x− a)

x− a
, if x ̸= a and x− a ∈ R<0,

1, if x = a,

=


1, if x ̸= a and x− a ∈ R>0,

−1, if x ̸= a and x− a ∈ R<0,

1, if x = a,
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Graph of {(x, f(x) ∈ R2}

The graph has a jump at x = a. So f(x) is not continuous at x = a.

3.3 Graphing: Slope and areas

Example 3.33. (The fundamental theorem of change) For a smooth continuous function f : R → R
let

Df (x) = lim
h→0

f(x+ h)− f(x)

h
.

So that Df (a) is the slope of f at x = a (the rate of change of f with respect to x at x = a).
Let c be a constant and let f and g be functions and assume that Df and Dg exist. Show that

(a) Dx = 1,

(b) Dcf = cDf ,

(c) Df+g = Df +Dg,

(d) Dfg = Df · g + f ·Dg.

Proof.

Dx(x) = lim
h→0

(x+ h)− x

h
= lim

h→0

h

h
= lim

h→0
1 = 1.

Dcf (x) = lim
h→0

(cf)(x+ h)− (cf)(x)

h
= lim

h→0

c · f(x+ h)− c · f(x)
h

= lim
h→0

c ·
(f(x+ h)− f(x)

h

)
= c ·

(
lim
h→0

f(x+ h)− f(x)

h

)
= cDf (x) (by continuity of scalar multiplication).
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Df+g(x) = lim
h→0

(f + g)(x+ h)− (f + g)(x)

h
= lim

h→0

f(x+ h) + g(x+ h)− f(x) + g(x)

h

= lim
h→0

(f(x+ h)− f(x)

h
+

g(x+ h)− g(x)

h

)
=
(
lim
h→0

f(x+ h)− f(x)

h

)
+
(
lim
h→0

g(x+ h)− g(x)

h

)
(by continuity of addition)

= Df (x) +Dg(x).

Dfg(x) = lim
h→0

(fg)(x+ h)− (fg)(x)

h
= lim

h→0

(f(x+ h) · g(x+ h)− f(x) · g(x)
h

= lim
h→0

(f(x+ h)− f(x))(g(x+ h)− g(x) + f(x+ h)g(x) + f(x)g(x+ h)− 2f(x)g(x)

h

= lim
h→0

(f(x+ h)− f(x))(g(x+ h)− g(x)) + (f(x+ h)− f(x))g(x) + f(x)(g(x+ h)− g(x))

h

= lim
h→0

(
h
(f(x+ h)− f(x))

h

(g(x+ h)− g(x))

h
+

f(x+ h)− f(x)

h
g(x) + f(x)

g(x+ h)− g(x)

h

)
=
(
lim
h→0

h
)(

lim
h→0

(f(x+ h)− f(x))

h

)(
lim
h→0

(g(x+ h)− g(x))

h

)
+
(
lim
h→0

f(x+ h)− f(x)

h
g(x)

)
+
(
lim
h→0

f(x)
g(x+ h)− g(x)

h

)  by continuity of
addition and
multiplication


= 0 ·Df (x)Dg(x) +Df (x)g(x) + f(x)Dg(x)

= Df (x)g(x) + f(x)Dg(x).

Example 3.34. (The fundamental theorem of measure) For a, b ∈ R with p < a < b and a smooth
continuous function f : R → R let

∫ b

a
f dx = lim

h→0

( ⌊ b−a
h

⌋∑
j=0

f(a+ jh)h
)

If f : R → R≥0 then
∫ b
a f dx is the area under f between x = a and x = b.
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Let p ∈ R with p < a < b and let A : R[p,b] → R≥0 be the function given by

A(x) =

∫ x

p
f dx.

Prove that

lim
h→0

A(x+ h)−A(x)

h
= f(x) and A(b)−A(a) =

∫ b

a
f dx.

Proof.

lim
h→0

A(x+ h)−A(x)

h
= lim

h→0

(area of last little box)

h
= lim

h→0

f(x)h

h
= lim

h→0
f(x) = f(x)

and

A(b)−A(a) = (area under f(x) from p to b)− (area under f(x) from p to a)

= (area under f(x) from a to b)

=

∫ b

a
f dx.

Example 3.35. Compute the limit

∫ 2

0
ex dx (without using the fundamental theorem of measure).

Proof.

Suppose h = 1
3 . Then

e0h+ ehh+ e2hh+ e3hh+ e4hh+ · · ·+ e2−hh

= e0 13 + e
1
3 1
3 + e

2
3 1
3 + e

3
3 1
3 + e

4
3 1
3 + e

5
3 1
3

= 1
3

(
1 + e

1
3 +

(
e

1
3 )
)2

+
(
e

1
3 )
)3

+
(
e

1
3 )
)4

+
(
e

1
3 )
)5)

= 1
3

((e 1
3 )
)6 − 1

e
1
3 − 1

)
= 1

3

(e 6
3 )− 1

e
1
3 − 1

)
= (e2 − 1)

( 1
3

e
1
3 − 1

)
.

Suppose h = 1
5 . Then

e0h+ ehh+ e2hh+ e3hh+ e4hh+ · · ·+ e2−hh

= e0 15 + e
1
5 1
5 + e

2
5 1
5 + e

3
5 1
5 + · · ·+ e

9
5 1
5

= 1
5

(
1 + e

1
5 +

(
e

1
5 )
)2

+
(
e

1
5 )
)3

+ · · ·+
(
e

1
3 )
)9)

= 1
5

((e 1
5 )
)10 − 1

e
1
5 − 1

)
= 1

5

(e 10
5 )− 1

e
1
5 − 1

)
= (e2 − 1)

( 1
5

e
1
5 − 1

)
.
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Suppose h = 1
N . Then

e0h+ ehh+ e2hh+ e3hh+ e4hh+ · · ·+ e2−hh

= e0 1
N + e

1
N 1

N + e
2
N 1

N + e
3
N 1

N + · · ·+ e2−
1
N 1

N

= (e2 − 1)
( 1

N

e
1
N − 1

)
.

So

lim
h→0

(e0h+ ehh+ e2hh+ e3hh+ e4hh+ · · ·+ e2−hh) = lim
h→0

(e2 − 1)
( h

eh − 1

)
= (e2 − 1) · 1 = e2 − 1.

Note: If c is a constant then

(ex + c)
]x=2

x=0
= (e2 + c)− (e0 + c) = e2 − 1 =

∫ 2

0
ex dx.

Example 3.36. Compute the limit

∫ 1

−1

1

x2
dx (without using the fundamental theorem of measure).

Proof.

By adding up areas of little boxes:∫ 1

−1

1

x2
dx = lim

h→0

( 1

(−1)2
h+

1

(−1 + h)2
h+

1

(−1 + 2h)2
h+ · · ·+ 1

(1− h)2
h
)

= lim
h→0

(
1

(−1)2
h+ 1

(−1+h)2
h+ 1

(−1+2h)2
h+ · · · + 1

02
h+ · · ·+ 1

(1−h)2
h

OOPS!!

)
,

So
∫ 1
−1

1
x2 dx does NOT EXIST in R.

Note:

∫
1

x2
dx =

∫
x−2 dx = −x−1 + c, where c si a constant and

(−x−1 + c)
]x=1

x=−1
= (−1−1 + c)− (−1(−1)−1 + c) = −1 + c− 1− c = −2.

So this is an example when

∫ b

a

df

dx
dx ̸= f(b)− f(a).
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3.4 Graphing: Tangent and normal lines

The tangent line to a curve f(x) at the point (a, b) is the line through (a, b) with the same slope as
f(x) at the point (a, b).

The normal line is the line through (a, b) which is perpendicular to the tangent line.

The slope of the tangent line at the point (a, b) is

df

dx

]
x=a

.

If a line has slope 2
5

then the perpendicular line has slope 5
−2 .

Example 3.37. Find the equations of the tangent and normal to the curve y = x4−6x3+13x2−10x+5
at the point where x = 1.

Proof. The slope of the tangent line at x = 1 is

df

dx

]
x=1

= (4x3 − 18x2 + 26x− 10)
]
x=1

= 4 = 18 + 26− 10 = 2.

The tangent line goes through the point

x = 1,

y = 1− 6 + 13− 10 + 5 = 3.
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The equation of a line is y = mx+ b, where m is the slope. So, for our line

m = 2 and 3 = m · 1 + b = 2 · 1 + b.

So b = 1. So the tangent line is
y = 2x+ 1.

The slope of the normal line is 1
−2 = −1

2 . The equation of the normal line is y = mx+ b with m = −1
2

and 3 = m · 1 + b = −1
2 + b. So

b = 7
2 and y = −1

2x+ 7
2 is the normal line.

Example 3.38. Find the equation of the tangent and normal lines to the curve

x = a cos(θ), y = b sin(θ), at θ =
π

4
.

Proof. First graph solutions of the equations. Let

x

a
= cos(θ),

y

b
= sin(θ).

Then graph solutions of
(
x
a

)2
+
(y
b

)2
= 1.

When θ = π
4 ,

x = a cos(
π

4
) =

√
2

2
a,

y = b sin(
π

4
) =

√
2

2
b.

The slope of the tangent line is

dy

dx

]
x=

√
2

2 a

y=

√
2

2 b

=
dy
dθ
dx
dθ

]
θ=π

4

=
db sin(θ)

dθ
da cos(θ)

dθ

]
θ=π

4

=
b cos(θ)

−a sin(θ)

]
θ=π

4

=
b
√
2
2

−a
√
2
2

= − b

a
.

So the equation of the tangent line is y = mx+ y0 with

m = − b

a
and

√
2

2
b = m

√
2

2
a+ y0 = − b

a

√
2

2
a+ y0.
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So y0 =
√
2
2 b+

√
2
2 b =

√
2b. So the equation of the tangent line is

y = − b

a
x+

√
2b.

The equation of the normal line is y = mx+ y0 with

m =
a

b
and

√
2

2
b = m

√
2

2
a+ y0 =

a

b

√
2

2
a+ y0.

So

y0 =

√
2

2
b−

√
2

2

a2

b
=

√
2

2

(b2 − a2

b

)
.

So the equation of the normal line is

y =
a

b
x+

√
2

2

(b2 − a2

b

)
.

Example 3.39. Find the equations of the normal line to 2x2−y2 = 14, parallel to the line x+3y = 4.

Proof. The line x+ 3y = 4 is the same as

y = −1

3
x+

4

3
. So it has slope −1

3 .

So the slope of the normal line is −1
3 . So the slope of the tangent line is 3. So

dy

dx

]
x=a

= 3.

Now

4x− 2y
dy

dx
= 0. So

dy

dx
=

−4x

−2y
=

2x

y
.

So we want 2x
y = 3 and 2x2 − y2 = 14. So

y =
2

3
x and 2x2 −

(2
3
x
)2

= 14.

So

2x2 − 4

9
x2 = 14 and

14

9
x2 = 14.

So
x2 = 9 and x = ±3.

So x = 3 and y = 2
3 · 3 = 2 or x = −3 and y = 2

3(−3) = −2.

In the first case:
The normal has slope −1

3 and goes through (3, 2).
So m = −1

3 and 2 = m · 3 + y0 = −1
3 · 3 + y0.

So y0 = 3 and the equation of the normal line is y = −1
3x+ 3.

In the second case:
The normal has slope −1

3 and goes through (−3,−2).
So m = −1

3 and −2 = m · 3 + y0 = −1
3 · (−3) + y0.
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So y0 = −3 and the equation of the normal line is y = −1
3x− 3.

The graph should explain how there can be two normal lines parallel to x+ 3y = 4.

Notes:

(a) If y = 0 then x = ±
√
7.

(b) 2−
(
y
x

)2
= 14

x2 . So, as x → ∞, this becomes 2−
(
y
x

)2
= 0 which means

(y
x

)2
= 2 and

(y
x

)
= ±

√
2 and y = ±

√
2x.

3.5 Areas and volumes

For computing areas and volumes:

(1) Carefully draw the region.

(2) Slice it up, draw a typical slice.

(3) Find the volume of a slice.

(4) Add up the volumes of the slices with an integral.
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Typical slices might look like:

Example 3.40. Calculate the area of the region bounded by the parabolas y = x2 and y2 = x.

Proof.

Slice:

Area of slice Ldx
Add slices from x = 0 to x = 1.

∫ x=1

x−0
Ldx =

∫ x=1

x−0
(yupper − ylower) dx =

∫ x=1

x−0
(
√
x− x2) dx

=
(2
3
x3/2 − x3

3

)]x=1

x=0

=
(2
3
13/2 − 13

3

)
−
(2
3
03/2 − 03

3

)
=

2

3
− 1

3
=

1

3
.

Example 3.41. Find the area of the region bounded by y = −1, y = 2, x = y3 and x = 0.
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Proof.

Type 1 slice: Type 2 slice:

Area of slice: L1 dy Area of slice: L2 dy
Add slices from y = 0 to y = 2. Add slices from y = −1 to y = 0.

∫ y=2

y=0
L1 dy +

∫ y=0

y=−1
L2 dy =

∫ y=2

y=0
x dy +

∫ y=0

y=−1
(−x) dy =

∫ y=2

y=0
y3 dy +

∫ y=0

y=−1
(−y3) dy

=
(y4
4

)]y=2

y=0
+
(−y4

4

)]y=0

y=−1
=
(24
4

− 0

4

)
+
(
− 0

4
− (−1)4

4

)
= 22 +

1

4
= 41

4 .

Example 3.42. Find the volume of a sphere of radius r

Proof.

Slice:

Volume of slice: πR2 dy
Add slices from y = −r to y = r.
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Volume of sphere =

∫ y=r

y=−r
πR2 dy =

∫ y=r

y=−r
πx2 dy =

∫ y=r

y=−r
π(r2 − y2) dy

= π
(
r2y − y3

3

)]y=r

y=−r

= π
(
r2 · r − r3

3

)
− π

(
r2 · (−r)− (−r)3

3

)
= π

2

3
r3 + πr3 − πr3

3
=

2

3
πr3 +

2

3
πr3 =

4

3
πr3.

Example 3.43. Compute

∫ a

−a

√
a2 − x2 dx.

Proof. If x = a sin(θ) then∫ a

−a

√
a2 − x2 dx =

∫ a

−a

√
a2 − a2 sin(θ)2 dx =

∫ a

−a

√
a2 cos(θ)2 dx =

∫ a

−a
a cos(θ) dx

=

∫ a

−a
a cos(θ)

dx

dθ
dθ =

∫ a

−a
a cos(θ) a cos(θ) dθ =

∫ a

−a
a2 cos(θ)2 dθ

=

∫ a

−a

1

2
a2(cos(θ)2 + cos(θ)2) dθ

=

∫ a

−a

1

2
a2(cos(θ)2 + (1− sin(θ)2)) dθ =

∫ a

−a

1

2
a2(cos(θ)2 − sin(θ)2 + 1) dθ

=

∫ a

−a

1

2
a2(cos(2θ) + 1) dθ

=
1

2
a2
(sin(2θ)

2
+ θ)

)
)
]x=a

x=−a

=
1

2
a2
(sin(2θ)

2
+ θ)

)
)
]sin(θ)=1

sin(θ)=−1

=
1

2
a2
(sin(2θ)

2
+ θ)

)
)
]θ=π/2

θ=−π/2

=
1

2
a2
(sin(π)

2
+

π

2

)
− 1

2
a2
(sin(−π)

2
− π

2

)
=

1

2
a2

π

2
− 1

2
a2
(
− π

2

)
=

πa2

4
.

Example 3.44. Compute

∫ x=a

x=−a

√
a2 − x2 dx.

Proof.
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πa2

2
= Area of semicircle =

∫ x=a

x=−a
Ldx =

∫ x=a

x=−a
y dx =

∫ x=a

x=−a

√
a2 − x2 dx.

Example 3.45. Find the volume of a right circular cone of height h and radius r.

Proof.

∫ x=r

x=0
2πRH dx =

∫ x=r

x=0
2πxy dx =

∫ x=r

x=0
2πx

(
−h

r
+ h
)
dx

=

∫ x=r

x=0

(
− 2πh

r
x2 + 2πhx

)
dx

=
(
− 2πh

r

x3

3
+ πhx2

)]x=r

x=0

=
(
− 2πh

r

r3

3
+ πhr2

)
− (−0 + 0)

= −2

3
πr2h+ πr2h =

1

3
πr2h.

Example 3.46. Use integration to find the area of the triangle with vertices (−1, 1), (0, 5) and (3, 2).

Proof.
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Type 1 slice: Type 2 slice:

Area of type 1 slice: L1x Area of type 2 slice: L2x
Add slices from x = −1 to x = 0 Add slices from x = −1 to x = 0

∫ x=0

x=−1
L1 dx+

∫ x=3

x=0
L2 dx =

∫ x=0

x=−1

(
ytop 1 − ybottom

)
dx+

∫ x=3

x=0

(
ytop 2 − ybottom

)
dx

=

∫ x=0

x=−1

(
(4(x+ 1) + 1)− (

1

4
(x+ 1) + 1)

)
dx+

∫ x=3

x=0

(
− x+ 5− 1

4
x− 1

4
− 1
)
dx

=

∫ x=0

x=−1

(15
4
x+

15

4

)
dx+

∫ x=3

x=0

(
− 5

4
x+

15

4

)
dx

=
(15
4

x2

2
+

15

4
x
)]x=0

x=−1
+
(
− 5

4

x2

2
+

15

4
x
)]x=3

x=0

=
(15
4

· 0 + 15

4
· 0
)
−
(15
4

(−1)2

2
+

15

4
(−1)

)
+
(
− 5

4

32

2
+

15

4
· 3
)
− (0 + 0)

= 0 + 0− 15

8
+

15

4
− 45

8
+

45

4
=

15

8
+

45

8
=

60

8
= 71

2 .

Example 3.47. Find the curved surface area of a cone of radius r and height h (a right circular cone).

Proof.

Cut the cone open and lay it out to get

The region C is a portion of a circle of radius s, where s is the slant height of the cone. The area of
C is 1

2θs
2. The arc length along the border is θs. This arc length is also the length around the circle

at the base of the cone, which is 2πr. So
θs = 2πr.

So

curved surface area =
1

2
θs2 =

1

2
(θs)s =

1

2
(2πr)s = πrs = πr

√
h2 + r2

Example 3.48. Find the volume generated by the area bounded by y = x2 − 2x and y = 0 when it
is rotated about the x-axis.
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Proof.

Slice:

Volume of a slice: πR2 dx
Add slices from x = 0 to x = 2.

∫ x=2

x=0
πR2 dx =

∫ x=2

x=0
π(−y)2 dx =

∫ x=2

x=0
πy2 dx =

∫ x=2

x=0
π(x2 − 2x)2 dx

=

∫ x=2

x=0
π(x4 − 4x3 + 4x2) dx = π

(x5
5

− 4x4

4
+

4x3

3

)]x=2

x=0

= π
(25
5

− 24 +
4

3
23
)
− π(0− 0 + 0)

= 23π
(22
5

− 2 +
4

3

)
= 8π

(4
5
− 2 +

4

3

)
= 8π

(
− 6

5
+

4

3

)
= 8π

(
− 18

15
+

20

15

)
=

8π · 2
15

=
16π

15
.

Example 3.49. The base of a solid is x2 + y2 = a2. Each plane section, perpendicular to the x-axis,
is a square, with one edge of the square in the base of the solid. Find the volume.

Proof.
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∫ x=a

x=−a
S2 dx =

∫ x=a

x=−a
(2y)2 dx =

∫ x=a

x=−a
4y2 dx =

∫ x=a

x=−a
4(a2 − x2) dx

= 4
(
a2x− x3

3

)]x=a

x=−a
= 4
(
a2 · a− a3

3

)
− 4
(
a2 · (−a)− (−a)3

3

)
= 4
(
a3 − 1

3
a3
)
− 4
(
− a3 +

1

3
a3
)

= 4 · 2
3
a3 − 4

(
− 2

3
a3
)
= 4 · 4

3
a3 =

16a3

3
.

Example 3.50. Find the volume generated when the area bounded by y =
√
x, y = 2 and x = 0 is

rotated about the line y = 2.

Proof.

Add slices from x = 0 to x = 4.∫ x=4

x=0
πR2 dx =

∫ x=4

x=0
π(2− y)2 dx =

∫ x=4

x=0
π(2−

√
x)2 dx =

∫ x=4

x=0
π(4− 4

√
x+ x) dx

= π
(
4x− 2 · 4

3
x3/2 +

x2

2

)]x=4

x=0
= π

(
4 · 4− 2 · 4

3
· 43/2 + 42

2

)
− π(0− 0 + 0)

= π
(
16− 8

3
· 8 + 16

2

)
= 8π

(
2− 8

3
+ 1
)
= 8π · 1

3
=

8π

3
.

Example 3.51. Find the volume generated when the area bounded by y = sin(x) for 0 ≤ x ≤ π, and
y = 0 is rotated about the y-axis.

Proof.
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∫ y=1

y=0
(πR2

0 − πR2
1)) dy =

∫ y=1

y=0
π(x2right − x2left)) dy =

∫ y=1

y=0
π((π − xleft)

2 − x2left)) dy

=

∫ y=1

y=0
π(π2 − 2πx+ x2 − x2) dy =

∫ y=1

y=0
π(π2 − 2πx)

dy

dx
dx

=

∫ x=π/2

x=0
π(π2 − 2πx) cos(x) dx =

∫ x=π/2

x=0
(π3 cos(x)− 2π2x cos(x)) dx

=
(
π3 sin(x)− 2π2(x sin(x) + cos(x)

)]x=π/2

x=0

=
(
π3 sin(π/2)− 2π2(

π

2
sin(π/2) + cos(π/2)

)
− (π3 sin(0)− 2π2(0 + cos(0))

= π3 − 2π2 · π
2

+ 2π2 = 2π2.

Example 3.52. Find the volume of a bagel produced by rotating the circle x2 + y2 = a2 about the
line y = b.

Proof.

∫ x=a

x=−a
2πRH dx =

∫ x=a

x=−a
2π(b− x)2y dx =

∫ x=a

x=−a
2π(b− x)2

√
a2 − x2 dx

=

∫ x=a

x=−a

(
4πb
√

a2 − x2 − 4πx
√
a2 − x2

)
dx

=

∫ x=a

x=−a
4πb
√

a2 − x2 dx− 4π

−2
− 2x

√
a2 − x2

)
dx

= 4πb(area of a semicircle of radius a) +
(
2π(a2 − x2)3/2

)]x=a

x=−a

= 4πb
πa2

2
+ 2π(03/2)− 2π(03/2) =

4π2a2b

2
= 2π2a2b.

Example 3.53. Find the volume generated when the area bounded by y = sin(x) for 0 ≤ x ≤ π, and
y = 0 is rotated about the x-axis.
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Proof.

∫ x=π

x=0
πR2 dx =

∫ x=π

x=0
πy2 dx =

∫ x=π

x=0
π sin(x)2 dx

=

∫ x=π

x=0

π

2
(sin(x)2 + sin(x)2) dx

=

∫ x=π

x=0

π

2
(sin(x)2 + 1− cos(x)2) dx

=

∫ x=π

x=0

π

2
(1− (cos(x)2 − sin(x)2)) dx

=

∫ x=π

x=0

π

2
(1− cos(2x)) dx =

π

2

(
x− sin(2x)

2

)]x=π

x=0

=
π

2

(
π − sin(2π)

2

)
− π

2

(
0− sin(0)

2

)
=

π

2
(π − 0) =

π2

2
.

Example 3.54. Find the volume generated by rotating the area bounded by the curves y = 3x− x2

and y = x about the x-axis.

Proof.
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∫ x=2

x=0
(πR2

0 − πR2
1) dx =

∫ x=2

x=0
(πy2top − πy2bottom) dx =

∫ x=2

x=0
(π(3x− x2)2 − πx2) dx

=

∫ x=2

x=0
π(9x2 − 6x3 + x4 − x2) dx

=

∫ x=2

x=0
π(8x2 − 6x3 + x4) dx

= π
(8x3

3
− 6x4

4
+

x5

5

)]x=2

x=0
= π

(8 · 8
3

− 6 · 24

4
+

25

5

)
− π(0− 0 + 0)

= π25
(2
3
− 3

4
+

1

5

)
= 32π

(40
60

− 45

60
+

12

60

)
=

32π · 7
60

=
8 · 7π
15

=
56π

15
.

Example 3.55. A barrel of height h and maximum radius R is constructed by rotation of the parabola
y = R− cx2 for −h

2 ≤ x ≤ h
2 .

Proof.

∫ x=h
2

x=−h
2

πy2 dx =

∫ x=h
2

x=−h
2

π(R− cx2)2 dx =

∫ x=h
2

x=−h
2

π(R2 − 2cRx2 + c2x4) dx

= π
(
R2x− 2cR

x3

3
+ c2

x5

5

)]x=h
2

x=−h
2

= π
(
R2h

2
− 2cR

h3

8
+

c2

5

h5

25

)
− π

(
R2−h

2
+ 2cR

h3

23
+

(−c2h5)

5 · 25
)

= π
(
R2h− 2cRh3

3 · 8
+

2c2h5

5 · 25
)
= π

(
R2h− cRh3

6
+

c2h5

5 · 16

)
.

Example 3.56. You are given two spherical balls of wood, one of radius r and a second one of radius
R. A circular hole is bored through each ball and the resulting napkin rings have height h. Which
napkin ring contains more wood?
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Proof.

∫ x=r

x=

√
r2−
(

1
2
h
)2 2πx2y dx =

∫ x=r

x=

√
r2−
(

1
2
h
)2 4πx√r2 − x2 dx

=

∫ x=r

x=

√
r2−
(

1
2
h
)2(−2π)(−2x)(r2 − x2)1/2 dx

= (−2π)(r2 − x2)3/2
2

3

]x=r

x=

√
r2−
(

1
2
h
)2

= (−2π)(r2 − r2)3/2
2

3
− (−2π)(r2 −

(
r2 − h2

4

)
)3/2

2

3

= 0 + 2π
(h2
4

)3/2 2
3
= 2π

(h
2

)3 2
3
=

4π

3

h3

8
=

πh3

8
.

This doesn’t depend on r!! So both napkin rings contain the same amount of wood.

Example 3.57. Find the volume of a tetrahedron where each side of the tetrahedron is an equilateral
triangle with side length a.
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Proof.

So

d =
1
2a√
3
2

=
a√
3
.

So

H =

√
a2 −

( a√
3

)2
=

√
a2 − a2

3
=

2a2

3
= a

√
2√
3
.

So we want

2

∫ y=H

y=0

H
(
1
2s
)(√

3
2 s
)

2
dy =

∫ y=H

y=0
2 ·

√
3s2

8
dy.
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But H − y =
√
2√
3
s. So y = H −

√
2√
3
s. So dy

ds = −
√
2√
3
.

∫ y=H

y=0
2 ·

√
3

8
s2 dy =

∫ y=H

y=0
2 ·

√
3

8
s2

dy

ds
ds =

∫ y=H

y=0
2 ·

√
3

8
s2
(
−

√
2√
3

)
ds

= 2 ·
√
3

8

s3

3

(
−

√
2√
3

]y=H

y=0
= −

√
2

8

2

3
s3
]s=0

s=a

=
(
−

√
2 · 2
8 · 3

03
)
−
(
−

√
2 · 2
8 · 3

a3
)
=

√
2 · 2
24

a3 =

√
2

12
a3.

Since H = a
√
2√
3

we can also write this as

√
2

12
a3 =

(√2√
3
a
)√3

12
a2 = H =

√
3a2

12
=

√
3a2H

12
.

Example 3.58. Find the volume generated by rotating the area bounded by y = 3x− x2 and y = x
about the y-axis.

Proof.

∫ x=2

x=0
2πRH dx =

∫ x=2

x=0
2πx(yupper − ylower) dx =

∫ x=2

x=0
2πx(3x− x2 − x) dx

=

∫ x=2

x=0
2πx(2x− x2) dx =

∫ x=2

x=0
2π(2x2 − x3) dx = 2π

(2x3
3

− x4

4

)]x=2

x=0

= 2π
(2 · 8

3
− 16

4

)
− 2π(0− 0)

= 2π
(16
3

− 16

4

)
= 2π · 16

(1
3
− 1

4

)
=

32π

12
=

16π

6
=

8π

3
.

Example 3.59. Find the volume generated by revolving the triangle with verttices (1, 1), (1, 2) and
(2, 2) about the y-axis.
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Proof.

∫ x=2

x=1
2πRH dx =

∫ x=2

x=1
2πx(2− x) dx =

∫ x=2

x=1
2π(2x− x2) dx

= 2π
(
x2 − x3

3

)]x=2

x=1
= 2π(4− 8

3
)− 2π(1− 1

3
) = 2π

4

3
− 2π

2

3
=

4π

3
.

Example 3.60. Find the volume of the chunk obtained by chopping off the end of a sphere of radius
r, if the chunk has thickness h at its thickest point.

Proof.

∫ y=r

y=h
πR2 dy =

∫ y=r

y=h
πx2 dy =

∫ y=r

y=h
π(r2 − y2) dy = π

(
r2y − y3

3

)]y=r

y=h

= π
(
r3 − r3

3

)
− π

(
r2h− h3

3

)
= π

2

3
r3 − πr2h+

πh3

3
=

π

3
(2r3 − 3r2h+ h3).
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4 Rates, optimization, changes, growth, decay, mixing, motion

4.1 Motion models

If p is position and v is velocity and a is acceleration then

v =
dp

dt
and a =

dv

dt
.

Example 4.1. A TV camera is 4000 feet from the base of a launch pad. A rocket is launched and
has a speed of 600 ft/s when it is 3000 ft high. How fast is the distance between the camera and the
rocket changing?

Proof.

H = (height of rocket),
D = (distance between camera and rocket),

velocity = (change in height as time changes) = dH
dt .

We know
dH

dt

]
H=3000

= 600 in ft/s.

We want to determine
dD

dt

]
H=3000

= 600.

From the picture 40002 +H2 = D2. So

2h
dH

dt
= 2D

2D

dt
.

So

dD

dt

]
H=3000

=
3000√

30002 + 40002
dH

dt

]
H=3000

=
3000√
50002

· 600 =
3000 · 600

5000
= 3 · 600

5
= 3 · 120 = 360,

in feet per second. How fast is the angle of the camera changing? We want dθ
dt

]
H=3000

.

Since tan(θ) =
H

4000
them

dθ

dt
sec(θ)2 =

1

4000

dH

dt
.

Since sec(θ) =
1

cos(θ)
=

D

4000
them

dθ

dt

D2

40002
=

1

4000

dH

dt
.

So
dθ

dt
=

40002

D2

1

4000

dH

dt
=

4000

D2

dH

dt
.

So

dθ

dt

]
H=3000

=
4000

(30002 + 40002)
·dH
dt

]
H=3000

=
4000

50002
·600 =

4 · 600
5 · 1000

=
4 · 120
1000

=
24

50
radians per second.
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Example 4.2. A runner runs around a circular track of radius 100m at a speed of 7 m/s. The runner’s
friend is standing 200m from the center. How fast is the distance between them changing when their
distance is 200m?

Proof.

velocity of runner = change in runner’s distance w.r.t time =
dR

dt
.

We want

change in distance between friends w.r.t. time =
dF

dt
.

Really we want dF
dt

]
F=200

.

The arclength R = 100 · θ if θ is the angle at the point (x, y) at which the runner is at.

F =
√
(200− x)2 + y2 =

√
2002 − 400x+ x2 + y2 =

√
2002 − 400x+ 1002.

So

F 2 = 2002 + 1002 − 400x and 2F
dF

dt
= −400

dx

dt
.

So
dF

dt
= −200

F

dx

dt
.

Now x = 100 cos(θ) and 7 = dR
dt = 100dθ

dt . So

dx

dt
= −100 sin(θ)

dθ

dt
= −100 sin(θ)

7

100
= −7 sin(θ).

So
dF

dt
=

−(200)

F
(−7 sin(θ)) =

1400 sin(θ)

F
.

So
dF

dt

]
F=200

=
1400 sin(θ)

F

]
200

=
1400

200
sin(θ)

]
F=200

= 7 sin(θ)
]
F=200

.

When F = 200,

so sin(θ) =

√
2002 − 502

200
.

So
dF

dt

]
F=200

=
7
√
2002 − 502

200
=

7
√
40000− 2500

200
=

7
√
37500

200
=

7

2

√
375

in meters per second.
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Example 4.3. A steel ball falls from the top of a tower and in the last second before it hits the
ground it falls 9

25 of the total height of the tower. Find the height of the tower.

Proof. To get control, find equations for the acceleration a, the velocity v and position p of the ball.
The acceleration of the ball is a = 9.8 m/s2. So

So
dv

dt
= −9.8. So

∫
dv

dt
dt =

∫
−9.8 dt.

So
∫
dv =

∫
−9.8 dt and

v = 9.8t+ c, where c is a constant.

At t = 0 the velocity v is 0.

So 0 = −9.8 · 0 + c. So c = 0 and v = −9.8t.

Since v = dp
dt then

p =

∫
dp

dt
dt =

∫
v dt =

∫
−9.8t dt = −9.8

t2

2
+ c1,

where c1 is a constant. At t = 0 the position is H. So

H = −9.8

2
· 02 + c1. So c1 = H.

So

p = −9.8

2
t2 +H.

The ball hits the ground when p is 0. When p is 0,

0 = −9.8

2
+H and

9.8

2
t2 = H and t2 =

2H

9.8
=

H

4.9
.

So, when the ball hits the ground

t =

√
H

4.9
.

On second before the ball hits the ground its height is 9
25H. So

when t =

√
H

4, 9
− 1 then p =

9

25
H.

So
9

25
H = −9.8

2

(√ H

4.9
− 1
)2

+H.

So

9

25
H = −4.9

( H

4.9
− 2√

4.9

√
H + 1

)
+H = −H + 2

√
4.9

√
H − 4.9 +H = 2

√
4.9

√
H − 4.9.

So
9

25
H − 2

√
4.9

√
H + 4.9 = 0.
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So

√
H =

2
√
4.9±

√
(2
√
4.9)2 − 4.9

25 (4.9)

2 · 9
25

=
2
√
4.9±

√
4 · 4.9− 4 · 4.9 9

25

18
25

=
2
√
4.9± 2

√
4.9
√

16
25

18
25

=
2
√
4.9
(
1± 4

5

)
18
25

=


√
4.9 9

25
9
25

or
√
4.9 1

5
9
25

=


5
√
4.9

or
5
9

√
4.9.

So H = 25 · 4.9 or H = 25
81 · 4.9.

4.2 A cooling model

Example 4.4. (Cooling model) Let k, Ts, T0 ∈ R. Solve the equation

dT

dt
= −k(T − Ts), assuming T (0) = T0.

Proof. Since
1

(T − Ts)

dT

dt
= −k then

∫
1

(T − Ts)

dT

dt
dt =

∫
−kdt

and
log(T − Ts) = −kt+ C, where C is a constant.

So
T − Ts = e−kt+C = ce−kt, where c is a constant.

So
T = Ts + ce−kt, where c is a constant.

Then
T0 = T (0) = Ts + ce−k·0 = Ts + c so that c = T0 − Ts.

So
T = Ts + (T0 − Ts)e

−kt, where c is a constant.

Example 4.5. (Cooling model) A roast turkey is taken from an oven when its temperature reaches
85C and is placed on a table in a room where the temperature is 22C. It cools at a rate proportional
to the difference between its current temperature and the room temperature.

(a) If the temperature of the turkey is 60C after half and hour what is the temperature after 45
minutes?

(b) When will the turkey have cooled to 40C?

Proof. Idea: The change in temperature is propotional to current temerpature − room temperature.

dT

dt
= k(T −R), where k is the proporition.

So
dt

dt
= k and

∫
1

T −R

dT

dt
dt =

∫
k dt.
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So
log(T −R) = kt+ c, where c is a constant.

So
T −R = ekt+c = ecekt = Cekt, where C is a constant.

So
T = Cekt +R.

If t = 0 then T = 85 = Cek·0 + 22 = C + 22.. So

C = 85− 22 = 63 and T = 63ekt + 22.

If t = 1
2 then T = 63ek

1
2 + 22 = 60. So

ek
1
2 =

60− 22

63
=

48

63
and 1

2k = log
(
48
63

)
and k = 2 log

(
48
63

)
.

So
T = 63e2 log(

48
63

)t + 22.

(a) If t = 3
4 then

T = 63e2 log(
48
63

) 3
4 + 22 = 63e

3
2
log( 48

63
) + 22 = 63

(
elog(

48
63

)
) 3

2
+ 22 = 63

(48
63

) 3
2
+ 22.

(b) If T = 40 then 63e2 log(
48
63

)t + 22 = 40. So

e2 log(
48
63

)t =
40− 22

63
=

18

63
and 2 log(

48

63
)t = log

(18
63

)
.

So

t =
log
(
18
63

)
2 log(4863)

.

Example 4.6. (Tree growth model) Let a, b, h0 ∈ R. Solve the equation

dh

dt
= a(1− bh), assuming h(0) = h0.

Proof. Since
1

(1− bh)

dh

dt
= a then

∫
1

1− bh
(−b)

dh

dt
dt =

∫
a(−b)dt

and
log(1− bh) = −abt+ C, where C is a constant.

So
1− bh = e−abt+C = eCe−abt = ce−abt, where c is a constant.

So

h =
1

b
(1− ce−abt), where c is a constant.

Then

h0 = h(0) =
1

b
(1− ce0) =

1− c

b
so that c = 1− bh0.

So

h =
1

b
(1− (1− bh0)e

−abt) =
1

b
− (1− bh0)

b
e−abt.
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4.3 Interest and loans

Example 4.7. (Interest and loans) If you buy a $1,000,000 home and put 5% down and take out a
30 year fixed rate mortgage at 5% per year compute how much your payment would be if you paid it
all off in one big payment at the end of 30 years.

Proof. Idea: The change in the money is .05 of its current amount.

dM

dt
= .05M.

So
1

M

dM

dt
= .05 and

∫
1

M

dM

dt
dt =

∫
.05 dt.

So log(M) = 0.5t+ c, where c is a constant. So

M = e.05t+c = ece.05t = Ce.05t, where C is a constant.

At time t = 0 we owe 1, 000, 000− 50, 000 = 950, 000. So

950000 = Ce.05t = C and M = 950000e.05t.

After 30 years we owe
M = 950000e.05·30 = 950000e1.5 dollars.

Note that 950, 000e1.5 ≈ 4, 257, 604.62.

4.4 Radioactive decay

Example 4.8. (Radioactive decay) The majority of naturally occurring rhenium is 187
75 Re, which is

radioactive and has a half life of 7 · 1010 years. In how many years will 5% of the earth’s 187
75 Re

decompose?

Proof. Idea: The change in 187
75 Re is proportional to the existing amount of 187

75 Re.

dR

dt
= kR, where k is the proportion.

So
1

R

dR

dt
= k and

∫
1

R

dR

dt
dt =

∫
k dt.

So
log(R) = kt+ c and R = ekt+c = ecekt = Cekt,

where C is a constant.

When t = 0 the amount is R0. So

R0 = Cek·0 = C and R = R0e
kt.

When t = 7 · 1010 the amount is 1
2R0. So

1

2
R0 = R0e

k·7·1010 and
1

2
= ek·7·10

10
.
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So

log(
1

2
) = k · 7 · 1010 and k =

log(12)

7 · 1010
.

So

R = R0e
log( 12 )

7·1010
t.

We want to know when R = .05R0.

.05R0 = R0e
log( 12 )

7·1010
t then

1

20
= e

log( 12 )

7·1010
t and log(

1

20
) =

log(12)

7 · 1010
t.

So

t =
7 · 1010 log( 1

20)

log(12)
.

Example 4.9. (Radioactive decay - carbon dating) A sample of a wooden artifact from an Egyptian
tomb has a 14C/10C ration which is 54.2% of that of freshly cut wood. In approximately what year
was the old wood cut? The half life of 14C is 5720 years.

Proof. Idea: The change in 14C is proportional to the existing amount.

d14C

dt
= k14C, where k is the proportion.

So
1

14C

d14C

dt
= k and

∫
1

14C

d14C

dt
, dt =

∫
k dt.

So
log(14C) = kt+ c and 14C = ekt+c = ecekt = Kekt,

where K is a constant. Suppose that at t = 0 the amount of 14C is C0. Then

C0 = Kek·0 = K and 14C = C0e
kt.

The half life of 14C is 5720 years. So,

at t = 5720,
1

2
C0 = C0e

kt = C0e
k·5720.

So

1
2 = ek·5720 and log(12) = k · 5720 and k =

log(12)

5720
.

So
14C = C0e

log( 12 )

5720
t.

Now there is 54.2% of the original 14C. So

(.542) · C0 = C0e
log( 12
5720

t and (.542) = e
log( 12
5720

t.

So

log(.542) =
log(12)

5720
t and t =

log(.542) · 5720
log(12)

.
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4.5 Population models

Example 4.10. (Population model) Let k, h ∈ C with k ̸= 0. The elements p ∈ C((t)) which satisfy
the equation

dp

dt
= kp− h

are
p = 1

k (e
kc1ekt + h) = Cekt + h

k , where C is a constant.

Proof. Since

1

(kp− h)

dp

dt
= 1, then 1

k log(kp− h) = t+ c1, where c1 is a constant,

and
p = 1

k (e
kc1ekt + h) = Cekt + h

k , where C is a constant.

Then p0 = C + h
k and

p = 1
k (e

kc1ekt + h) =
(
p0 − h

k

)
ekt + h

k ,where p0 = p(0).

PHASE PLOT and SOLUTIONPLOT

Example 4.11. (Population model) Let a, k, h ∈ C with k ̸= 0 and a ̸= 0. The elements p ∈ C((t))
which satisfy the equation

dp

dt
= kp(1− 1

ap)− h

are

p = −β +
α+ β

(1− Ce
k
a
(α−β)t)

, where C is a constant,

and where p2 − ap+ ha
k = (p− α)(p− β) with

α =
a+

√
a2 − 4ha/k

2
and β =

a−
√
a2 − 4ha/k

2
. (4.1)

Proof. Let α and β be as in (4.1).

dp

dt
= k

ap
2 + kp− h =

k

a
(p2 + ap− ha

k )

and
1

(p− α)(p− β)

dp

dt
= k

a gives
1

α− β

( 1

p− α
− 1

p− β

)dp
dt

= k
a

so that

log(p− α)− log(p− β) = k
a(α− β)t+ c1 and

p− α

p− β
= Ce

k
a
(α−β)t, (4.2)

where c1 and C are constants. Then

p(1− Ce
k
a
(α−β)t) = α+ βCe

k
a
(α−β)t and p =

α+ βCe
k
a
(α−β)t

(1− Ce
k
a
(α−β)t)

.
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So

p = −β +
α+ β

(1− Ce
k
a
(α−β)t)

, where C is a constant.

From (4.2)

C =
p0 − α

p0 − β
.

PHASE PLOT and SOLUTIONPLOT

Example 4.12. (Population model) If the bacteria in a culture increase continuously at a rate pro-
portional to the number present, and the initial number is N0 find the number at time t.

Proof. Idea: The change in bacteria is proportional to the amount of bacteria.

dB

dt
= kB, where k ∈ R, is the proportion.

What could B be?
1

B

db

dt
= k. So

∫
1

B

dB

dt
dt =

∫
kdt.

So log(B) = kt+ c, where c is a constant. So

B = ekt+c = ecekt = Cekt, where C is a constant.

At time t = 0,
B = N0 = Cek·0 = C.

So C = N0 and
B = N0e

kt.

Example 4.13. (Population model) A pharmaceutical company grows engineered yeast to produce
a drug. The yeast is continuously harvested to collect the drug.

The population p (in millions of yeast cells) at time t days is described by

dp

dt
= 3p− 2, for p ∈ R≥0 and t ∈ R≥0.

(a) For what initial polulation sizes p(0) will the yeast population eventually die out?

(b) Find the time taken for the population to die out, if the initial population size is p(0) = 1
2 .

(0) Find all equilibrium solutions.

(a) Draw a phase plot,

(b) Sketch the family of solutions of the ODE, including any equilibria.

(c) Describe the long term behaviour of solutions with initial conditions

(i) p(0) = 1
2 ;

(ii) p(0) = 1;

(d) Determine the stability of the equilibrium.
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Proof. The phase plot determines the solution plot.

Phase plot: Graph of dp
dt as a function of p Solution plot: Solutions of dp

dt = 3p− 2

and

(A) If the initial population is less than 2
3 then the population decreases and eventually dies out

as times passes. In particular, if the initial population is 1
2 then the population decreases and

eventually dies out.

(B) If the initial population is greater than 2
3 then the population gets larger and larger as time

passes. In particular, if the initial population is 1 then the population gets larger and larger as
time passes.

(C) If the initial population is 2
3 then the population will stay 2

3 forever, but this equilibrium is
unstable as any chance aberration will cause the population to start to increase and grow forever,
or to start to decrease and then eventualy die out.

Since
1

(3p− 2)

dp

dt
= 1 then

∫
1

(3p− 2)

dp

dt
dt =

∫
1 dt.

Since d
dp(

1
3 log(3p− 2)) = 1

3p−2 and
∫
1 dt = t+ c then

1
3 log(3p− 2) = t+ c, where c is a constant,

Then
3p− 2 = e3ce3t = Ce3t and p = 1

3Ce3t + 2
3 , where C is a constant.

(b) Assume that the initial population is 1
2 . Then p(0) = 1

2 and 1
2 = 1

3C + 2
3 so that C = −1

2 . So

p(t) = −1
6e

3t + 2
3 .

Then
p(t) = 0 when 3t = log(−2

3 · (−6)) = log(4).

So the population dies out when t = 1
3 log(4).

Example 4.14. A population is modelled by the logistic model

dp

dt
= p(1− 1

4p),

find the equilibrium solutions, determine their stability and sketch the family of solutions for the ODE.

105



Calculus Examples, Arun Ram, version: January 28, 2025

Proof. The phase plot is

Graph of dp
dt as a function of p

and the phase plot indicates that the solution plot is

Solutions of dx
dt = p− 1

4p
2

The equilibrium solutions are p = 0 and p = 4 since these make p(1− 1
4p) =

dp
dt = 0.

(A) If the initial population is greater than 4 then the population decreases to 3 as t → ∞,

(B) If the initial population is less than 4 then the population decreases to 3 as t → ∞,

(C) If the population starts out at 3 then it stays 3 forever. This equilibrium is stable and is not
disturbed by small aberrations. After any emergency it will naturally return to the stable value
of 3 as time passes.

Example 4.15. (Population model) For a population described by the logistic model with harvesting

dp

dt
= p(1− 1

4p)−
3
4 ,

determine the long term consequences for the population predicted by the model.

Proof. The equation is

dp

dt
= p(1− 1

4p)−
3
4 = −1

4p
2 + p− 3

4 = −1
4(p

2 − 4p+ 3) = −1
4(p− 1)(p− 3).
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Thus the phase plot (the plot of dp
dt versus p) and the solution plot (the plot of p versus t) are

Graph of dp
dt as a function of p Graph of p as a function of t

(a) If the initial population is greater than 1 then the system is stable and the population approaches
3 in the long term.

(b) If the iniial population is less than 1 then the population will die out in the long term.

(c) If the initial population is 1 then the population will stay constant at 1, but this is not a stable
situation, any small deviation will cause the population to either start to die out, or start to
increase to 3.

4.6 Mixing

Example 4.16. Effluent (pollutant concentration 2g/m3) flows into a pond (volume 1000m3, initially
100g pollutant) at a rate of 10m3/min. The pollutant mixes quickly and uniformly with pond water
and flows out of the pond at a rate of 10 m3/min.

(a) Find the concentration of pollutant in the pond at any time, and intepret the long term behaviour
of the system.

(b) Derive an ODE describing the amount x of pollutant in the lake at time t (minutes), if the input
flow rate is decreased to 5 m3/min.

Proof. (a) The volume of water in the pond is

V = 1000.

Let p be the amount of pollutant in the pond. Then

dp

dt
= 2 · 10− p

1000
· 10 = 20− p

100
= − 1

100
(p− 2000), with p(0) = 100.

So

log(p− 2000) = − 1

100
t+ c, and p = 2000 + Ce−

1
100

t with C = ec == −1900.
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The concentration of pollutant in the pond is

K =
p

1000
= 2− 1.9e−

1
100

t.

Graph of K as a function of t

(b) The volume of water in the pond at time t is

V = 1000− 5t.

Let p be the amount of pollutant in the pond. Then

dp

dt
= 2 · 5− p

V
· 10 = 10− 10p

1000− 5t
.

At time t = 200 the pond is empty. The equation is

dp

dt
+
( 10

1000− 5t

)
p = 10,

which can probably be solved with an integrating factor (product rule).

4.7 Oscillating motion: swings and springs

Example 4.17. A 40
49kg mass streches a spring hanging from a fixed support by 0.2m. The mass is

released from the equilibrium position with a downward velocity of 3m/s. Find the position of the
mass y below the equilibrium at any time t, if the damping constant β is

(a) 0,

(b) 160
49 ,

(c) 80
7 ,

(d) 2000
49 .

Proof. Let y(t) be the position of the mass at time t, let a(t) be the acceleration of the mass at time
t and let F denote the force on the mass.

d2y

dt2
= a and F = ma = my′′.

Let

g = 9.8m/s be the acceleration due to gravity,

k be the spring constant,
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β be the damping constant,

s be the position of the mass at rest.

Then

my′′ = F = (gravitational force) + (restoring force) + (damping force)

= mg + (−k)(s+ y) + (−β)y′ = −ky − βy′.

When the mass is at rest then y′′ = 0 and y′ = 0 and y = 0 so that

0 = mg + (−k)(s+ 0)− β · 0 and s =
mg

k
.

In our case,

m = 40
49 and k =

mg

s
=

40
49 · 9.8
0.2

= 40 so that 40
49y

′′ + βy′ + 40y = 0.

In our case the mass is released from the equilibrium (rest) position with a downward velocity of 3 so
that

y(0) = 0 and y′(0) = 3.

(a) If β = 0 then the equation is y′′ + 49y = 0. Let D = d
dt . Then the equation is

(D − 7i)(D + 7i)y = 0 which has solutions y = c1e
7it + c2e

−7it,

where c1, c2 ∈ C. Since y(0) = 0 then c1 + c2 = 0 and since y′(0) = 3 then 3 = 7ic1 − 7ic2. So

y =
3

14i
e7it − 3

14i
e−7it =

3

7
sin(7t)

Graph of y = 3
7 sin(7t)

(b) if β = 160
49 then the equation is y′′ + 4y′ + 49y = 0. Let D = d

dt . Then the equation is

(D − (−2 + 3i))(D − (−2 + 3i)) = 0 which has solutions y = c1e
(−2+3

√
5i)t + c2e

(−2−3
√
5i)t,

where c1, c2 ∈ C. Since y(0) = 0 then c1 + c2 = 0 and since y′(0) = 3 then 3 = (−2+ 3
√
5i)c1 + (−2−

3
√
5i)c2. So

y =
3

6
√
5i
e−2te3

√
5it − 3

6
√
5i
e−2te−3

√
5it =

1√
5
e−2t sin(3

√
5t).
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Graph of y = 1√
5
e−2t sin(3

√
5t)

(c) if β = 80
7 then the equation is y′′ + 14y′ + 49y = 0. Let D = d

dt . Then the equation is

(D + 7)(D + 7) = 0 which has solutions y = c1e
−7t + c2te

−7t,

where c1, c2 ∈ C. Since y(0) = 0 then c1 = 0 and since y′(0) = 3 then 3 = −7c1 + c2. So

y = 3te−7t.

Graph of y = 3te−7t

(d) if β = 2000
49 then the equation is y′′ + 50y′ + 49y = 0. Let D = d

dt . Then the equation is

(D + 1)(D + 49) = 0 which has solutions y = c1e
−t + c2e

−49t,

where c1, c2 ∈ C. Since y(0) = 0 then 0 = c1 + c2 and since y′(0) = 3 then 3 = −c1 − 49c2. So

y =
3

48
e−t − 3

48
e−49t =

1

16
e−t − 1

16
e−49t.

Graph of y = 1
16e

−t − 1
16e

−49t

Example 4.18. Apply an external downwards force f(t) = 160
7 sin(7t) in Example 4.17 (a) and (c).
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Proof. (c) The position y of the spring satisfies the equation y′′ + 14y′ + 49y = 160
7 sin(7t). This has

general solution

y = Ae−7t +Bte−7t − 2
7 cos(7t), where A and B are constants.

The initial conditions y(0) = 0 and y′(0) = 3 give that A = 2
7 and B = 5. So the position of the mass

on the spring at time t is

y = 2
7e

−t + 5te−7t − 2
7 cos(7t) =

(
2
7 + 5t)e−7t − 2

7 cos(7t).

Graph of y =
(
2
7 + 5t)e−7t − 2

7 cos(7t)

(a) The position y of the spring satisfies the equation y′′+49y = 160
7 sin(7t). This has general solution

y = A cos(7t) +B sin(7t)− 2t cos(7t), where A and B are constants.

The initial conditions give A = 0 and b = 5
7 so that the position of the mass on the spring at time t is

y = 5
7 sin(7t)− 2t cos(7t).

Graph of y = 5
7 sin(7t)− 2t cos(7t)

4.8 Optimization

Example 4.19. Find the local maxima and minima of f(x) = 2x3 − 24x+ 107 in the interval R[1,3].

Proof. The critical points are

(a) points where df
dx is 0;
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(b) points where f(x) is not continuous or not differentiable;

(c) points on the boundary of where f(x) is defined.

If f(x) = 2x3 − 24x + 107 in the interval R[1,3] then x = 1 and x = 3 are critical points of type (c),
and

df

dx
= 6xx2 − 24 and 6x2 − 24 = 0 when x2 = 24

6 = 4.

So x ∈ {−2, 2} when df
dx is 0. So x = 2 is a critical point in R[1,3].

Critical point x = 1:
df

dx

]
x=1

= (6x2 − 24)
]
x=1

= 6− 24 < 0.

So f(x) is decreasing at x = 1. So (from the picture) x = 1 is a maximum.

Critical point x = 3:
df

dx

]
x=3

= (6x2 − 24)
]
x=3

= 6 · 32 − 24 = 30 > 0.

So f(x) is increasing at x = 3. So (from the picture) x = 3 is a maximum.
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Critical point x = 2:

df

dx

]
x=2

= 0 and
d2f

dx2
]
x=2

= 12x
]
x=2

= 24 > 0.

So f(x) is slope zero and concave up at x = 2. So x = 2 is a minimum.

Example 4.20. An enemy jet is flying along the curve y = x2 + 2. A soldier is placed at the poit
(3.2). At what point will the jet be at when the soldier and the jet will be the closest?

Proof.

If the jet is at the point (p, q) then the distance between them is

d =
√
(p− 3)2 + (q − 2)2.

The point (p, q) is on the curve y = x2 + 1 so q = p2 + 2.
So d =

√
(p− 3)2 + (p2 + 2− 2)2.

We want to minimize d (as the jet moves, i.e. as p changes).
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The distance d will be minimum at the same time that d2 will be minimum.
So we can minimize d2.

d2 = (p− 3)2 + (p2)2 = (p− 3)2 + p4.

Find a critical point. When is

dd2

dp
= 2(p− 3) + 4p3 = 4p3 + 2p− 6 = (p− 1)(4p2 + 4p+ 6) equal to 0?

Since
d(d2)

dp

]
p=1

= 0 then p = 1 is a critical point. The picture helps confirm that when the jet is at

(1, 3) (i.e. p = 1 and q = 3) then the distance to the soldier is minimum.

Example 4.21. Maximize the volume of a cone with a given slant hieght. Show that the angle of
inclination is tan−1(

√
2).

Proof.

ℓ =slant height,
θ = angle of inclination,
r
ℓ = sin(θ),
h
ℓ = cos(θ).

The volume of a cone is

V =
1

3
πr2h =

1

3
π(ℓ sin(θ))2h =

1

3
π(ℓ sin(θ))2ℓ cos(θ).

The value of ℓ (the slant height) is fixed. We want to maximize V as θ changes.

dV

dθ
=

d1
3π ell3 sin(θ)2 cos(θ)

dθ

=
1

3
πℓ3(2 sin(θ) cos(θ)2 − sin(θ)2 sin(θ))

=
1

3
πℓ3 sin(θ)(2 cos(θ)2 − sin(θ)2),

A critical point is when dV
dθ is zero: where 2 cos(θ)2 − sin(θ)2 = 0 or sin(θ) = 0.

So 2 = tan(θ)2 or θ = 0.

So
√
2 = tan(θ) or θ = 0.

So θ = tan−1(
√
2) or θ = 0.

When θ = 0 the cone is infinitely thin which does not have maximum volume.
So θ = tan−1(

√
2) maximizes volume.

4.9 Lengths and surface area
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Idea: Use the grid to slice up the curve into little pieces.

Each little piece

has ds =
√
(dx)2 + (dy)2.

Add up the lengths of the little pieces with an integral.

Example 4.22. Use integration to find the length of a circle of radius r.

Proof.

The length of the circle is 4 times the length of

(a) Divide this part of the curve into little pieces .

(b) Each little piece has length ds =
√
(dx)2 + (dy)2.

(c) Add up the lengths of the little pieces with an integral.
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∫ x=r

x=0
ds =

∫ x=r

x=0

√
(dx)2 + (dy)2

=

∫ x=r

x=0

√
(dx)2 + (dy)2

dx
dx

=

∫ x=r

x=0

√
1 +

(dy
dx

)2
dx

=

∫ x=r

x=0

√
1 +

(
− 2x

2y

)2
dx,

since

x2 + y2 = r2 gives 2x+ 2y
dy

dx
= 0 which gives

dy

dx
[= −2x

2y
.

So ∫ x=r

x=0
ds =

∫ x=r

x=0

√
1 +

x2

y2
dx

=

∫ x=r

x=0

√
y2 + x2

y2
dx

=

∫ x=r

x=0

√
r2

r2 − x2
dx

=

∫ x=r

x=0

√
1

1−
(
x
r

)2 dx
=

∫ x=r

x=0

r · 1
r√

1−
(
x
r

)2 dx
= r sin−1

(x
r

)]x=r

x=0

= r sin−1(1)− r sin−1(0)

= r
π

2
− 0.

So the total length of the circle is

4
(rπ
2

)
= 2πr.

Example 4.23. Find the length of the curve x = t− sin(t), y = 1− cos(t), where t ∈ R[0,2π].

Proof. (a) Divide the curve into little pieces .

(b) Each little piece has length ds =
√
(dx)2 + (dy)2.

(c) Add up the lengths of the little pieces.
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∫ t=2π

t=0
ds =

∫ t=2π

t=0

√
(dx)2 + (dy)2

=

∫ t=2π

t=0

√
(dx)2 + (dy)2

dt
dt

=

∫ t=2π

t=0

√(dx
dt

)2
+
(dy
dt

)2 dt

=

∫ t=2π

t=0

√
(1− cos(t))2 + sin(t)2 dt

=

∫ t=2π

t=0

√
1− 2 cos(t) + cos(t)2 + sin(t)2 dt

=

∫ t=2π

t=0

√
1− 2 cos(t) + 1 dt

=

∫ t=2π

t=0

√
2− 2 cos(t) dt

=

∫ t=2π

t=0

√
2− 2 cos

( t
2
+

t

2

)
dt

=

∫ t=2π

t=0

√
2− 2

(
cos
( t
2

)2 − sin
( t
2

)2)
dt

=

∫ t=2π

t=0

√
2

√
1− cos

( t
2

)2
+ sin

( t
2

)2
dt

=

∫ t=2π

t=0

√
2

√
sin
( t
2

)2
+ sin

( t
2

)2
dt

=

∫ t=2π

t=0

√
2

√
2 sin

( t
2

)2
dt

=

∫ t=2π

t=0

√
2
√
2 sin

( t
2

)
dt

= 2
(
cos
( t
2

))
· 2
]t=2π

t=0

= −4 cos
(2π
2

)
− (−4 cos(0)) = (−4)(−1) + 4 · 1 = 4 + 4 = 8.

Example 4.24. Find the length of the curvex = 3
5y

5
3 − 3

4y
1
3 from y = 0 to y = 1.

Proof. (a) Divide the curve into little pieces .

(b) Each little piece has length ds =
√
(dx)2 + (dy)2.

(c) Add up the lengths of the little pieces.
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∫ y=1

y=0
ds =

∫ y=1

y=0

√
(dx)2 + (dy)2

=

∫ y=1

y=0

√
(dx)2 + (dy)2

dy
dy

=

∫ y=1

y=0

√
(dx)2 + (dy)2

(dy)2
dy

=

∫ y=1

y=0

√(dx
dy

)2
+ 1 dy

=

∫ y=1

y=0

√(
y

2
3 − 1

4
y−

2
3

)2
+ 1 dy

=

∫ y=1

y=0

√
y

4
3 − 1

2
+

1

16
y−

4
3 + 1 dy

=

∫ y=1

y=0

√
y

4
3 +

1

2
+

1

16
y−

4
3 dy

=

∫ y=1

y=0

√(
y

2
3 +

1

4
y−

2
3

)2
dy

=

∫ y=1

y=0

(
y

2
3 +

1

4
y−

2
3
)
dy

=
(3
5
y

5
3 +

1

4
· 3y

1
3
)]y=1

y=0
=

3

5
+

3

4
− (0 + 0) =

12

20
+

15

20
=

27

20
.

Example 4.25. Let a ∈ R>0. Find the surface area obtained by rotating the curve determined by
x = a cos(θ)3, y = a sin(θ)3 about the x-axis.

Proof. To graph the curve:

cos(θ)3 =
x

a
and sin(θ)3 =

y

a
. So cos(θ) =

(x
a

) 1
3 and sin(θ) =

(y
a

) 1
3 .

Since cos(θ)2 + sin(θ)2 = 1 then(x
a

) 2
3 +

(y
a

) 2
3 = 1, which is x

2
3 + y

2
3 = a

2
3 .

118



Calculus Examples, Arun Ram, version: January 28, 2025

So when this is rotated about the x-axis

Slice:

Surface area of a slice: πR2 ds.
Add up slices from x = 0 to x = a and then multiply by 2.

Surface area = 2

∫ x=a

x=0
πR2 ds

= 2

∫ x=a

x=0
πy2

√
(dx)2 + (dy)2

= 2

∫ x=a

x=0
πy2

√
(dx)2 + (dy)2

dθ
dθ

= 2

∫ x=a

x=0
πy2

√(dx
dθ

)2
+
(dy
dθ

)2
dθ

Since x = a cos(θ)3 and y = a sin(θ)3 then

dx

dθ
= −3a cos(θ)2 sin(θ) and

dy

dθ
= −3a sin(θ)2 cos(θ).

So

Surface area = 2

∫ x=a

x=0
πy2
√
(−3a cos(θ)2 sin(θ))2 + (3a sin(θ)2 cos(θ))2 dθ

= 2

∫ x=a

x=0
πa2 sin(θ)6

√
9a2 cos(θ)4 sin(θ)2 + 9a2 sin(θ)4 cos(θ)2 dθ

= 2

∫ x=a

x=0
πa2 sin(θ)63a sin(θ) cos(θ) dθ

= 2

∫ x=a

x=0
3πa3 sin(θ)7 cos(θ) dθ

= 6πa3
sin(θ)8

8

]x=a

x=0

=
6πa3

8
sin(θ)8

]a cos(θ)3=a

a cos(θ)3=0

=
3πa3

4
sin(θ)8

]cos(θ)=1

cos(θ)=0

=
3πa3

4
sin(θ)8

]θ=0

θ=π
2

=
3πa3

4
sin(0)8 − 3πa3

4
sin
(π
2

)8
= −3πa3

4
· 18 = −3πa3

4
.

So the surface area is 3πa3

4 .
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4.10 Averages

Average of a bunch of numbers:

(a) Add up the numbers

(b) Divide by the number of values

Example 4.26. Compute the average of 1, 2, 3, . . . , 100.

Proof.

1 + 2 + 3 = 4 = · · · + 97 + 98 + 99 + 100
100 + 99 + 98 + 97 + · · · + 4 + 3 + 2 + 1

101 + 101 + 101 + 101 + · · · + 101 + 101 + 101 + 101 = 10100

So

1 + 2 + 3 + · · ·+ 100 =
10100

2
= 5050.

So the average is 1
100(1 + 2 + 3 + · · ·+ 100) = 5050

100 = 50.5.

Example 4.27. Compute the average of 1, 1
3 ,

1
33
, 1
33
, . . ., 1

350
.

Proof. Since

(1 + x+ x2 + · · ·+ x50)(1− x) = 1 + x+ x2 + x3 + · · ·+ x50

− x− x2 − x3 − · · · − x50 − x51

= 1− x51

then

1 + x+ x2 + · · ·+ x50 =
1− x51

1− x
.

So

1 +
1

3
+

1

32
+ · · ·+

(1
3

)50
=

1−
(
1
3

)51
1− 1

3

=
1− 1

351

2
3

=
3− 1

350

2
.

So the average is

1

51

(
1 +

1

3
+

1

32
+ · · ·+

(1
3

)50))
=

1

51
·
3− 1

350

2
=

3− 1
350

102
≈ 3

100
= .03.

Example 4.28. Estimate the average of 1, 12 ,
1
3 , . . . ,

1
100 .

Proof. Since 1 + 1
2 + 1

3 + · · ·+ 1
99 is the area of the boxes in the picture
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then

1 +
1

2
+

1

3
+ · · ·+ 1

99
≥
∫ 100

1

1

x
dx = log(x)

]x=100

x=1
= log(100).

So

1 +
1

2
+

1

3
+ · · ·+ 1

99
+

1

100
≥ log(100) +

1

100
.

Since 1
2 + 1

3 + · · ·+ 1
99 + 1

100 is the area of the boxes in the picture

then
1

2
+

13

+
· · ·+ 1

99
≤
∫ 100

1

1

x
dx = log(x)

]x=100

x=1
= log(100).

So

1 +
1

2
+

1

3
+ · · ·+ 1

99
+

1

100
≤ 1 + log(100).

Since
1

100
+ log(100) ≤ 1 +

1

2
+

1

3
+ · · ·+ 1

99
+

1

100
≤ 1 + log(100)

then
1

101

( 1

100
+ log(100)

)
≤ 1

101
(1 +

1

2
+

1

3
+ · · ·+ 1

99
+

1

100
) ≤ 1

101
(1 + log(100)).

So the average of 1, 12 ,
1
3 , . . . ,

1
100 is

between
log(100)

101
+

1

10100
and

log(100)

101
+

1

101
.

Example 4.29. Find the average value of f : R[0,π
2
] → R given by f(x) = sin(x)2.

Proof.
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The average value is∫ π
2

0
f(x) dx

π
2 − 0

=

∫ π
2

0
sin(x)2 dx

π
2 − 0

=
2

π

∫ π
2

0

1

2
(sin(x)2 + sin(x)2) dx

=
2

π

∫ π
2

0

1

2
(1− cos(x)2 + sin(x)2) dx

=
1

π

∫ π
2

0
(1− (cos(x)2 − sin(x)2)) dx

=
1

π

∫ π
2

0
(1− cos(2x)) dx

=
1

π

(
x− sin(2x)

2

) ]π
2
0

=
1

π

(π
2
−

sin(2π
2 )

2

)
− 1

π

(
0− sin(0)

2

)
=

1

π

(π
2
− 0
)
=

1

2
.

So

is the same area as .

4.11 Center of mass

A moment and a center of mass are the same thing.

The center of mass is the average position of the mass in an object.

Center of mass =
(position of mass) ·mass

mass

=

∫
(position of a slice) ·mass of a slice∫

mass of a slice

.

Note:
mass of slice = (volume of slice) · (density of the slice).

Center of mass and center of gravity are the same thing.
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Example 4.30. Find the center of mass of a solid hemisphere of radui r if its density at apoint P is
proportional to the distance between P and the base of the hemisphere.

Proof.

Slice:

(a) Volume of a slice: πR2 dy;

(b) Density of a slice = Height of the slice;

(c) Mass of a slice = πR2 dy(height of slice)

(d) Add slices from y = 0 to y = r.
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Center of mass =

∫
(center of mass of slice) · (mass of slice)∫

(mass of slice)

=

∫ y=r

y=0
yπR2 dy(height of slice)∫ y=r

y=0
πR2 dy(height of slice)

=

∫ y=r

y=0
yπx2 dy · y∫ y=r

y=0
πx2 dy · y

=

∫ y=r

y=0
π(r2 − y2)y2 dy∫ y=r

y=0
π(r2 − y2)y dy

=

∫ y=r

y=0
(πr2y2 − πy4 dy∫ y=r

y=0
(πr2y − πy3) dy

=

(πr2y3
3

− πy5

5

)]y=r

y=0∫ y=r

y=0

(πr2y2
2

− πy4

4

)]y=r

y=0

=
πr5

3 − πr5

5 − (0− 0)
πr4

2 − πr4

4 − (0− 0)
=

πr5
(
1
3 − 1

5

)
πr4
(
1
2 − 1

4

) = r

(
2
15

)(
1
4

) = r
2

15
· 4 =

8r

15
.

So the center of mass is at
(
0, 8r15

)
.

Example 4.31. Find the center of gravity of the arc length of one quadrant of the circle.

Proof. The center of mass will be on the line y = x so its x-coordinate and its y-coordinate will be
the same.

Chop up the curve into little pieces

(a) The mass of the little piece is (density) · ds.
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(b) Add up the little pieces from θ = 0 to θ = π
2 .

x-coordinate of center of mass =

∫ θ=π
2

θ=0 xδ ds∫ θ=π
2

θ=0 δ ds
(where δ is the density)

=

∫ θ=π
2

θ=0 xδ
√
(dx)2 + (dy)2∫ θ=π

2
θ=0 δ

√
(dx)2 + (dy)2

=

∫ θ=π
2

θ=0 xδ
√(

dx
dθ

)2
+
(dy
dθ

)2
dθ∫ θ=π

2
θ=0 δ

√(
dx
dθ

)2
+
(dy
dθ

)2
dθ

=

∫ θ=π
2

θ=0 δr cos(θ)
√

(−r sin(θ))2 + (r cos(θ))2dθ∫ θ=π
2

θ=0 δ
√
(−r sin(θ))2 + (r cos(θ))2 dθ

=

∫ θ=π
2

θ=0 δr cos(θ)
√

r2 sin(θ)2 + r2 cos(θ)2dθ∫ θ=π
2

θ=0 δ
√
r2 sin(θ)2 + r2 cos(θ)2 dθ

=

∫ θ=π
2

θ=0 δr cos(θ)rdθ∫ θ=π
2

θ=0 δr dθ

=
δr2 sin(θ)

]θ=π
2

θ=0

δrθ
]θ=π

2
θ=0

=
δr2 sin(π2 )− δr2 · 0

δr π
2 − δr · 0

=
δr2

δr π
2

=
2r

π
.

Example 4.32. Find the center of gravity of the area bounded by the curve y = x− x2 and the line
x+ y = 0.

Proof.

Slice:

(a) mass of slice: (density)Ldx;

(b) y-coordinate of center of mass of slice is at halfway between top and bottom;

(c) x-coordinate of center of mass of slice is at x-position of slice;

(d) Add up slices from x = 0 to the x-value at the right intersection point.
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When x+ y = 0 and y = x− x2 intersect y = −x = x− x2.

So x2 − 2x = 0, So x(x− 2) = 0. So x = 0 or x = 2.

x-coordinate of center of mass of area =

∫ x=2

x=0
(x-position of slice)δL dx∫ x=2

x=0
δL dx

(where δ is the density)

=

∫ x=2

x=0
xδ(ytop−ybottom) dx∫ x=2

x=0
δ(ytop−ybottom) dx

=

∫ x=2

x=0
xδ((x− x2)− (−x)) dx∫ x=2

x=0
δ((x− x2)− (−x)) dx

=

∫ x=2

x=0
xδ(2x− x2) dx∫ x=2

x=0
δ(2x− x2) dx

=

∫ x=2

x=0
δ(2x2 − x3) dx∫ x=2

x=0
δ(2x− x2) dx

=
δ
(2x3

3
− x4

4
)
]x=2

x=0

δ
(2x2

2
− x3

3

)]x=2

x=0
dx

=
δ
(2 · 23

3
− 24

4
)− (0− 0)

δ
(2 · 22

2
− 23

3

)
− (0− 0) dx

=
24
(
1
3 − 1

4

)
23
(
1
2 − 1

3

) =
2
(

1
12

)(
1
6

) =
2

2
= 1.
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y-coordinate of center of mass of area =

∫ x=2

x=0
(y-position of slice)δL dx∫ x=2

x=0
δL dx

(where δ is the density)

=

∫ x=2

x=0

((ytop − ybottom
2

)
+ ybottom

)
δ(ytop − ybottom) dx∫ x=2

x=0
δ(ytop − ybottom) dx

=

∫ x=2

x=0
δ
((x− x2)− (−x)

2
+ (−x)

)
((x− x2)− (−x)) dx∫ x=2

x=0
δ((x− x2)− (−x)) dx

=

∫ x=2

x=0
δ
(
− x2

2

)
(2x− x2) dx∫ x=2

x=0
δ(2x− x2) dx

=

∫ x=2

x=0
δ
(
− 2x3

2
+

x4

2

)
dx∫ x=2

x=0
δ(2x− x2) dx

=
δ
(
− x4

4
+

x5

10

) ]x=2

x=0

δ(x2 − x3

3
)
]x=2

x=0

=
−24

2 + 25

10

24 − 23

3

=
24
(
− 1

4 + 1
5

)
23
(
2− 1

3

) =
2
(
− 1

20

)
5
3

=
−2 · 3
5 · 20

=
−3

5 · 10
=

−3

50
.

So the center of mass is at
(
1,− 3

50

)
.

5 Limits

5.1 Limits by algebra

Example 5.1. Evaluate lim
x→7

x2 − 49

x− 7
.

Proof.

lim
x→7

x2 − 49

x− 7
= lim

x→7

(x− 7)(x+ 7)

x− 7
= lim

x→7
(x+ 7) = 7 + 7 = 14.

Example 5.2. Evaluate lim
x→5

x5 − 3125

x− 5
.

Proof.

lim
x→5

x5 − 3125

x− 5
= lim

x→5

x5 − 55

x− 5
= lim

x→5

(x− 5)(x4 + 5x3 + 52x2 + 53x+ 54)

x− 5

= lim
x→5

x4 + 5x3 + 52x2 + 53x+ 54 = 54 + 54 + 54 + 54 = 55 = 3125.
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Example 5.3. Evaluate lim
x→a

x5/2 − a5/2

x− a
.

Proof.

lim
x→a

x5/2 − a5/2

x− a
lim
x→a

(x5/2 − a5/2)

(x− a)

(x5/2 + a5/2)

(x5/2 + a5/2)
= lim

x→a

x5 − a5

x− a
· 1

x5/2 − a5/2

= lim
x→a

(x− a)(x4 + ax3 + a2x2 + a3x+ a4)

x− a
· 1

x5/2 + a5/2
= lim

x→a

x4 + ax3 + a2x2 + a3x+ a4

x5/2 + a5/2

=
a4 + a4 + a4 + a4 + a4

a5/2 + a5/2
=

5a4

2a5/2
=

5

2
a3/2.

Particularly useful limits

Example 5.4. Evaluate lim
x→0

sinx

x
.

Proof.

lim
x→0

sinx

x
= lim

x→0

x− x3

3! +
x5

5! −
x7

7! +
x9

9! − · · ·
x

= lim
x→0

1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− · · · = 1− 0 + 0− 0 + 0− · · · = 1.

Example 5.5. Evaluate lim
x→0

cos(x)− 1

x
.

Proof.

lim
x→0

cos(x)− 1

x
= lim

x→0

(
1− x2

2! +
x4

4! −
x6

6! +
x8

8! − · · ·
)
− 1

x

= lim
x→0

−x2

2! +
x4

4! −
x6

6! +
x8

8! − · · ·
x

= lim
x→0

− x

2!
+

x3

4!
− x5

6!
+

x7

8!
− · · · = −0 + 0− 0 + 0− · · · = 0.

Example 5.6. Evaluate lim
x→0

ex − 1

x
.

Proof.

lim
x→0

ex − 1

x
= lim

x→0

(
1 + x+ x2

2! +
x3

3! +
x4

4! + · · ·
)
− 1

x

= lim
x→0

x+ x2

2! +
x3

3! +
x4

4! + · · ·
x

= lim
x→0

1 +
x

2!
+

x2

3!
+

x3

4!
+ · · · = 1 + 0 + 0 + 0 + 0 + · · · = 1.
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Example 5.7. Evaluate lim
x→0

log(1 + x)

x
.

Proof. Let y = log(1 + x). Then

ey = 1 + x, x = ey − 1, and y → 0 as x → 0.

So

lim
x→0

log(1 + x)

x
= lim

y→0

y

ey − 1
= lim

y→0

1
ey−1
y

=
1

1
= 1.

Example 5.8. Evaluate lim
x→0

(1 + x)1/x.

Proof.

lim
x→0

(1 + x)1/x = lim
x→0

(
elog(1+x)

)1/x
= lim

x→0
e

1
x
log(1+x) = lim

x→0
e

log(1+x)
x = e1 = e.

Note: n → ∞ means as n gets larger and larger.

Example 5.9. Evaluate lim
n→∞

(1 + 1
n)

n.

Proof. Let x = 1
n . Then x → 0 as n → ∞. So

lim
n→∞

(
1 +

1

n

)n

= lim
x→0

(1 + x)1/x = e.

Example 5.10. Evaluate lim
x→π

sin(x)

x− π
.

Proof. Let y = x− π. Then y → 0 as x → π. So

lim
x→π

sin(x)

x− π
= lim

y→0

sin(y + π)

y
= lim

y→0

sin(y) cos(π) + cos(y) sin(π)

y

= lim
y→0

sin(y)(−1) + cos(y) · 0
y

= lim
y→0

− sin(y)

y
= −1.

Example 5.11. Evaluate lim
x→∞

x2 − 7x+ 11

3x2 + 10
.

Proof.

lim
x→∞

x2 − 7x+ 11

3x2 + 10
= lim

x→∞

1− 7
x + 11x2

3 + 10
x2

=
1− 0 + 0

3 + 0
=

1

3
.

Example 5.12. Evaluate lim
x→0

sin(3x)

sin(5x)
.

129



Calculus Examples, Arun Ram, version: January 28, 2025

Proof.

lim
x→0

sin(3x)

sin(5x)
= lim

x→0

sin(3x)

3x
· 3x · 5x

sin(5x)
· 1

5x
= lim

x→0

sin(3x)

3x

1

sin(5x)

5x

3x

5x

= lim
x→0

sin(3x)

3x

1

sin(5x)

5x

3

5
= 1 · 1

1
· 3
5
=

3

5
.

Example 5.13. Evaluate lim
x→1

1− x

(cos−1(x))2
.

Proof. Let y = cos−1 x. Then y → 0 as x → 1 and x = cos y. So

lim
x→1

1− x

(cos−1(x))2
= lim

y→0

1− cos(y)

y2
= lim

y→0

(1− cos(y))

y2
· (1 + cos(y))

(1 + cos(y))

= lim
y→0

(1− cos(y)2)

y2
· 1

1 + cos(y)
= lim

y→0

sin(y)

y
· sin(y)

y
· 1

1 + cos(y)
= 1 · 1 · 1

2
=

1

2
.

Example 5.14. Evaluate lim
∆x→0

f(x+∆x)− f(x)

∆x
when f(x) = sin(2x).

Proof.

lim
∆x→0

f(x+∆x)− f(x)

∆x
= lim

∆x→0

sin(2(x+∆x))− sin(2x)

∆x
= lim

∆x→0

sin(2x+ 2∆x)− sin(2x)

∆x

= lim
∆x→0

sin(2x) cos(2∆x) + cos(2x) sin(2∆x)− sin(2x)

∆x

= lim
∆x→0

sin(2x) · (cos(2∆x)− 1)

∆x
+ cos(2x)

sin(2∆x)

∆x

= lim
∆x→0

sin(2x) · (cos(2∆x)− 1)

2∆x
· 2 + cos(2x)

sin(2∆x)

2∆x
· 2

= sin(2x) · 0 · 2 + cos(2x) · 1 · 2 = 2 cos(2x).

Example 5.15. Evaluate lim
∆x→0

f(x+∆x)− f(x)

∆x
when f(x) = cos(x2).
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Proof.

lim
∆x→0

cos((x+∆x)2)− cos(x2)

∆x
= lim

∆x→0

cos(x2 + 2x∆x+ (∆x)2)− cos(x2)

∆x

= lim
∆x→0

cos(x2) cos(2x∆x+ (∆x)2)− sin(x2) sin(2x∆x+ (∆x)2)− cos(x2)

∆x

= lim
∆x→0

cos(x2) · (cos(2x∆x+ (∆x)2)− 1)

∆x
− sin(x2) · sin(2x∆x+ (∆x)2)

∆x

= lim
∆x→0

cos(x2)
(cos(2x∆x+ (∆x)2)− 1)

2x∆x+ (∆x)2
· 2x∆x+ (∆x)2

∆x

− sin(x2)
sin(2x∆x+ (∆x)2)

2x∆x+ (∆x)2
· (2x∆x+ (∆x)2)

∆x

= lim
∆x→0

cos(x2) · (cos(STUFF)− 1)

STUFF
· (2x+∆x)− sin(x2)

sin(STUFF)

STUFF
· (2x+∆x)

= cos(x2) · 0 · 2x− sinx2 · 1 · 2x = −2x sin(x2),

where STUFF = 2x∆x+ (∆x)2)− 1.

Example 5.16. Evaluate lim
∆x→0

f(x+∆x)− f(x)

∆x
when f(x) = xx.

Proof.

lim
∆x→0

(x+∆x)x+∆x − xx

∆x
= lim

∆x→0

(elog(x+∆x))x+∆x − (elog(x))x

∆x

= lim
∆x→0

e(x+∆x) log(x+∆x) − ex log(x)

∆x

= lim
∆x→0

ex log(x) ·
(
e(x+∆x) log(x+∆x)−x log(x) − 1

)
∆x

= lim
∆x→0

ex log(x) (e(x+∆x) log(x+∆x)−x log(x) − 1)(
(x+∆x) log(x+∆x)− x log(x)

) · ((x+∆x) log(x+∆x)− x log(x)
)

∆x

= lim
∆x→0

ex log(x)

(
eSTUFF − 1

STUFF

)(
x log(x+∆x)− x log(x)

∆x
+ log(x+∆x)

)
= lim

∆x→0
ex log(x)

(
eSTUFF − 1

STUFF

)(
x log

(
x(1 + ∆x

x )
)
− x log(x)

∆x
+ log(x+∆x)

)

= lim
∆x→0

ex log(x)

(
eSTUFF − 1

STUFF

)(
x
(
log(x+ log(1 + ∆x

x )
)
− x log(x)

∆x
+ log(x+∆x)

)

= lim
∆x→0

ex log(x)

(
eSTUFF − 1

STUFF

)(
x log(1 + ∆x

x )

∆x
+ log(x+∆x)

)

= lim
∆x→0

ex log(x)

(
eSTUFF − 1

STUFF

)(
log(1 + ∆x

x )
∆x
x

+ log(x+∆x)

)
= ex log(x) · 1(1 + log(x)) = xx + xx log(x),

where STUFF = (x+∆x) log(x+∆x)− x log(x).
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5.2 Additional limit examples

Example 5.17. Evaluate lim
x→1

(6x2 − 4x+ 3).

Proof.
lim
x→1

(6x2 − 4x+ 3) = 6 · 12 − 4 · 1 + 3 = 6− 4 + 3 = 5.

Example 5.18. Evaluate lim
x→0

5x

x
.

Proof. lim
x→0

5x

x

?
=

0

0
.

lim
x→0

5x

x
= lim

x→0
5 = 5.

Example 5.19. Evaluate lim
x→0

17x

2x
.

Proof. lim
x→0

17x

2x

?
=

0

0
.

lim
x→0

17x

2x
= lim

x→0

17

2
=

17

2
.

Example 5.20. Evaluate lim
x→0

√
x+ 1− 1

x
.

Proof.

lim
x→0

√
x+ 1− 1

x
= lim

x→0

(
√
x+ 1− 1)

x

(
√
1 + x+ 1)

(
√
1 + x+ 1)

= lim
x→0

1 + x− 1

x(
√
1 + x+ 1)

= lim
x→0

x

x(
√
1 + x+ 1)

= lim
x→0

1√
1 + x+ 1

=
1√

1 + 0 + 1
=

1

2
.

Example 5.21. Evaluate lim
x→7

x2 − 49

x− 7
.

Proof.

lim
x→7

x2 − 49

x− 7
= lim

x→7

(x− 7)(x+ 7)

x− 7
= lim

x→7
(x+ 7) = 7 + 7 = 14.
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Example 5.22. Evaluate lim
x→5

x5 − 3125

x− 5
.

Proof.

lim
x→5

x5 − 3125

x− 5
= lim

x→5

x5 − 55

x− 5

= lim
x→5

(x− 5)(x4 + 5x3 + 52x2 + 53x+ 54)

x− 5

= lim
x→5

(x4 + 5x3 + 52x2 + 53x+ 54)

= 54 + 54 + 54 + 54 + 54 = 55 = 3125.

Example 5.23. Evaluate lim
x→a

x
5
2 − a

5
2

x− a
.

Proof.

lim
x→a

x
5
2 − a

5
2

x− a
= lim

x→a

(
x

5
2 − a

5
2

)
(x− a)

(
x

5
2 + a

5
2

)(
x

5
2 + a

5
2

)
= lim

x→a

(x5 − a5)

(x− a)
· 1(

x
5
2 + a

5
2

)
= lim

x→a

(x− a)(x4 + ax3 + a2x2 + a3x+ a4)

(x− a)
· 1(

x
5
2 + a

5
2

)
= lim

x→a

(x4 + ax3 + a2x2 + a3x+ a4)(
x

5
2 + a

5
2

)
=

(a4 + a4 + a4 + a4 + a4)(
a

5
2 + a

5
2

) =
5a4

2a
5
2

=
5

2
a

3
2 .

Example 5.24. Evaluate lim
x→0

ex − 1

x
.

Proof.

lim
x→0

ex − 1

x
= lim

x→0

(
1 + x+ 1

2!x
2 + 1

3!x
3 + 1

4!x
4 + · · ·

)
− 1

x

= lim
x→0

x+ 1
2!x

2 + 1
3!x

3 + 1
4!x

4 + · · ·
x

= lim
x→0

1 +
1

2!
x+

1

3!
x2 +

1

4!
x3 + · · ·

= 1 + 0 + 0 + 0 + · · · = 1.

Example 5.25. Evaluate lim
x→0

cos(x)− 1

x
.
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Proof.

lim
x→0

cos(x)− 1

x
= lim

x→0

(
1− 1

2!x
2 + 1

4!x
4 − 1

6!x
6 + · · ·

)
− 1

x

= lim
x→0

− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + 1
8!x

8 − · · ·
x

= lim
x→0

(
− 1

2!
x+

1

4!
x3 − 1

6!
x5 +

1

8!
x7 − · · ·

)
= −0 + 0− 0 + 0− 0 + · · · = 0.

Example 5.26. Evaluate lim
x→0

sin(x)

x
.

Proof.

lim
x→0

sin(x)

x
= lim

x→0

x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + 1
9!x

9 − · · ·
x

= lim
x→0

(
1− 1

3!
x2 +

1

5!
x4 − 1

7!
x6 +

1

9!
x8 − · · ·

)
= 1− 0 + 0− 0 + · · · = 1.

Example 5.27. Evaluate lim
x→0

log(1 + x)

x
.

Proof. Let y = log(1 + x). Then ey = 1 + x and x = ey − 1. Also y → 0 as x → 0. So

lim
x→0

log(1 + x)

x
= lim

y→0

y

ey − 1
= lim

y→0

1
ey−1
y

=
1

1
= 1.

Example 5.28. Evaluate lim
x→0

(1 + x)
1
x .

Proof.

lim
x→0

(1 + x)
1
x = lim

x→0

(
elog(1+x)

) 1
x
= lim

x→0
e

1
x
log(1+x) = lim

x→0
e

log(1+x)
x = e1.

Example 5.29. Evaluate lim
n→∞

(
1 +

1

n

)n
.

Proof. Let x = 1
n . Then x → 0 and n → ∞. So

lim
n→∞

(
1 +

1

n

)n
= lim

x→0
(1 + x)

1
x = e1.
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Example 5.30. Evaluate lim
x→π

sin(x)

x− π
.

Proof. Let y = x− π. Then y → 0 as x → π. So

lim
x→π

sin(x)

x− π
= lim

y→0

sin(y + π)

y

= lim
y→0

sin(y) cos(π) + cos(y) sin(π)

y

= lim
y→0

sin(y)(−1) + cos(y) · 0
y

= lim
y→0

(
− sin(y)

y

)
= −1.

Example 5.31. Evaluate lim
x→2

x3 + 2x2 − 1

5− 3x
.

Proof. Since addition, multiplication, scalar multiplication and division away from 0 are continuous
in R then

lim
x→2

x3 + 2x2 − 1

5− 3x
=

(limx→2 x)
3 + 2(limx→2 x)

2 − 1

5− 3 limx→2 x
=

23 + 222 − 1

5− 32
=

8 + 8− 1

−27
= −215

27
.

Example 5.32. Evaluate lim
x→∞

3x2 − 2x+ 3

x2 + 4x+ 4
.

Proof.

lim
x→∞

3x2 − 2x+ 3

x2 + 4x+ 4
= lim

x→∞

(3x2 − 2x+ 3) 1
x2

(x2 + 4x+ 4) 1
x2

= lim
x→∞

(3− 2 1
x + 3 1

x2 )

(1 + 4 1
x + 4 1

x2 )

=
(3− 2 limx→∞

(
1
x

)
+ 3 limx→∞

(
1
x

)2
)

(1 + 4 limx→∞
(
1
x

)
+ 4 limx→∞

(
1
x

)2
)


since addition, multiplication,
scalar multiplication,
and division away from 0
are continuous in R


=

(3− 2 · 0 + 3 · 02)
(1 + 4 · 0 + 4 · 02)

=
3

1
= 3.

Example 5.33. Evaluate lim
x→∞

(√
x2 + 1− x

)
.

Proof.

lim
x→∞

(√
x2 + 1− x

)
= lim

x→∞

(
√
x2 + 1− x)(

√
x2 + 1 + x)

(
√
x2 + 1 + x)

= lim
x→∞

x2 + 1− x2

(
√
x2 + 1 + x)

≤ lim
x→∞

1

(
√
x2 + x)

= lim
x→∞

1

2x
= 0.
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If x is large then x ∈ R>0 and if x ∈ R>0 then
√
x2 + 1− x ∈ R>0. So lim

x→∞

(√
x2 + 1− x

)
≥ 0.

So 0 ≤ lim
x→∞

(√
x2 + 1− x

)
≤ 0 giving that lim

x→∞

(√
x2 + 1− x

)
= 0.

Example 5.34. Evaluate lim
x→0

sin(x)

x
.

Proof.

lim
x→0

sin(x)

x
= lim

x→0

x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · ·
x

= lim
x→0

(1− 1

3!
x2 +

1

5!
x4 − 1

7!
x6 + · · · )

= 1− 1

3!
( lim
x→0

x)2 +
1

5!
( lim
x→0

x)4 − 1

7!
( lim
x→0

x)6 + · · ·

 since addition, multiplication,
and scalar multiplication,
are continuous in R


= 1.

Example 5.35. Evaluate lim
x→∞

(
x−

1
2 log(x)

)
.

Proof. Let x = ey so that y = log(x) and x gets larger and larger exactly when y gets larger and
larger. Then

lim
x→∞

(
x−

1
2 log(x)

)
= lim

y→∞

(
(ey)−

1
2 log(ey)

)
= lim

y→∞

(
(e−

1
2
y)y
)
= lim

y→∞

y

e
1
2
y

= lim
y→∞

y

1 + 1
2y +

1
2 · (12)2y2 +

1
3!(

1
2)

3y3 + · · ·

= lim
y→∞

1
1
y + 1

2 + 1
2 · (12)2y +

1
3!(

1
2)

3y2 + · · ·

≤ lim
y→∞

1
1
2 · (12)2y

= 0.

If x ∈ R>1 then x−
1
2 log(x) ∈ R>0, Thus, if lim

x→∞

(
x−

1
2 log(x)

)
exists in R then 0 ≤ lim

x→∞

(
x−

1
2 log(x)

)
.

So
0 ≤ lim

x→∞

(
x−

1
2 log(x)

)
≤ 0 giving lim

x→∞

(
x−

1
2 log(x)

)
= 0.

Example 5.36. Evaluate lim
n→∞

3n + 2

4n + 2n
.

Proof. If n ∈ Z>0 then 3n+2
4n+2n ∈ R>0. Thus, if lim

n→∞

3n + 2

4n + 2n
exists then lim

n→∞

3n + 2

4n + 2n
≥ 0.

lim
n→∞

3n + 2

4n + 2n
≤ lim

n→∞

3n + 2

4n + 4n
= lim

n→∞

3n + 2

2 · 4n
= lim

n→∞

((
3
4

)n
+ 2
(
1
4

)n)
= lim

n→∞

(
3
4

)n
+ 2 lim

n→∞

(
1
4

)n  since addition, multiplication,
and scalar multiplication,
are continuous in R


= 0 + 0 = 0.

136



Calculus Examples, Arun Ram, version: January 28, 2025

So

0 ≤ lim
n→∞

3n + 2

4n + 2n
≤ 0 giving that lim

n→∞

3n + 2

4n + 2n
= 0.

Example 5.37. Evaluate lim
n→∞

1 + sin2
(
nπ
3

)
√
n

.

Proof. If n ∈ Z>0 then
1+sin2

(
nπ
3

)
√
n

∈ R>0.

Thus, if lim
n→∞

1 + sin2
(
nπ
3

)
√
n

exists in R then lim
n→∞

1 + sin2
(
nπ
3

)
√
n

≥ 0.

If n ∈ Z>0 then 1 + sin2
(
nπ
3

)
≤ 2.

So

lim
n→∞

1 + sin2
(
nπ
3

)
√
n

≤ lim
n→∞

2√
n
= 0,

since 2√
n
gets closer and closer to 0 as n gets larger and larger. So

0 ≤ lim
n→∞

1 + sin2
(
nπ
3

)
√
n

≤ 0 giving that lim
n→∞

1 + sin2
(
nπ
3

)
√
n

= 0.

Example 5.38. Evaluate lim
n→∞

log(3n2 + 2)− log(n2).

Proof. Let f : R>0 → R be the function given by f(x) = log(3n2 + 2)− log(n2).
If lim

x→∞
f(x) = lim

x→∞
log(3x2 + 2)− log(x2) exists then

lim
n→∞

log(3n2 + 2)− log(n2) = lim
x→∞

f(x) = lim
x→∞

log(3x2 + 2)− log(x2).

Since

lim
x→∞

f(x) = lim
x→∞

log(3x2 + 2)− log(x2) = lim
x→∞

log
(3x2 + 2

x2

)
= lim

x→∞
log
(
3 + 2

1

x2

)
= lim

x→∞
log
(
3 + 2( lim

x→∞

1

x2
)
)  since log, addition,

and scalar multiplication,
are continuous in R>0


= log(3 + 0) = log 3.

So
lim
n→∞

log(3n2 + 2)− log(n2) = log 3.

Example 5.39. Let p ∈ R>0. Evaluate lim
n→∞

log n

np
.
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Proof. Let f : R>0 → R be the function given by f(x) = log(x)
xp . If lim

x→∞

log x

xp
exists in R then lim

n→∞

log x

xp
exists in R. Llet x = ey so that y gets larger and larger as x gets larger and larger. Then

lim
x→∞

log x

xp
= lim

y→∞

log ey

(ey)p
= lim

y→∞

log ey

epy
= lim

y→∞

y

epy

= lim
y→∞

y

1 + py + 1
2!p

2y2 + 1
3!p

3y3 + · · ·

= lim
y→∞

1
1
y + p+ 1

2!p
2y + 1

3!p
3y2 + · · ·

≤ lim
y→∞

1
1
2!p

2y
= 0.

If x ∈ R>1 then log x
xp ∈ R>0. So if lim

x→∞

log x

xp
exists in R then lim

x→∞

log x

xp
≥ 0. Thus

0 ≤ lim
x→∞

log x

xp
≤ 0 giving that lim

x→∞

log x

xp
= 0.

So

lim
n→∞

log n

np
= 0.

Example 5.40. Evaluate lim
n→∞

((n− 2

n

)n
+

4n2

3n

)
.

Proof. Step 1.

lim
n→∞

(n− 2

n

)n
= lim

n→∞

(
1− 2

n

)n
= lim

n→∞

(
elog(1−

2
n
)
)n

= lim
n→∞

en log(1− 2
n
) = elimn→∞ n log(1− 2

n
).

Step 2. Then

lim
n→∞

n log(1− 2

n
) = lim

n→∞
n
( 2
n
+

1

2

( 2
n
)2 +

1

3

( 2
n
)3 + · · ·

)
= lim

n→∞
(2 +

1

2

22

n
+

1

3

23

n2
+ · · · )

= 2 + 0 + 0 + · · · = 2.

So

lim
n→∞

(n− 2

n

)n
= elimn→∞ n log(1− 2

n
) = e2.

Step 3.

lim
n→∞

4n2

3n
= lim

n→∞

4n2

(elog 3)n
= lim

n→∞

4n2

(en log 3)

= lim
n→∞

4n2

1 + n log 3 + 1
2!n

2(log 3)2 + 1
3!n

3(log 3)3 + · · · )

= lim
n→∞

4
1

1
n2 + 1

n log 3 + 1
2!(log 3)

2 + 1
3!n(log 3)

3 + · · · )

≤ lim
n→∞

4
1

1
3!n(log 3)

3
= 0.
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If n ∈ Z>0 then 4n2

3n ∈ R>0. Thus, if lim
n→∞

4n2

3n
exists in R then lim

n→∞

4n2

3n
≥ 0. Thus,

0 ≤ lim
n→∞

4n2

3n
≤ 0 giving that lim

n→∞

4n2

3n
= 0.

Final step. Since lim
n→∞

4n2

3n
and lim

n→∞

(n− 2

n

)n
exist in R and addition is continuous in R then

lim
n→∞

((n− 2

n

)n
+

4n2

3n

)
= lim

n→∞

(n− 2

n

)n
+ lim

n→∞

4n2

3n
= e2 + 0 = e2.

Example 5.41. Let c ∈ R>0. Show that lim
n→∞

arctan(cn) =
π

2
.

Proof.

lim
n→∞

arctan(cn) = lim
cn→∞

arctan(cn) = lim
x→∞

arctan(x) = lim
y→π

2
+
arctan(tan(y)) = lim

y→π
2
+
y =

π

2
.

Example 5.42. Evaluate lim
x→0

5x

x
.

Proof.

lim
x→0

5x

x
= lim

x→0
5 = 5.

Example 5.43. Evaluate lim
x→0

642x

x
.

Proof.

lim
x→0

642x

x
= lim

x→0
642 = 642.

Example 5.44. Evaluate lim
x→0

x2

x
.

Proof.

lim
x→0

x2

x
= lim

x→0
x = 0.

Example 5.45. Evaluate lim
x→0

x

x2
.

Proof.

lim
x→0

x

x2
= lim

x→0

1

x
does not exist in R

since

lim
x→0+

x

x2
= lim

x→0+

1

x
is very large and positive, and

lim
x→0−

x

x2
= lim

x→0−

1

x
is very large and negative.
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Example 5.46. Evaluate lim
x→1

log(x)

x− 1
.

Proof. Let y = x− 1. Then y → 0 as x → 1. So

lim
x→1

log(x)

x− 1
= lim

y→0

log(1 + y)

y
= 1,

by Example ???.

Example 5.47. Evaluate lim
x→∞

log(x)

ex
.

Proof. Let x = ey. Then y = log(x) and y → ∞ as x → ∞. So

lim
x→∞

log(x)

ex
= lim

y→∞

log(ey)

eey
= lim

y→∞

y

eey
= lim

y→∞

1
1
ye

ey

= lim
y→∞

1
1
y

(
1 + ey + 1

2!e
2y + · · ·

= 0,

since the denominator is very very large when y is very large.

Example 5.48. Evaluate lim
x→∞

log(x)2

x2
.

Proof. Let x = ey. Then y = log(x) and y → ∞ as x → ∞. So

lim
x→∞

log(x)2

x2
= lim

y→∞

log(ey)

(ey)2
= lim

y→∞

y

e2y
= lim

y→∞

1
1
ye

2y

= lim
y→∞

1
1
y

(
1 + e2y + 1

2!e
4y + · · · )

= 0,

since the denominator is very very large when y is very large.

Example 5.49. Evaluate lim
x→0

x log(x).

Proof. Let x = e−y. Then −y = log(x) and y → ∞ as x → 0. So

lim
x→0

x log(x) = lim
y→∞

e−y log(e−y) = lim
y→∞

−ye−y = lim
y→∞

−y

ey
= lim

y→∞

−1
1
ye

y

= lim
y→∞

−1
1
y (1 + y + 1

2!y
2 + · · · )

= 0,

since the denominator is very very large when y is very large.

Example 5.50. Evaluate lim
x→π

(x− π) cot(x).

Proof. Let y = x− π. Then y → 0 as x → π. So

lim
x→π

(x− π) cot(x) = lim
x→π

(x− π) cos(x)

sin(x)
= lim

y→.0

y cos(y + π)

sin(y + π)

= lim
y→.0

y(− cos(y)

− sin(y)
= lim

y→.0

y

sin(y)
cos(y) = 1 · 1 = 1.
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Example 5.51. Evaluate lim
x→0

(1− 2x)
1
x .

Proof.

lim
x→0

(1− 2x)
1
x = lim

x→0

(
elog(1−2x)

) 1
x = lim

x→0
e

1
x
log(1−2x)

= lim
x→0

e
−2 log(1−2x)

−2x = e−2·1 = e−2.

Example 5.52. Evaluate lim
x→0

xx.

Proof.

lim
x→0

xx = lim
x→0

(
elog(x)

)x
= lim

x→0
ex log(x) = e0,

by Example 5.49.

Example 5.53. Evaluate lim
x→0

(x−1 − csc(x)).

Proof.

lim
x→0

(x−1 csc(x)) = lim
x→0

(1
x
− 1

sin(x)

)
= lim

x→0

sin(x)− x

x sin(x)

= lim
x→0

(x− 1
3!x

3 + 1
5!x

5 − · · · )− x

x(x− 1
3!x

3 + 1
5!x

5 − · · · )

= lim
x→0

1
x2 (− 1

3!x
3 + 1

5!x
5 − · · · )

1
x2 (x2 − 1

3!x
4 + 1

5!x
6 − · · · )

= lim
x→0

(− 1
3!x+ 1

5!x
3 − · · · )

1− 1
3!x

2 + 1
5!x

4 − · · ·

= lim
x→0

x ·
− 1

3! +
1
5!x

2 − · · ·
1− 1

3!x
2 + 1

5!x
4 − · · ·

= 0 · −1

3!
= 0.

5.3 Limits by graphing

For now, the pictures are taken, by screenshot, from the Melbourne University Lecture slides for
MAST 10006 Semester 1 2024.

Example 5.54. Let f : R → R be the function given by f(x) =

{
2x, if x ̸= 1,

4, if x = 1.

Compute lim
x→1

f(x) and determine if f(x) is continuous at x = 1.
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Proof. The graph of {(x, f(x)) ∈ R2} is

As x gets closer and closer to 1 then f(x) gets closer and closer to 2. So

lim
x→1

f(x) = 2.

Since f(1) = 4 then
lim
x→1

f(x) ̸= f(1).

So f(x) is not continuous at x = 1.

Example 5.55. Let f : R ̸=0 → R be the function given by f(x) =
1

x2
.

Compute lim
x→0

1

x2
and determine if f(x) is continuous at x = 0.

Proof. The graph of {(x, f(x)) ∈ R2} is

the graph of 1
x2

As x gets closer and closer to 0 then f(x) = 1
x2 gets larger and larger. So

lim
x→0

1

x2
does not exist in R.

Since f(0) is not defined it doesn’t make sense to ask if limx→0 f(x) is equal to f(0). So, because f(0)
is not defined it does not make sense to ask if f(x) is continuous at x = 0.

Example 5.56. Let f : R → R be the function given by f(x) =

{
1, if x < 0,

2, , if x ≥ 0.

Compute lim
x→0

f(x) and determine if f(x) is continuous at x = 0.
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Proof. The graph of {(x, f(x)) ∈ R2} is

As x gets closer and closer to 1 from the positive side then f(x) gets closer and closer to 2.
As x gets closer and closer to 1 from the negitive side then f(x) gets closer and closer to 1. So

lim
x→1+

f(x) = 2 and lim
x→1−

f(x) = 1.

As x gets closer and closer to 1 then f(x) does not get closer and closer to a single real number. So

lim
x→1

f(x) does not exist in R.

Since f(1) = 2 and lim
x→1

f(x) is not equal to f(1) then f(x) is not contnuous at x = 1.

Example 5.57. Let f : R → R be the function given by f(x) =

{
x2−4
x−2 , if x ̸= 2,

4, if x = 2.

Compute lim
x→2

f(x) and determine if f(x) is continuous at x = 2.

Proof.

f(x) =

{
x2−4
x−2 , if x ̸= 2,

4, if x = 2,
=

{
x+ 2, if x ̸= 2,

4, if x = 2.

The graph of {(x, f(x)) ∈ R2} is
PICTURE

As x gets closer and closer to 2 (from either the positive or negative side) then f(x) gets closer and
closer to 4.
So

lim
x→2

f(x) = 4.

Since f(2) = 4 then
lim
x→2

f(x) = f(2) and f(x) is continuous at x = 2.

Example 5.58. Let c ∈ R. Let f : R → R be the function given by f(x) =

{
x+ 2, if x ≤ 1,

(x− 3)2 + c, , if x > 1.

For which values of c is f(x) continuous for x ∈ R?

Proof. The graph of {(x, f(x)) ∈ R2} is
PICTURE
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Then

lim
x→1−

f(x) = 1 + 2 and lim
x→1+

f(x) = lim
x→1+

(x− 3)2 + c = (−2)2 + c = 4 + c.

So lim
x→1−

f(x) = lim
x→1+

f(x) exactly when 4 + c = 3.

So, if c = −1 then
lim
x→1

f(x) = 3 and f(1) = 3.

So, if c = −1 then f(x) is continuous at x = 1. If c ̸= 1 then lim
x→1

f(x) does not exist in R.

Example 5.59. Let h(x) = sin(2 log x).
For which values of x ∈ R is h(x) defined?
For which values of x ∈ R is h(x) continuous?
Always carefully justify your answers.

Proof. Let f : R>0 → R be the function given by f(x) = 2 log(x). The graph of {(x, f(x)) ∈ R2} is

the graph of 2 log(x)

The function f(x) is continuous for x ∈ R>0.
Let g : R → R be the function given by g(y) = sin(y). The graph of {(y, g(y)) ∈ R2}g(y) is

PICTURE

The function g(y) is continuous for y ∈ R.
Let h : R>0 → R be the function given by h(x) = g(f(x) = sin(2 log(x)). The graph of {(x, h(x)) ∈

R2} is
PICTURE

The function h(x) is defined for x ∈ R>0 and continuous for x ∈ R>0.

Example 5.60. Evaluate lim
x→∞

e−x.

144



Calculus Examples, Arun Ram, version: January 28, 2025

Proof. Let f : R → R be the function given by f(x) = e−x. The graph of {(x, f(x)) ∈ R2} is

solutions of y = ex and y = e−x from Wolfram alpha

As x gets larger and larger then f(x) gets closer and closer to 0. So

lim
x→∞

e−x = 0.

Example 5.61. Evaluate lim
x→∞

sin(x).

Proof. Let f : R → R be the function given by f(x) = sin(x). The graph of {(x, f(x)) ∈ R2} is

real solutions of y = sin(x)

As x gets larger and larger then f(x) oscillates between 1 and -1 and does not get closer and closer to
any single real number. So

lim
x→∞

sin(x) does not exist in R.

Example 5.62. Evaluate lim
x→∞

sin(e−x).

Proof. Let f : R → R be the function given by f(x) = e−x. The graph of {(x, f(x)) ∈ R2} is

PICTURE

As x gets larger and larger e−x gets closer and closer to 0.
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Let g : R → R be the function given by g(y) = sin(y). The graph of {(y, g(y)) ∈ R2} is

real solutions of y = sin(x)

As y gets closer and closer to 0 then sin(y) gets closer and closer to 0. The function g(y) = sin(y) is
continuous. As e−x gets closer and closer to 0 then g(e−x) gets closer and closer to 0. Thus

lim
x→∞

sin(e−x) = sin
(
lim
x→∞

e−x
)
= sin(0) = 0.

Example 5.63. Evaluate lim
x→0

x2 sin
(
1
x

)
.

Proof. Let f : R → R be the function given by f(x) = x2 sin
(
1
x

)
. The graph of {(x, f(x)) ∈ R2} is

solutions of y = x2 sin( 1x) from Wolfram alpha

As x gets closer and loser to 0 then f(x) gets closer and closer to 0. So

lim
x→∞

x2 sin
(
1
x

)
= 0.

If a ∈ R≥1 then 1
a ∈ R(0,1]. The graph of {(x, sin( 1x)) ∈ R2} is the same as the graph of {(x, sin(x)) ∈

R2} with

(a) the region R≥1 flipped with the region R(0,1] on the x-axis and

(b) the region R≤−1 flipped with the region R[−1,0) on the x-axis.

the graph of {(x, sin(x) ∈ R2} the graph of {(x, sin( 1x) ∈ R2}
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Example 5.64. Evaluate lim
x→0

x sin
(
1
x

)
.

Proof. Let f : R → R be the function given by f(x) = x sin
(
1
x

)
. The graph of {(x, f(x)) ∈ R2} is

solutions of y = x sin( 1x) from Wolfram alpha

As x gets closer and loser to 0 then f(x) gets closer and closer to 0. So

lim
x→∞

x sin
(
1
x

)
= 0.

Example 5.65. Evaluate lim
n→∞

1

n
.

Proof. Let
f : Z>0 → R

n 7→ an
be the function given by an =

1

n
.

Then (a1, a2, . . .) = (1, 12 ,
1
3 ,

1
4 ,

1
5 ,

1
6 , . . .) and the graph of {(n, f(n)) ∈ Z>0 × R} is
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As n gets larger and larger an = 1
n gets closer and closer to 0. So

lim
n→∞

1

n
= 0.

Example 5.66. Evaluate lim
n→∞

(−1)n−1.

Proof. Let
f : Z>0 → R

n 7→ an
be the function given by an = (−1)n−1.

Then (a1, a2, . . .) = (1,−1, 1,−1, 1,−1, . . .) and the graph of {(n, f(n)) ∈ Z>0 × R} is

As n gets larger and larger an = (−1)n−1 oscillates between 1 and −1 and does not get closer and
closer to any single real number. So

lim
n→∞

(−1)n−1 does not exist in R.

Example 5.67. Evaluate lim
n→∞

n.

Proof. Let
f : Z>0 → R

n 7→ an
be the function given by an = n.

Then (a1, a2, . . .) = (1, 2, 3, 4, 5, 6 . . .) and the graph of {(n, f(n)) ∈ Z>0 × R} is

PICTURE

As n gets larger and larger an = n gets larger and larger. So

lim
n→∞

n does not exist in R.
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5.4 Continuity and behavior of xn and ex

Example 5.68. (xn is continuous) Show that if n ∈ Z≥0 and a ∈ C then lim
x→a

xn = an.

Proof. Assume n ∈ Z≥0 and a ∈ C. Then

lim
x→a

xn = lim
x→a

(x · x · · ·x︸ ︷︷ ︸
n times

)

=
(
lim
x→a

x
)
·
(
lim
x→a

x
)
· · ·
(
lim
x→a

x
)

︸ ︷︷ ︸
n times

(by continuity of multiplication)

= a · a · · · a︸ ︷︷ ︸
n times

= an.

Example 5.69. (ex is continuous) Show that if a ∈ C then limx→a e
x = ea.

Proof.

Case 1: a = 0. To show: lim
x→0

ex = e0.

Using Theorem ??(a), To show lim
x→0

|ex − 1| = 0.

lim
x→0

|ex − 1| = lim
x→0

∣∣∣ (1 + x+
x2

2!
+

x3

3!
+ · · ·

)
− 1
∣∣∣

= lim
x→0

∣∣∣x(1 + x+
x

2!
+

x2

3!
+ · · ·

) ∣∣∣
≤ lim

x→0
|x|
(
1 + |x|+ |x|

2!
+

|x|2

3!
+ · · ·

)
(triangle inequality for | |)

≤ lim
x→0

|x|
(
1 + |x|+ |x|+ |x|2 + · · ·

)
(by term by term comparison)

= lim
x→0

|x| 1

1− |x|
= 0 · 1 (by geometric series)

= 0.

Case 2: a ̸= 0. To show lim
x→a

ex = ea. Let x = y + a. Then y → 0 as x → a and

lim
x→a

ex = lim
y→0

ey+a

= lim
y→0

eaey = ea lim
y→0

ey (by continuity of scalar multiplication)

= ea · e0 (by Case 1)

= ea+0 = ea.

Example 5.70. (Behaviour of xn as n gets large) Let x ∈ C. Show that

lim
n→∞

xn =


0, if |x| < 1,

diverges in C, if |x| > 1,

1, if x = 1,

diverges in C, if |x| = 1 and x ̸= 1.
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Proof. Let x ∈ C.
Case |x| < 1. To show: lim

n→∞
xn = 0.

Let N ∈ Z>0 such that |x| < 1− 1
N+1 . Then

lim
n→∞

|xn − 0| = lim
n→∞

|x|n ≤ lim
n→∞

(
1− 1

N + 1

)n

= lim
n→∞

(
N + 1− 1

N + 1

)n

= lim
n→∞

(
N

N + 1

)n

= lim
n→∞

1(
1 + 1

N

)n
= lim

n→∞

1

1 + n 1
N + · · ·+

(
1
N

)n
≤ lim

n→∞

1

1 + n
N

= lim
n→∞

N

n+N
= N · lim

n→∞

1

n+N
= N · 0 = 0.

Case |x| > 1. To show: lim
n→∞

xn diverges in C.

Let N ∈ Z>0 such that |x| > 1− 1
N . Then

|x|n >

(
1 +

1

N

)n

= 1 + n

(
1

N

)
+ · · ·

(
1

N

)n

>

(
1

N

)
n.

Since
(
1
N

)
n is unbounded as n gets larger and larger then |x|n is unbounded as n → ∞.

So limn→∞ xn diverges in C.
Case x = 1. In this case (x, x2, x3, x4, . . .) = (1, 12, 13, 14, . . .) = (1, 1, 1, 1, . . .).
So lim

n→∞
xn = lim

n→∞
1n = lim

n→∞
1 = 1.

Case |x| = 1 and x ̸= 1. Then x = eiθ with θ ∈ R(0,2π). FINISH THE PROOF to show that this case
diverges in C. IGUESS THE point is that if a ∈ R then

|eia − ei(a+θ)| = |eia| · |1− eiθ| = |1− eiθ| ≠ 0.

YUP clean THIS UP.

Example 5.71. (exponentials dominate polynomials) Assume n ∈ Z>0. Show that, in R,

lim
x→∞

xn

ex
= 0.

Proof. Let n ∈ Z>0. Then, in R,

0 ≤ lim
x→∞

xn

ex
≤ lim

x→∞

xn

1
(n+1)!x

n+1
= lim

x→∞

(n+ 1)!

x
= (n+ 1)! lim

x→∞

1

x
= 0.

Example 5.72. (polynomials dominate logs) Assume α ∈ R>0. Show that

lim
x→∞

log(x)

xα
= 0.

Proof. (b) Let α ∈ R>0. Then

0 ≤ lim
x→∞

log(x)

xα
= lim

y→∞

log(ey)

(ey)α
= lim

y→∞

y

eαy
= lim

y→∞

1
1
y + α+ 1

2α
2y + · · ·

≤ lim
y→∞

1
1
2α

2y
= 0.

150



Calculus Examples, Arun Ram, version: January 28, 2025

Example 5.73. Let p ∈ R>0. Show that

lim
n→∞

1

np
= 0.

Proof. (c) Let p ∈ R>0. Let k ∈ Z>0 and let Nk = ⌈e
k
p
log(10)⌉ so that nk ∈ Z>0 and ep log(Nk) =

(Nk)
p > 10k = ek log(10).

If n > Nk then 0 ≤ 1

np
<

1

Np
k

≤ 1

10k
. So lim

n→∞

1

np
= 0.

Example 5.74. Let p ∈ R>0. Then lim
n→∞

p1/n = 0.

Proof. Let p ∈ R>0.

lim
n→∞

p1/n = lim
n→∞

(elog p)1/n = lim
n→∞

e
1
n
log p = elog p·limn→∞(1/n) = elog p·0 = e0 = 1.

Example 5.75. Show that lim
n→∞

n1/n = 1.

Proof. Using that polynomials dominate logs (Example 5.72),

lim
n→∞

n1/n = lim
n→∞

(elog(n))1/n = lim
n→∞

(e
1
n
log(n)) = elimn→∞(

log(n))
n

) = e0 = 1.

Example 5.76. Show that lim
n→∞

(
1 + 1

2 +
(
1
2

)2
+
(
1
2

)3
+ · · ·+

(
1
2

)n )
= 2.

Proof.

lim
n→∞

(
1 + 1

2 +
(
1
2

)2
+
(
1
2

)3
+ · · ·+

(
1
2

)n )
= lim

n→∞

1−
(
1
2

)n+1

1− 1
2

=
1

1− 1
2

= 2.

Example 5.77. (Behaviour of 1 + x+ x2 + · · ·+ xn as n gets large) Let x ∈ C. Show that if |x| < 1
then

lim
n→∞

(1 + x+ x2 + · · ·+ xn) =
1

1− x
.

Proof. By continiuity of addition and division away from 0,

lim
n→∞

(1 + x+ x2 + · · ·+ xn) = lim
n→∞

1− xn+1

1− x
=

1−
(
limn→∞ xn+1

)
1− x

=
1− 0

1− x
=

1

1− x
.

Example 5.78. (Behaviour of 1 + x+ x2 + · · ·+ xn as n gets large) Let x ∈ C. Show that if |x| > 1
then

lim
n→∞

(1 + x+ x2 + · · ·+ xn) =
1

1− x
does not exist in C.
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Proof. By continuity of addition and scalar multiplication,

lim
n→∞

(1 + x+ x2 + · · ·+ xn) = lim
n→∞

1− xn+1

1− x
=

1−
(
limn→∞ xn+1

)
1− x

and the right hand side does not converge in C.

Example 5.79. Show that lim
x→0

sin(x)

x
= 1.

Proof.

lim
x→0

sin(x)

x
= lim

x→0

(
1− 1

3!
x2 + · · ·

)
= 1 + 0 + 0 + · · · = 1.

This proof has the right reason, but it is not quite complete because ‘the sum of an infinite number
of 0s’ is really ‘the sum of a infinite number of really tiny numbers’ and we to be sure that sum really
is 0. How should the proof be tightened up? (with a comparison to a geometric series, see the proof
of Example 5.69.)

Example 5.80. Show that lim
x→0

log(1 + x)

x
= 1.

Proof.

lim
x→0

log(1 + x)

x
= lim

x→0

(
1− 1

2
x+

1

3
x2 − 1

4
x3 + · · ·

)
= 1 + 0 + 0 + · · · = 1.

This proof has the right reason, but it is not quite complete because ‘the sum of an infinite number
of 0s’ is really ‘the sum of a infinite number of really tiny numbers’ and we to be sure that sum really
is 0. How should the proof be tightened up? (with a comparison to a geometric series, see the proof
of Example 5.69.)

5.5 Continuity of addition, multiplication, composition and order

Example 5.81. (scalar multiplication is continuous) Let n ∈ Z>0. Let f : Rn → R and g : Rn → R
be functions and let a ∈ Rn.

Assume that lim
x→a

f(x) exists.

Then, if c ∈ R then lim
x→a

cf(x) = c lim
x→a

f(x),

Proof.

Assume c ∈ R and let l = lim
x→a

f(x).

To show: lim
x→a

cf(x) = cl.

To show: If e ∈ Z>0 then there exists d ∈ Z>0 such that

if x ∈ Rn is within 10−d of a then cf(x) is within 10−e of cl.

Assume e ∈ Z>0.

Let r ∈ Z>0 be such that c < 10r.

Since l = lim
x→a

f(x) then we know that there exists d ∈ Z>0 such that

if x ∈ Rn is within 10−d of a then f(x) is within 10−(e+r) of l.
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To show: If x ∈ Rn is within 10−d of a then cf(x) is within 10−e of cl.

Assume x ∈ Rn is within 10−d of a.

To show: cf(x) is within 10−e of cl.

d(cf(x), cl) = |cf(x)− cl| = |c| · |f(x)− l| < |c| · 10−(e+r) < 10r10−(e+r) = 10−e.

So cf(x) is within 10−e of cl.

So lim
x→a

cf(x) = cl.

Example 5.82. (Addition is continuous) Let n ∈ Z>0. Let f : Rn → R and g : Rn → R be functions
and let a ∈ Rn.

Assume that lim
x→a

f(x) and lim
x→a

g(x) exist.

Then lim
x→a

(f(x) + g(x)) = lim
x→a

f(x) + lim
x→a

g(x),

Proof.

Let l1 = lim
x→a

f(x) and l2 = lim
x→a

g(x).

To show: lim
x→a

(f(x) + g(x)) = l1 + l2.

To show: If e ∈ Z>0 then there exists d ∈ Z>0 such that

if x is within 10−d of a then f(x) + g(x) is within 10−e of l1 + l2.

Assume e ∈ Z>0.

Since lim
x→a

f(x) = l1 then we know that there exists d1 ∈ Z>0 such that

if x is within 10−d1 of a then f(x) is within 10−(e+1) of l1.

Since lim
x→a

g(x) = l2 then we know that there exists d2 ∈ Z>0 such that

if x is within 10−d2 of a then g(x) is within 10−(e+1) of l2.

Let d = max(d1, d2).

To show: if x is within 10−d of a then f(x) + g(x) is within 10−e of l1+l2.

Assume x is within 10−d of a.

To show: f(x) + g(x) is within 10−e of l1+l2.

|(f(x) + g(x))− (l1 + l2)| = |(f(x)− l1) + (g(x)− l2)|
≤ |f(x)− l1|+ |g(x)− l2|

≤ 10−e+1 + 10−(e+1) =
2

10
10−e < 10−e.

So (f(x) + g(x) is within 10−e of l1+l2.

So lim
x→a

(f(x) + g(x)) = l1 + l2 = lim
x→a

f(x) + lim
x→a

g(x).
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Example 5.83. (multiplication is continuous) Let n ∈ Z>0. Let f : Rn → R and g : Rn → R be
functions and let a ∈ Rn.

Assume that lim
x→a

f(x) and lim
x→a

g(x) exist.

Then lim
x→a

(f(x)g(x)) =
(
lim
x→a

f(x)
)(

lim
x→a

g(x)
)
.

Proof.

Let l1 = lim
x→a

f(x) and l2 = lim
x→a

g(x).

To show: lim
x→a

(f(x)g(x)) = l1l2.

To show: If e ∈ Z>0 then there exists d ∈ Z>0 such that

if x ∈ Rn is within 10−d of a then f(x)g(x) is within 10−e of l1l2.

Assume e ∈ Z>0.

Let r, s ∈ Z>0 such that |ℓ1| < 10r and |ℓ2| < 10s.

Since lim
x→a

f(x) = l1 then we know that there exists d1 ∈ Z>0 such that

if x ∈ Rn is within 10−d1 of a and f(x) is within 10−(e+s+1) of l1.

Since lim
x→a

f(x) = l2 then we know that there exists d2 ∈ Z>0 such that

if x ∈ Rn is within 10−d2 of a and f(x) is within 10−(e+r+1) of l2.

Let d = max(d1, d2).

Assume x ∈ Rn is within 10−d of a.

To show: f(x)g(x) is within 10−e of l1l2.

|f(x)g(x)− l1l2| = |(f(x)− l1)g(x) + l1(g(x)− l2)|
≤ |(f(x)− l1)g(x)|+ |l1(g(x)− l2)|, by the triangle inequality,

= |(f(x)− l1)(g(x)− l2) + (f(x)− l1)l2|+ |l1| |g(x)− l2|
≤ |(f(x)− l1)(g(x)− l2)|+ |(f(x)− l1)l2|+ |l1| |g(x)− l2|
≤ |f(x)− l1| |g(x)− l2|+ |f(x)− l1| |l2|+ |l1| |g(x)− l2|
≤ |f(x)− l1| |g(x)− l2|+ |f(x)− l1| 10s + 10r |g(x)− l2|
≤ 10−(e+r+1) · 10−(e+s+1) + 10−(e+s+1)10s + 10r10−(e+r+1)

= 10−e(10−(e+r+s+2) + 10−1 + 10−1) < 10−e · 1 = 10−e.

So f(x)g(x) is within 10−e of l1l2.

So there exists d ∈ Z>0 such that

if x ∈ Rn is within 10−d of a then f(x)g(x) is within 10−e of l1l2.

So lim
x→a

(f(x)g(x)) = l1l2.
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Example 5.84. (Limits and composition of functions) Let m,n, p ∈ Z>0. Let Let f : Rn → Rp and
g : Rm → Rn be functions and let a ∈ Rm and ℓ ∈ Rn.

Assume that lim
x→a

g(x) = ℓ and lim
y→ℓ

f(y) exists.

Then
lim
y→ℓ

f(y) = lim
x→a

f(g(x)).

Proof.

Let L = lim
y→ℓ

f(y).

To show: lim
x→a

f(g(x)) = L.

To show: If e ∈ Z>0 then there exists d ∈ Z>0 such that

if x ∈ Rm is within 10−d of a then f(g(x)) is within 10−e of L.

Assume e ∈ Z>0.

To show: There exists d ∈ Z>0 such that

if x ∈ Rm is within 10−d of a then f(g(x)) is within 10−e of L.

Since lim
y→ℓ

f(y) = L we know that there exists d1 ∈ Z>0 such that

if y ∈ Rn is within 10−d1 of ℓ then f(y) is within 10−e of L.

Since lim
x→a

g(x) = ℓ we know that there exists d ∈ Z>0 such that

if x ∈ Rm is within 10−d of a then g(x) is within 10−d1 of ℓ.

To show: If x ∈ Rn is within 10−d of a then f(g(x)) is within 10−e of L.

Assume x ∈ Rn is within 10−d of a.

To show: f(g(x)) is within 10−e of L.

Since x is within 10−d of a then g(x) is within 10−d1 of ℓ,

and so f(g(x)) is within 10−e of L.

So, if x ∈ Rn is within 10−d of a then f(g(x)) is within 10−e of L.

So there exists d ∈ Z>0 such that if x ∈ Rn is within 10−d of a then f(g(x)) is within 10−e of L.

So lim
x→a

f(g(x)) = L.

Example 5.85. (Limits and order) Let n ∈ Z>0 and let f : Rn → R and g : Rn → R be functions.
Let a ∈ Rn. Assume that lim

x→a
f(x) and lim

x→a
g(x) exist and

if x ∈ X then f(x) ≤ g(x).

Then lim
x→a

f(x) ≤ lim
x→a

g(x).

Proof.
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Let ℓ1 = lim
x→a

f(x) and ℓ2 = lim
x→a

g(x).

To show: If f and g satisfy the condition

if x ∈ X then f(x) ≤ g(x),

then ℓ1 ≤ ℓ2.

Proof by contrapositive.

Assume ℓ1 > ℓ2 (the opposite of ℓ1 ≤ ℓ2 is ℓ1 > ℓ2).

To show: There exists x ∈ Rn such that f(x) > g(x)
(the opposite of ‘if x ∈ Rn then f(x) ≤ g(x)’ is ‘there exists x ∈ Rn such that f(x) > g(x).’).

Let r ∈ Z>0 be such that 10−r < ℓ1 − ℓ2.

Since lim
x→a

f(x) = ℓ1 then we know that there exists d1 ∈ Z>0 such that

if x ∈ Rn is within 10−d1 of a then f(x) is within 10−(r+1) of ℓ1.

Since lim
x→a

g(x) = ℓ2 then we know that there exists d2 ∈ Z>0 such that

if x ∈ Rn is within 10−d2 of a then f(x) is within 10−(r+1) of ℓ2.

Let d = max(d1, d2) and let x ∈ Rn be within 10−d of a (so that x ̸= a but x is quite close to a).

To show: f(x) > g(x).

f(x) > ℓ1 − 10−(r+1) = ℓ1 − ℓ2 + ℓ2 − 10−(r+1) > 10−r + ℓ2 − 10−(r+1) > ℓ2 + 10−(r+1) > g(x).

This proves that if f and g satisfy the condition ‘if x ∈ X then f(x) ≤ g(x)’ then ℓ1 ≤ ℓ2.

Example 5.86. (Limits and order for sequences) Let (a1, a2, . . .) and (b1, b2, . . .) be sequences in R.
Assume that lim

n→∞
an and lim

n→∞
bn exist and

if n ∈ Z>0 then an ≤ bn.

Then lim
n→∞

an ≤ lim
n→∞

bn.

Proof.

Let ℓ1 = lim
n→∞

an and ℓ2 = lim
n→∞

bn.

To show: If (a1, a2, . . .) and (b1, b2, . . .) satisfy the condition

if n ∈ Z>0 then an ≤ bn,

then ℓ1 ≤ ℓ2.

Proof by contrapositive.

Assume ℓ1 > ℓ2 (the opposite of ℓ1 ≤ ℓ2 is ℓ1 > ℓ2).

To show: There exists N ∈ Z>0 such that aN > bN
(the opposite of ‘if n ∈ Z>0 then an ≤ bn’ is ‘there exists N ∈ Z>0 such that aN > bN ’).

Let r ∈ Z>0 be such that 10−r < ℓ1 − ℓ2.
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Since lim
n→∞

an = ℓ1 then we know that there there exists N1 ∈ Z>0 such that

if n ∈ Z>0 is at least N1 then an is within 10−(r+1) of ℓ1.

Since lim
n→∞

bn = ℓ2 then we know that there there exists N2 ∈ Z>0 such that

if n ∈ Z>0 is at least N2 then bn is within 10−(r+1) of ℓ2.

Let N = max(N1, N2).

To show: aN > bN .

aN > ℓ1 − 10−(r+1) = ℓ1 − ℓ2 + ℓ2 − 10−(r+1)

> 10−r + ℓ2 − 10−(r+1) > ℓ2 + 10−(r+1) > bN .

This proves that if (a1, a2, . . .) and (b1, b2, . . .) satisfy the condition ‘if n ∈ Z>0 then an ≤ bn’
then ℓ1 ≤ ℓ2.
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5.6 The interest sequence

Example 5.87. If you borrow $500 on your credit card at 14% interest, find the amounts due at the
end of two years if the interest is compounded

(a) annually,

(b) quarterly,

(c) monthly,

(d) daily,

(e) hourly,

(f) every second,

(g) every nanosecond,

(h) continuously.

Proof.

(a) You owe

500 + 500(.14) = 500(1 + .14) after one year and 500(1 + .14)(1 + .14) after two years.

(b) You owe

500 + 500
( .14
12

)
= 500

(
1 +

.14

12

)
after one month.

You owe

500
(
1 +

.14

12

)(
1 +

.14

12

)
after two months.

You owe

500
(
1 +

.14

12

)24
after two years.

(f) You owe

500 + 500
( .14

365 · 24 · 3600

)
after one second.

and

500
(
1 +

.14

365 · 24 · 3600

)2·365·24·3600
after two years.

In fact,

lim
n→∞

500
(
1 +

.14

n

)2n
= 500 lim

n→∞

(
elog

(
1+ .14

n

))2n
= 500 lim

n→∞
e2n log

(
1+ .14

n

)
= 500 lim

n→∞
e
2·.14 log(1+ .14

n )

.14
n

= 500 lim
n→∞

e
.28

log(1+ .14
n )

.14
n = 500e.28,

since

lim
x→0

log(1 + x)

x
= 1.

So you owe 500e.28 after two years if the interest is compounded continuously.

Note: 500(1 + .14)2 = 649.80, 500
(
1 + .14

12

)24
≈ 660.49, and 500e.28 ≈ 661.58.
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5.7 Series

Example 5.88. (Constant series) Show that

∞∑
n=1

1 does not converge in R or C.

Proof.
∞∑
n=1

1 = lim
r→∞

( r∑
n=1

1
)
= lim

r→∞
r does not converge in R or C,

since r is growing and is unbounded.

Example 5.89. (Geometric series) Let x ∈ C. Show that if |x| < 1 then

∞∑
n=0

xn =
1

1− x
.

Proof. By continuity of addition and division away from 0,

∞∑
n=0

xn = lim
r→∞

(1 + x+ x2 + · · ·+ xr) = lim
r→∞

1− xr+1

1− x
=

1−
(
limr→∞ xr+1

)
1− x

=
1

1− x
.

Example 5.90. (The zeta function) Show that

∞∑
n=1

1

n
does not converge in R.

Proof. This proof is by comparison to a constant series. The sum ζ(1) =

∞∑
n=1

1

n
does not converge in

R since
∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4︸ ︷︷ ︸+ 1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸+ · · · > 1 +
1

2
+

1

2
+

1

2
+ · · · .

and the right hand side is growing and is unbounded.

Example 5.91. (The zeta function) Show that

if p ∈ R(0,1) then
∞∑
n=1

1

np
does not converge in R.

Proof. This proof is by comparison to ζ(1). The sum ζ(p) =

∞∑
n=1

1

np
does not converge in R since

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · · > 1 +

1

2
+

1

3
+

1

4
+ · · · = ζ(1)

and ζ(1) is growing and is unbounded.
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Example 5.92. (The zeta function) Show that

if p ∈ R>1 then
∞∑
n=1

1

np
converges in R.

Proof. This proof is by comparison to a geometric series. The sum ζ(p) =

∞∑
n=1

1

np
converges in R since

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p︸ ︷︷ ︸+ 1

4p
+

1

5p
+

1

6p
+

1

7p︸ ︷︷ ︸+ · · ·

< 1 +
2

2p
+

4

4p
+

8

8p
+ · · ·

= 1 +
1

2p−1
+

1

4p−1
+

1

8p−1
+ · · ·

= 1 +
1

2p−1
+

(
1

2p−1

)2

+

(
1

2p−1

)3

+ · · ·

=
1

1− 1
2p−1

=
2p−1

2p−1 − 1
.

Example 5.93. (The zeta function) Assume p ∈ R>0. Show that

∞∑
n=1

1

np
converges if and only if p ∈ R>1.

Proof. Case 1: p = 1. In this case ζ(1) =
∞∑
n=1

1

n
diverges since

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+

1

4︸ ︷︷ ︸+ 1

5
+

1

6
+

1

7
+

1

8︸ ︷︷ ︸+ · · · > 1 +
1

2
+

1

2
+

1

2
+ · · · .

Case 2: p ∈ R<1. Then ζ(p) =
∞∑
n=1

1

np
diverges since

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ · · · > 1 +

1

2
+

1

3
+

1

4
+ · · · .
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Case 3: p ∈ R>1. Then ζ(p) =

∞∑
n=1

1

np
converges since

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p︸ ︷︷ ︸+ 1

4p
+

1

5p
+

1

6p
+

1

7p︸ ︷︷ ︸+ · · ·

< 1 +
2

2p
+

4

4p
+

8

8p
+ · · ·

= 1 +
1

2p−1
+

1

4p−1
+

1

8p−1
+ · · ·

= 1 +
1

2p−1
+

(
1

2p−1

)2

+

(
1

2p−1

)3

+ · · ·

=
1

1− 1
2p−1

=
2p−1

2p−1 − 1
.

Example 5.94. (Ratio test for convergence) Let (a1, a2, a3, . . .) be a sequence in R.

Assume lim
n→∞

|an+1|
|an|

= a exists and a < 1. Show that

∞∑
n=1

|an| exists in R.

Proof. Assume lim
n→∞

|an+1|
|an|

= a exists and a < 1.

Let ε ∈ R>0 be such that a+ ε < 1.

Since lim
n→∞

|an+1|
|an|

= a there exists N ∈ Z>0 such that if n ∈ Z≥N then |an+1|
|an| < a+ ε.

Then

∞∑
n=0

|an| = |a0|+ |a1|+ · · ·+ |aN |+ |aN+1|+ |aN+2|+ · · ·

= |a0|+ · · ·+ |aN |+ |aN+1|+ |aN+1|
(
|aN+2|
|aN+1|

)
+ |aN+1|

(
|aN+2|
|aN+1|

)(
|aN+3|
|aN+2|

)
+ · · ·

< |a0|+ · · ·+ |aN |+ |aN+1|+ |aN+1|(a+ ε) + aN+1(a+ ε)2 + · · ·
= |a0|+ · · ·+ |aN + |aN+1|(1 + (a+ ε) + (a+ ε)2 + · · · )

= |a0|+ · · ·+ |aN |+ |aN+1|
(

1

1− (a+ ε)

)
.

Then, since a+ ε < 1,
∞∑
n=0

|an| converges.

Example 5.95. (Ratio test for divergence) Let (a1, a2, a3, . . .) be a sequence in R.

Assume lim
n→∞

|an+1|
|an|

= a exists and a > 1. Show that

∞∑
n=1

|an| does not exist in R.
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Proof. Assume lim
n→∞

|an+1|
|an|

= a exists and a > 1.

Let ε ∈ R>0 be such that a+ ε > 1.

Since lim
n→∞

|an+1|
|an|

= a there exists N ∈ Z>0 such that if n ∈ Z≥N then |an+1|
|an| < a− ε.

Then

∞∑
n=0

|an| = |a0|+ |a1|+ · · ·+ |aN |+ |aN+1|+ |aN+2|+ · · ·

= |a0|+ · · ·+ |aN |+ |aN+1|+ |aN+1|
(
|aN+2|
|aN+1|

)
+ |aN+1|

(
|aN+2|
|aN+1|

)(
|aN+3|
|aN+2|

)
+ · · ·

= |a0|+ · · ·+ |aN |+ |aN+1|+ |aN+1|(a− ε) + aN+1(a− ε)2 + · · ·
> |a0|+ · · ·+ |aN |+ |aN+1|(1 + (a− ε) + (a− ε)2 + · · · )
> |a0|+ · · ·+ |aN |+ |aN+1|(1 + 1 + 1 + · · · ).

So

∞∑
n=0

|an| does not exist in R.

Example 5.96. (Root test for convergence) Let (a1, a2, a3, . . .) be a sequence in R.
Assume If lim

n→∞
|an|1/n = a exists and a < 1. Show that

∞∑
n=1

|an| exists in R.

Proof. Assume lim
n→∞

|an|1/n = a exists and a < 1.

Let ε ∈ R>0 be such that a+ ε < 1.
Since lim

n→∞
|an|1/n = a then there exists N ∈ Z>0 such that if n ∈ Z≥N then |an|1/n < a+ ε.

Then

∞∑
n=0

|an| = |a0|+ |a1|+ · · ·+ |aN |+ |aN+1|+ |aN+2|+ · · ·

= |a0|+ · · ·+ aN |+
(
|aN+1|1/(N+1)

)N+1
+
(
|aN+2|1/(N+2)

)N+2
+ · · ·

< |a0|+ · · ·+ |aN |+ (a+ ε)N+1 + (a+ ε)N+2 + · · ·
= |a0|+ · · ·+ |aN |+ (a+ ε)N+1(1 + (a+ ε) + (a+ ε)2 + · · · )

= |a0|+ · · ·+ |aN |+ (a+ ε)N+1

(
1

1− (a+ ε)

)
.

Then, since a+ ε < 1,

∞∑
n=0

|an| exists in R.

Example 5.97. (Root test for divergence) Let (a1, a2, a3, . . .) be a sequence in R.
Assume If lim

n→∞
|an|1/n = a exists and a > 1. Show that

∞∑
n=1

|an| does not exist in R.
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Proof. Assume lim
n→∞

|an|1/n = a exists and a > 1.

Assume lim
n→∞

|an|1/n = a exists and a > 1. Let ε ∈ R>0 be such that a+ ε > 1.

Since lim
n→∞

|an|1/n = a there exists N ∈ Z>0 such that if n ∈ Z≥N then |an|1/n < a− ε.

Then

∞∑
n=0

|an| = |a0|+ |a1|+ · · ·+ |aN |+ |aN+1|+ |aN+2|+ · · ·

= |a0|+ · · ·+ |aN |+
(
|aN+1|1/(N+1)

)N+1
+
(
|aN+2|1/(N+2)

)N+2
+ · · ·

> |a0|+ · · ·+ |aN |+ (a− ε)N+1 + (a− ε)N+2 + · · ·
= |a0|+ · · ·+ |aN |+ (a− ε)N+1(1 + (a− ε) + (a− ε)2 + · · · )
> |a0|+ · · ·+ |aN |+ (a− ε)N+1(1 + 1 + 1 + · · · ).

So

∞∑
n=0

|an| does not exist in R.

Example 5.98. (Absolute convergence gives convergence) Let (a1, a2, a3, . . .) be a sequence in R or
C.

If
∞∑
n=1

|an| converges then
∞∑
n=1

an converges.

Proof.

Assume that
∞∑
n=0

|an| converges.

To show:
∞∑
n=0

an converges.

Let An = |a0|+ |a1|+ · · ·+ |an| and sn = a0 + a1 + · · ·+ an.

Since

∞∑
n=0

|an| = (A0, A1, . . .) converges then the sequence (A0, A1, . . .) is Cauchy.

Let m,n ∈ Z≥0 with m ≤ n.

Since
|sn − sm| = |am+1 + · · ·+ an| ≤ |am+1|+ · · ·+ |an| = |An −Am|,

then the sequence (s0, s1, . . .) is Cauchy.

Since Cauchy sequences converge in R and C (in any complete metric space),

then the sequence (s0, s1, . . .) =

∞∑
n=1

an converges.

Example 5.99. (Radius of convergence) Let (a0, a1, a2, a3, . . .) be a sequence in R or C. Let r, s ∈ C
and

assume

∞∑
n=0

ans
n converges. If |r| < |s| then

∞∑
n=0

an|r|n converges.

Proof.
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Since

∞∑
n=0

ans
n converges, limn→∞ |ansn| = 0.

Let ε ∈ R>0.

Then there exists N ∈ Z>0 such that if n ∈ Z≥N then |ansn| < ε.

Then

∞∑
n=0

|anrn| = |a0|+ |a1r|+ · · ·+ |aNrN |+ |aN+1r
N+1|+ · · ·

= |a0|+ · · ·+ |aNrN |+ |aN+1s
N+1|

∣∣∣∣rN+1

sN+1

∣∣∣∣+ |aN+2s
N+2|

∣∣∣∣rN+2

sN+2

∣∣∣∣+ · · ·

< |a0|+ · · ·+ |aNrN |+ ε

∣∣∣∣rN+1

sN+1

∣∣∣∣+ ε

∣∣∣∣rN+2

sN+2

∣∣∣∣+ · · ·

= |a0|+ · · ·+ |aNrN |+ ε

∣∣∣∣rN+1

sN+1

∣∣∣∣ (1 + ∣∣rs ∣∣+ ∣∣r2s2 ∣∣+ · · ·
)

= |a0|+ |a1r|+ · · ·+ |aNrN |+ ε

∣∣∣∣rN+1

sN+1

∣∣∣∣
(

1

1−
∣∣ r
s

∣∣
)
.

Thus, since |r| < |s| then
∞∑
n=0

|anrn| converges.

So, by the previous Proposition,

∞∑
n=0

an|r|n converges.

Example 5.100. (Alternating series) If (a1, a2, a3, . . .) is a decreasing sequence in R≥0

such that lim
n→∞

an = 0 then

∞∑
n=1

(−1)nan converges.

Proof.
Assume (a0, a1, . . .) is a sequence in R≥0, lim

n→∞
an = 0 and if n ∈ Z≥0 then an ≥ an+1.

To show:
∞∑
n=0

(−1)n−1an = a1 − a2 + a3 − a4 + a5 − · · · converges.

Let
s2m = (a1 − a2) + (a3 − a4) + · · ·+ (a2m−1 − a2m).

Then s2m ≤ s2(m+1).

Since s2m = a1 − (a2 − a3)− (a4 − a5)− · · · − (a2m−2 − a2m−1)− a2m, then s2m ≤ a1.

So the sequence (s2, s2, s6, . . .) is increasing and bounded above.

So lim
m→∞

s2m exists.

Let ℓ = lim
m→∞

s2m.

Let s2m+1 = s2m + a2m+1.

Then
lim

m→∞
s2m+1 = lim

m→∞
s2m + lim

m→∞
a2m+1 = ℓ+ 0 = ℓ.
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So lim
m→∞

sm = ℓ.

So

∞∑
n=0

(−1)n−1an = ℓ.

5.8 Additional series examples

Example 5.101. Evaluate

∞∑
n=1

2.

Proof.
∞∑
n=1

2 = lim
r→∞

( r∑
n=1

2
)
= lim

r→∞
2r,

which gets larger and larger as r gets larger and larger.

So
∞∑
n=1

2 does not get closer and closer to a single real number. So

∞∑
n=1

2 does not exist in R.

Example 5.102. Evaluate

∞∑
n=1

(
1
2

)n
.

Proof. Since
∞∑
n=1

(
1
2

)n
= −1 +

( ∞∑
n=0

(
1
2

)n)
and

∞∑
n=0

(
1
2

)n
= lim

r→∞

( r∑
n=0

(
1
2

)n)
= lim

r→∞

(1− (12)
r+1

1− 1
2

)
= lim

r→∞
2
(
1− (12)

r+1
)
= 2− 2 lim

r→∞

1

2r+1
= 2− 2 · 0 = 2,

then
∞∑
n=1

(
1
2

)n
= −1 +

( ∞∑
n=0

(
1
2

)n)
= −1 + 2 = 1.

Example 5.103. Evaluate

∞∑
n=1

10n

n!
.

Proof. By the definition of ex,

∞∑
n=1

10n

n!
= −1 +

( ∞∑
n=0

10n

n!

)
= −1 + e10.
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Example 5.104. Evaluate

∞∑
n=1

n+ 1

n
.

Proof. Since
∞∑
n=1

n+ 1

n
= lim

r→∞

( r∑
n=1

n+ 1

n

)
≥ lim

r→∞

( r∑
n=1

n

n

)
= lim

r→∞
r,

then
r∑

n=1

n+ 1

n
gets larger and larger as r gets larger and larger. So

∞∑
n=1

n+ 1

n
does not exist in R.

Example 5.105. Evaluate

∞∑
n=1

(2n)!

n!n!
.

Proof.

∞∑
n=1

(2n)!

n!n!
=

∞∑
n=1

1 · 2 · · · (n− 1) · n · (n+ 1)(n+ 2) · · · 2n
1 · 2 · · · (n− 1)n · 1 · 2 · · · (n− 1)n

=

∞∑
n=1

(n+ 1)(n+ 2) · · · 2n
1 · 2 · · · (n− 1)n

=

∞∑
n=1

(n+ 1)

1
· (n+ 2)

2
· · · 2n

n

≥
∞∑
n=1

1 · 1 · · · 1 =
∞∑
n=1

1,

which gets larger and larger and does not get closer and closer to a single real number. So

∞∑
n=1

(2n)!

n!n!
does not exist in R.

Example 5.106. Determine whether
∞∑
n=1

3 + 5
n

2n2 + n+ 2
exists in R. Always carefully justify your an-

swers.

Proof.

∞∑
n=1

3 + 5
n

2n2 + n+ 2
≤

∞∑
n=1

8

2n2 + n2 + 2n2
=

∞∑
n=1

8

5n2
=

8

5

∞∑
n=1

1

n2
=

8

5
· π

2

6
.

So the sequence (a1, a2, . . .) given by

ar =
r∑

n=1

3 + 5
n

2n2 + n+ 2
is an increasing sequence in R bounded by

8

5
· π

2

6
.

So
∞∑
n=1

3 + 5
n

2n2 + n+ 2
= lim

r→∞
ar converges in R.
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Example 5.107. Determine whether

∞∑
n=1

n2 + 4

n3 + 5
exists in R. Always carefully justify your answers.

Proof. Let (a1, a2, . . .) be the sequence given by ar =

r∑
n=1

n2 + 4

n3 + 5
.

r∑
n=1

n2 + 4

n3 + 5
≥

r∑
n=1

n2

n3 + 5n3
=

r∑
n=1

1

6n
=

1

6

r∑
n=1

1

n
.

Let (b1, b2, . . .) be the sequence given by br =

r∑
n=1

1

n
is a p-series with p = 1. The sequence (b1, b2, . . .)

gets larger and larger as r gets larger and larger.
Since ar ≥ 1

6br then the sequence (a1, a2, . . .) gets larger and larger as r gets larger and larger. So

∞∑
n=1

n2 + 4

n3 + 5
does not exist in R.
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