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Abstract

Here are examples to use as models for problem solving in Calculus. At the same time these
examples provide a thorough treatment of results in the subject.
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1 Introduction

As a student of mathematics I always felt incapable of coming up with a solution to any given problem
on the homework. However, if someone showed me how to do that question then I was capable of
understanding the solution and reproducing it. I made it through my undergraduate math courses by
asking (many) people to show me how to do the various questions that I encountered. Eventually I
knew how to do so many of them that I could do well on any exam. It was a good way to succeed.

With that model in mind this is a compendium of examples designed for students that are like I
was. Here solutions to many types of problems are presented carefully and the problems are chosen to
be representative of most problems that could appear on an exam for a first year Calculus course. The
idea is that if you learn how to deliver these solutions yourself then you will have a good command of
Calculus.

Later, as a caclulus teacher I found that the greatest part of my task was to show the students
how to do problems of the type that might appear on the exam. I found this compendium of examples
helped greatly in preparing classes, lectures and problem sessions.

Although T had originally intended to include material from multivariable calculus I ran out of
steam and this compendium does not cover the standard multivariable calculus.

An important piece of my philosophy of mathematics and teaching is that the proof (convincing
explanation of why something is true) is always part of the endeavor. I think it always important to
justify the power rule for the derivative, the chain rule for the derivative, why cos (%) = g, etc etc.
The examples here are designed to include all those questions and justifications as example problems
and to complete them along the way as possible exam questions.

2 Algebra

The complex numbers is the number system
C={z+iy|z,y e R} with 4% = —1,
The exponential
e =1+4+xz+ %xz + %uL‘s + - is the most important function in mathematics.

Let i2 = —1. The trigonometric and hyperbolic functions are defined by

cos(z) = (i) (e +e ), cosh(z) = F(e"+e7), sin(z) =1(e” —e ™), sinh(z)=1(e"—e ")
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and .
tan(z) = 2):((?)’ cot(x) = tanl(a:)’ sec(z) = Cosl(m)’ csc(z) = sinl(m)’
and .
tanh(z) = 2;2}}11((‘;;, coth(z) = tan}11( 7 sech(z) = cos}11(ac)’ csch(z) = sinlrll(m)‘

d
The derivative e knows what to spit out by always following the rules:
x

dx
1) —=1
( ) de ?
(2) EZC:Z ) g‘i if ¢ is a constant,
dif +9) _df  d
(3) de  dx o dz’
d(fg) _ . dg df
4
(4) dx dx i dx 9
The integral is the inverse ‘function’ to the derivative: the integral undoes the derivative. This means
that df d
/d dr=f  and dx(/fdﬂf)Zf
50 d d
(dCf)_ df gives /(cf)dx:c/fdm,
x x
d d,
(f(;g) d£+d:c gives /(f+g)dx:/fda:+/gdx,
d(fg df dg .
(dx)zdngrfdx gives /fdg=fg—/gdf»
d df d du
(J;Og):dfdg gives / dg;_/gdu
x x
f? g df dg -
d( )_fg<fd +lo fdx) gives /fg 1 +f10gf >d1':fg-

Like most inverse ‘functions’; the integral is not a function.

Other frequently used inverse functions:

/T is the ‘function’ that undoes 22. This means that
Va2 =z and (Vz)? = .
log(z) is the ‘function’ that undoes e”. This means that
log(e®) = x and elog@) — g,
sin~!(z) is the ‘function’ that undoes sin(x). This means that
sin~!(sin(z)) = = and sin(sin ! (z)) = .
cos~1(x) is the ‘function’ that undoes cos(x). This means that

cos L(cos(z)) = = and cos(cos ™1 (z)) = .
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log,(z) is the ‘function’ that undoes a”. This means that
loga(a‘ﬁmsm(32)) = /Trisin(32) and alo8a(VTmisin(32)) — /77 sin(32).

WARNING: sin?(z) is VERY DIFFERENT from sin(z)?. For example,

1 1 1
sin® (%) = sin(sin(%)) = sin(ﬁ) ~ 0.6496369, BUT sin (%)2 _ (5)2 =5
WARNING: sin~!(z) is VERY DIFFERENT from sin(z)~!. For example,
1 1
sin~1(0) = sin"!(sin(0)) =0,  BUT  sin(0)~! = ) "0 UNDEFINED IN C.
2.1 Derivatives and integrals
. dy
Example 2.1. Find — if y = 5z.
dz
dy d(5z) _dx B
Proof. e = dr —5%—5‘1—5.
. dy
Example 2.2. Find —= if y = 7z.
dx
dy d(mx) dx
Proof. — = =7 —=7n-1=m.
roof. Ir . mo =T ™
dl
Example 2.3. Prove that i 0.
Proof.
d_din | d d | a
de ~ dr  dx  dr = dr dx’
1 1
Subtract a1 from both sides. So a1 =0.
dx dz
. dy
Example 2.4. Find — if y = 5.
dz
Proof.
dy d5 d(5-1) dl
= =—= =5-—=5-0=0.
dr dx dz dx
. dy
Example 2.5. Find e if y = 6342.
x
Proof.
dy d6342  d(6342-1) dl
ay _ _ —6342- = —6342-0=0.
dz dx dz 03 dz 6342-0=0
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d
Example 2.6. Prove that if ¢ is a constant then e _ 0
x

Proof.
de d(c-1) dl
dx de  dx

d
Example 2.7. Find dﬁ if y = 3z + 12.
X

Proof.
dy d(3x+12) d(3z) d12 dx
dx dx dx * dx dx + +

d
Example 2.8. Find d—y if y = 22,
x

Proof.

dy dx? d(z-x) de dz
G-l CmtatTolthe=w

d
Example 2.9. Find cTy if y = 23.
x

Proof.

dy  da3 d(:/c2 - x) 5 dx dx? 9 9
_ = 2 =214 9222 = 32°.
dx dx dx . dx + dx e v v

Example 2.10. Find % if y = 2%,
x
Proof.
dy dzt  d(x3 - z) gdr  da?

3
dx dzr dzr o dzx + dzx v +

... and we keep on going ...

d
Example 2.11. Find cTy if y = 26342,
x
Proof.

dy B dw6342 d($6341 . x) 6341 dr d$6341

2Ty = 834 6340 . 6341
do ~ dx da Tt e = 16341 o = 6342077

. and we keep on going ...



Calculus Examples, Arun Ram, version: January 28, 2025

d n
Example 2.12. Find di for n € {1,2,3,...}.
xr

Proof. The base cases are j—ﬁ =1 = 12° and Example Example The induction step is:

dy  da" d(z" ! ) . dz"t

v~ dz dz -7 d:c+ dz
n—1
=" 14+ (n—1)2"? g, since we already found Z = (n—1)z"2,
x
= nz" L,

n

d
Example 2.13. Find di for n = 0.
x

Proof.

d dz®  dl

dﬁ:di:d—:0:0$_1:0$0_1-

x x x
do—6342
Example 2.14. Find <
dx
Proof.
dg—6342 . 6342 B da0 o
dx de dx
On the other hand,
dp—6342 . 6342 _ ez 8342 gp—6342 O _ 692 6301 do—6342 a2
dx dx dx dx
So
0 = 26342 . 349,6341 | dx—%% 6342
dx )
d —6342
Solve for 2%
r d$_6342
T = 6342071270 = (=6342)2~ .
x
dx™"

Example 2.15. Find

forn € {1,2,3,...}.

Proof. Let n € Z~o. Then
dz™"™- 2" dz? _dl

de  dr  dz
On the other hand,
de™" -2  _dxz" dx™" net1  dxz™"™
I =x da;+ I T =z ny + dr x’.
So - o
O=a ™ a4 & gt Y
dx dx
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—-n

Solve f
olve for —— .
Zx = —nz 'z " = (—n)z "L
d, N
and thus we have found ;T =na"!,  for all integers n. (AMAZING!)
3 2 o dy
Example 2.16. Let y = 32° + 52 4+ 2z 4+ 7. Find e
Proof.
dy d(3x3 + 522 4+ 22+ 7)
dr dx
d(32z3)  d(5x® 42z +7)
= +
dx dz
d(3z3)  d(52%) d(2z) dT7
 dx + dx + dx + dz
da3 dz? dx dl
=3— +5—4+2— 47—
d * dz * dx * dx
=3-32°+5-204+2-1+7-0
= 9z% + 10z + 2.
—13 -7 N 38 oo dY
Example 2.17. Let y = =727 + 52~ " + (6 + 2¢)2°°. Find T
x
Proof.
dy d(=7Tx71 + 5277 + (6 + 2i)z%®)
dr dx
d(—7x713) N d(5x7T) N d((6 + 2i)x38)
N dx dx dx
dr—13 -7 38
- _ 2
7 In +5 In + (6 + 2i) .

= —7(=13)x B 4 5(=7)z7 "L + (6 + 20)3823% !
=91z~ — 35278 4 (228 4 76i)z>".

d
Example 2.18. Find it y = g°.

dx
Proof.
dy dg* d(g-g) dg  dg dg  dydg
dx dx dx dr  dx dxr dgdz

d
Example 2.19. Find cTy if y = g3.
x
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Proof.
dy _dg® _d(g®-g) _ ,dg  dg? 2 dg dg 2dg _ dydg
Y _ Y =24 L g=¢® L4292 . g=3¢5"-"2 =
dx dx dx g dx + dx g dx * gdx 9=39 dx dg dz’
O
. Ldy . 4
Example 2.20. Find e if y = g*.
x
Proof.
dy _dg* _d(g’-g) _ 5dg  dg’ 5 dg  , 2dg sdg _ dydg
o _ Y =2+ L g=¢> 2L 434 — 43 —
dx dx dx g dx * dx g dx +g dz 9 g dx dgdx
O
. and we keep on going ...
L4y 6342
Example 2.21. Find ar if y = g°o*°.
x
Proof.
dy dgt342 B (g% - g) s dy . dgh341
de  dz dx -9 dx dx
dg dg dg _ dydg
6341 6340 6341
= 41g = 6342¢g
g gy T ar 9708 dr _ dgdz
O
. and we keep on going ...
dg"™
Example 2.22. Find — I forn € {1,2,3,...}.
Proof. The base cases are 37; = 7: = 190 49 and Example 2.8+ Example |2 The induction step: Let
y = g". Then
dy _dg" _d(¢"'-x)  ,_ydg  dg"!
dr  dr dx —9 da:+ dx *
n—1
=gt Zg +(n—1)¢"" QZ—Z g, since we already found dgda: = (n— 1)9”_23—9,
n-1dg _ dydg
dr dgdzx’
O

. dg"
Example 2.23. Find A for n = 0.
x
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Proof. Let y = ¢° = 1.

dy d¢° dl 1 0_1dg dydg
dx dx dx g g dxr dgdz
—6342
Example 2.24. Find
x
Proof.
dgf6342 X 96342 B dfgo B ﬂ _
dx dr dr
On the other hand,
dg=0312 . 46312 _ 6342 dg®* n dg— %+ L gBH2 _ 6342 G349 6341 | dg— %1 0342,
dx dx dx dx
So 6342
dg~
0 = 6342 . 5349,6341 L6342
g g + d g
—6342
Solve for
x
dg %342 1, 6342 6343 49
= —63429 g~ = (—6342)g """ —.
- 99 ( )g
So, if y = ¢g79312 then Z—g = %g—g.
dg—"
Example 2.25. Find forn € {1,2,3,...}.
Proof. . Let n € Z~¢. Then
dg™™-g" _@_@_0
dx dr dr
On the other hand,
dg~"-g"  _,dg" dg™" , .  ,.q1dg dg " dg
de 7 dx+ e 779 M dr 7 dr
50 dg™" d dg™"
_ _ g_ -1 g g_ n
0= n n—1 n _ -J
g g + dx g dx + dx
—n
Solve for
dg™™ 1 _ndg n-149
de 99 dx_( ) dz’
So, if y = ¢g79%42 then % = %g—g.

n

d d
g - ng"fld—g, for all integers n. (AMAZING!)
T x

We have found

d
Example 2.26. Find d—y when y = (22 — 5)2.
x
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Proof. If g = 2z — 5 then y = ¢°.

dy dydg dg? d(2z —5)
== "=—"——-=29(2-0)=2(2x—-5)-2
dxr dg dz dg dx 9 0) (22 =5)

= 4(2z — 5) = 8z — 20.

Example 2.27. Find Z—y when y = (3z — 4)3.
x

Proof. If g = 3z — 4 then y = ¢g3. Then
dy _dy dg _ dg* d(32— 4
de dg dz dg dx
= 9(92% — 24z + 16) = 81z? — 72z + 144.

=3¢%(3 - 0) = 9(3x — 4)?

d
Example 2.28. Find d—y when y = (22 — 5)?(3z — 4)3.
x
Proof.

dy  d(2z—5)*(3z —4)% d(3x —4)®  d(2x —5)?
dr dx = (22— 5)2 dx + dx

= (22 —-5)%2-33x—4)2-3+2(2x—5)-2(3z —4)3

= (20 — 5)(3x — 4)%(9(2x — 5) + 4(3xz — 4)) = (22 — 5)(3z — 4)*(30z — 61).

(3z — 4)3

d
Example 2.29. Find cTy when y = (;—j)?
x

Proof.
d(=2)"  e—3\d (5
(Z{;) :2<x—i) (dac)
T d (x—3)(:1:—4)_1
:2<x—i) ( dx )
—2(E) (-0 A )
:2<z_i)<($—3)(—1)(:1:—4)2(xd;4)—|—1 ( —4)*1)
(=) (- )
(D (-G 1+ omap)
z—3 —1 —2x+6
:2<x—4)(ac(—i)2 (m—jl_)3
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m/n
Example 2.30. Find da

when m and n are integers and n # 0.

x
Proof.

(xdw ) = :l; = maz™ ! On the other hand (xdx) = n(acm/”) ! mdx .

So ma™ = n(l’m/n)n_l dx and we can solve for dx
dx dx
dz™m/m B ma™ ! B ma™ !
dx n(xm/n)n_l n(xm/n)n(l.m/n)
_ mxmfl

Example 2.31. Evaluate /\/Ed:r

Proof.
3
2 2
/\/Edm = /xé dx = % +c= ga:% +c, where c is a constant,
2
since .
d%:ﬁ 2 31 1
= — .« =2 =2
dx 3 2
O
Example 2.32. Evaluate / Vx dx.
Proof.
4
3 3
/ Vrdx = /xé dr = g +c= Z:z:% +c, where c is a constant,
3
since
d%x4/3

_3 4 s
dx 4 3 ’

Example 2.33. Evaluate /xigf dx.

Proof.

O
/?@?d x%+l+ m%-F BBy here c i tant
T r = 575 C = —=ga- C—= ——X C, where ¢ 1S a constant,
=+l 93 793
since 2o
digszai 431 793 s | e
2 = . —— 431 — 431,
dzr 793 431
11
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Example 2.34. Find % when y = \/%7%
Proof.
x
dy d Vi—2z d x(\/l — 23:)_1 o d x((l - 2$)1/2)_1
do dx N dx N dx
—92r)—(1/2) —924)~(1/2)
dx dx dx
_as9d (1 —2x) 1
=z(—3)1 —2x)73/? 1.
1:( 2)( z) dx + V1—2x
_ —x (—2) + 1 r+l1-22z  1-x
©2(1 — 2x)3/2 (1—22)1/2 (1 —-2x)3/2  (1—2z)3/2
d V1 2
Example 2.35. Find d—z when y = \/11_71;2
Proof.
d\/1+m2 (1 +22)1/? 14+ 22\"?
@ /1—.732 B (1_x2)1/2 B 1— g2
dx dx N dx dx
d 1+ a2
_ 1+ .’E2 (1/2)-1 1 — 1’2 _ 1 1+ 1‘2 (1/2) d (1 + 1'2)(1 _ xQ)fl
N 1— a2 dx 2 \1—2a? dx
1—22\'/? d(1—-2>)"t d(1+2?
_ 1 2 1 22!
<1+a:2> <( +2%) dx dx (1=2%) >
1— a2\ 2 d(1—z?)71!
= 1 (=11 2y-2 1 — 22)1
(17%) (a+aena-2 i s a2

2>1/2 ( 2 2
(55)" (3
< ) <2x(1+x2+1—x2)>

(1 — 22)2

— 22)1/2 dr 2x
x

2)1/2 ) (1—a2)2 (14 a2)1/2(1 — 22)3/2

Example 2.36. Differentiate 7 with respect to 2.

+ 22
. _dz a? 2
Proof. This is the same problem as: Find — when z = 5 and p = z°.
x
dz/d
Since %:%d—p then @: ( 2/ 33)
dr  dpdzx dp  (dp/dzx)

12
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So
LAY R0 aned
dz  dx \1+4+22) dx B dx dx
dp d o, B d 2? B 2z
dl’(x) dx
_od (1 +22) _ —a? 2x
2 2\—2 2\—1
_ 2V 4 90(] T 9 -
_3:( 1)(1+27) . +2z(1 4 z%) ey :c+1+x2
N 2x N 2x
B —x? n 1 _—a:2+1+x2_ 1
(1+22)2 1422 (14222  (1+22)?
dy 2522,
Example 2.37. Let a € C. Find ——= 7 when 2t + y* = 46’z
x
Proof.
4,4 22,2 4
d(z +y):d(4a ) %o di+dy 42dx
dz dx dx dx dx
dy dy dxz?
4 3 4 35 —4 2 D 2
So et dyT s =da < dr ta?

d d dy
So 423 + 4y3—y =4a? | 2%2y—= i +229° ) = 4a 3322y + 4a?2xy?.
dz dz dz
dy
32J
e
So 42 — 4a%2xy? = (4a 22y — 4y ) i
4z3 — 4a*2xy? _dy
402222y — 43 dx’
dy x® — 2a%xy?

dy
So 423 — 4a?2xy? = 4a2$22yd

dx’
So

S = =
© dr  2a2x2%y — 93

d/

All we did is take the derivative of both sides and then solve for d—y

T

d
Example 2.38. Find d—z]wzs when y = (z 4+ 1)(z + 2).

d d
Proof. The notation —y] _, means: find %Y and then plug in x = 3.
dx *=3 dx

@] _d(@+1)(=+ 2))]
dxd#=3 dx =
= <(x +1) d(xdi 2 d(xd_gt Lo+ 2))]m_3
=((x+1)+ (x+2)],_, = (22 +3)]
=2.3+4+3=0.

3

r=3

d
Example 2.39. Let a € C. Find d—y when x = and y=
x

1+1¢3 143

13
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t =xt then dfy— ﬁ—i-dfx t= ﬁ-i—t
-7 ¢ dr de Tde U T Tar U

3at
1+

3at?
Proof. Since y = 7 _T_ 3= <

What is dat 77
dx
de  dz dt dt (dz/dx) 1

i — =——"th — = = .
Siee = drdr "™ & T (dejdr)  dujdt
So
a1 1 B 1
dr — de/dt  d ( 3at \  d(3at)(1+4 )"
dt \ 1+t dt
B 1
— 7
3at(—1)(1 + t3)—2d(dtt) +3a(l +t3)7!
B 1 B 1
- —3at 52 4 30 © —9at® 4 3a(1 +t3)
(1413)2 1413 (1+13)2
B (1+13)2 1+ )2
~ —9at3 +3a(l1+13)  3a—6at3’
So
dy dt 3at (1 +13)?
L =g +t= t
de ~ Tdr T T U8 Ba(l—208) T
A+ (=267 t+tt 4t -2t 2t —t!
o123 1—2t3 -2t 123
4o —5
Example 2.40. Compute /2]}2f5(1)—‘,—1dx

Proof. Let u = 22% — 5z + 1. Then%:4x—5. So
dx — 5 1 du 1
—————dr= [ ——dx= | —d
/2x2—5x—|—1 o /udmx /uu
= log(u) + ¢ = log(22* — 5z + 1) +c,

where ¢ is a constant.

tan(y/@) sec(v/5)?
NG

Example 2.41. Compute/ .

Proof. Let u = tan(y/z). Then

du o 1 1 lsec(y/z)?
& SV ge = o — e

So

/ tan(\/Ei/b‘%f(?(\/ﬂ?)2 dr — /gu % de = /2u du = u* + ¢ = tan(v/z)* + ¢,

where ¢ is a constant.

14
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Example 2.42. Compute /x@dw
Proof.
/:U\/mdm:/;?m\/mdx
:/;(Bx—2+2)mdx
= / %((3:1; —2)% +2(3z —2)?2) dx
ST ) v

s 4
567 =27+ 2230 2)% +c,

2
T 45

where ¢ is a constant.

Example 2.43. Compute /:1:\/ 2 — 1dx.

Proof. Let u = x? — 1. Then d“ =2z. So

/xmxd /2;13\/3:27613;_/1“[3:_/ fdu_/ “us du

3 1 3 1

:§§u2+c:§u5+c:§(:c2—1)% ¢,

where ¢ is a constant.

Example 2.44. Compute / cos(x)? de.
Proof
/ cos(x)? da = / cos(x) cos(x)? dx
— / cos(z)(1 — sin(z)?) da
_ / (cos(z) — sin(z)? cos(x)) de

. 3
= sin(x) — sin(x)” +c,
3
where ¢ is a constant.
1 2
Example 2.45. Compute /Og(:z)da:.
T

Proof. Let u = log(z?). Then

du 1 5

T 9= 2

de 22 x

15
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So
1 log(z?) ,  [12 5
/22xd:c—/2xlog(x ) dx

lu n
=—-——+c
22
e,
1 2
og(z?) ‘.
4
where ¢ is a constant.
T
Example 2.46. Compute dx
P P Vit
Proof.
/ / r+1-— 1 ( r+1 1 ) d
— T
V1 vVi+z (l—i—x)% (l—i—x)%

2
— [(@+ 0} - @) H)do = S+ )i -2+ D+
where c is a constant.
Example 2.47. Compute /:c\/:c —1ldz.

Proof.

/x\/ﬁdx:/(x—lﬂ)\/ﬁdx:/((x—1)\/x—1+\/:c—1)dx

:/((m—1)2’+(x—1) 2e-1f e

3

N

))dm = %(z — 1)g +
where c is a constant.
Example 2.48. Compute /(1 —2)V1+ zdxr.
Proof.
/(1 oITads = /(—(1+x) VI Fde
= /(—(1+x)\/1+a:+2\/1+$)dx

16
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where ¢ is a constant.

Example 2.49. Compute/ sin(z) dx.

sin(z) — cos(x)

Proof.

/ (sm(aj) de — / sin(z) — cos(x) + sin(x) + cos(x)

1
x) — cos(x) sin(z) — cos(x) 2

1 sin(x) — cos(z)  sin(x) + cos(z)
/ ( + ) ,dx

2 sin(z) — cos(z)  sin(x) — cos(x)
1 sin(x) + cos(x
T2 / (1 + sinEx; +c0s§x§) de

= %(m + log(sin(z) — cos(z)) +

where ¢ is a constant.

Example 2.50. Compute /1f—l‘8dx‘

Proof.

3 3 3
x x 1 4x 1

Y dr= | —= 4 — | 2. dr=Ztan (2t
/1+x8 T /1+(x4)2 x /4 5 (@02 = tan (%) + ¢,

where c is a constant, since

1 tan~1(z)

11 da* 1 443
dx 41+ (a2 de 41+ (242

sin(2x)

Example 2.51. Compute /tan_l (HTs(ng)) dz.

Proof.

/tan_l (m) dor = /tan_l (1 +2C(S)i;%)2cjss(ii)(x)2) dx

/taurl_1 <C()28§.ir;(2$j_05552)2> du

o (D) [ (2
5

/tan (tan(x ))dx—/acdaz— +c,

where ¢ is a constant.

Example 2.52. Compute /cosl(sin(:c))dx.

17
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o de _ 1
Proof. Let x = sin"!(y). Then W= i So
d
/ cos 1 (sin(x / (sin(z —xdy
dy
1 1
= [ cos “(sin(sin” " (y))) —=dy
1 — g2
:/cos
,/]_ _
1
= —/cos (y) —/—
1(,))2 ~1
) +C:_cos <2sm<x>> .

where c is a constant.
Another way: Let cos™!(sin(z)) = y then sin(z) = cos(y). So

So

So

where ¢ is a constant.

2.2 Exponential, trigonometric and hyperbolic functions
Example 2.53. Assume yx = zy. Prove that

TV = %,

Proof.
1 1
+ (z+vy) + x+y
oty + %(x +y)? + %(wQ + 2y + ?)
e 7= + e+ y)3 = + 31 (23 + 322y + 3ay® + )
+ sz +y)? + gzt + dady + 622y% + dayd + y?)
+ + :
1
+ +y
1.2 1
B + gz +§2xy +2,y
- + %mg’ —1—3,390 Y +3,3my —i—%y3
+ %az‘l +4!4x Y +i!6x y +%4xy3 —}—%y4
N )

18
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1

T +y
ORI S PR (PR
T +5xty 52t 5y° trmy [y

|
+ o+t

= e’ 4e"y  +egy? —i—e"’”%y3 —i—e””%y‘l
= fl4y+ g+t 4yt )

=e"eY.

8

Example 2.54. Let
ele—i—x—i—%xQ—i—%x?’—i—%x‘l—&—--- .

Find C;i and / e’ dx.

x
Proof.

%=%<l+x+%x2+%x3+im4+~-)
=0+ 1+ H2zx+ 332> + L4 + - -
:1+x+%$2+%1‘3+%$4+---:em.

o
Since T = e’ then
/ e’ dxr = e* +c, where c is a constant.

Example 2.55. Find a polynomial that converts addition into multiplication.
Proof. Let P(x) = ap + a1x + asx?® + - - -.
We want P(zx+y) = P(x)P(y).
Well
P(z41y) = ao + ai(z + y) + az(z + y)*+
=aqay +a1x+a1y+a2x2 +2a2xy+a2y2 +oee and
P(2)P(y) = (ap + a17 + aga® + -+ )(ap + a1y + asy® + - --)
= a(z) + a1a0r + apa1y + a2a0x2 + a,%ﬂjy + aga2y2 4+ ..

so that, if ag # 0 then

ag =1, a% = 2a9, ajaz = 3as,

and

1 1 .
P(z) = 1+a11’+5a%x2+§a?$3+.,. _

19
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Example 2.56. Find a polynomial whose derivative is itself.
Proof. Let Q(x) = co + c1z + asx? + - -+ € C[[z]]. Then

dQ(z)
dz
Q(x) = co + 1@ + ez + - - -

=1 + 2c0c + 363562 +degad + ... , and

so that dii@ = Q(x) forces

1 1 1 1
C1 = Cp, C2 = 501 = 5007 3 = 502 = ?

So Q(x) = ¢y + c1z + agx? + - -+ is equal to

1 1
Q(z) = co + cox + 500962 + 500963 + - =cpe”, with ¢y € C.

Example 2.57. Let i> = —1. Explain why

€' = cos(x) + isin(z), e® = cosh(z) + sinh(z),
e = cos(x) — isin(x), e * = cosh(z) — sinh(z),
Proof.
cosh(z) +sinh(z) = $(e” + ") + (" —e ") = (2”4 0e™7) = €,
cosh(z) — sinh(z) = (e” +e ™) — (" —e ) = 1(0e” +2¢*) = e 7,
cos(z) +isin(z) = (™ + e ™) +i(—Fi(e"” —e ™)) = L + e T —eT) =7,
cos(z) —isin(z) = (™ + e ™) —i(—3i(e"™ —e ™)) = L(e" + € — T 7)) =7
Example 2.58. Explain why
cos(—x) = cos(x), cosh(—z) = cosh(z),
sin(—z) = —sin(z), sinh(—z) = — sinh(x).

Proof. Let i = —1. Then

cos(—z) = 3(e7" 4+ €) = (" + e7*) = cos(x),
sin(—xz) = —%i(e @ _ ety = —(—%i(e” e~ ")) = —sin(z),
cosh(—z) = 3(e™™ + %) = (e + e ) = cosh(z),
sinh(—z) = —3(e™* —€") = —(—1(e" — ™)) = —sin(z)
Example 2.59. Explain why
cos?(x) + sin®(x) = 1 and cosh?(z) — sinh?(x) = 1.
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Proof. Let i*> = —1. Using that e’® = cos(z) +isin(z) and e~ = cos(x) — i sin(x) from Example
gives

1— e0 _ eia:+(—ix)
= (cos(x) + isin(x))(cos(x) — isin(x))
= cos?(z) — isin(x) cos(x) + isin(x) cos(x) — i% sin’(x)

2

2

= COS 2

) + sin

s(
os?(
(
(

)

z) — (—1) sin*(z)
) ().

Using that e® = cosh(z) + sinh(z) and e~® = cosh(z) — sinh(z) from Example gives

at(-z) _ ro—7

1=¢e0 =¢" =c"e

= (cosh(x) 4 sinh(z))(cosh(z) — sinh(z)) = cosh?(x) — sinh?(z).

Example 2.60. Explain why

cos(x + y) = cos(x) cos(y) — sin(x) sin(y), sin(z + y) = sin(x) cos(y) + cos(x) sin(y),
cosh(z + y) = cosh(z) cosh(y) + sinh(x) sinh(y), sinh(z + y) = sinh(z) cosh(y) 4 cosh(x) sinh(y).
Proof. Let i? = —1.

cos(z + y) + isin(z + y) = @)

_ eza:—Hy _ ewzezy

= (cos(z) + isin(z))(cos(y) + isin(y))
= cos(x) cos(y) + i cos(z) sin(y) + isin(z) cos(y) + 2 sin(x) sin(y)
= (cos(z) cos(y) + (—1) sin(z) sin(y)) + i( cos(z) sin(y) + sin(z) cos(y)).

Comparing terms on each side gives

cos(z + y) = cos(x) cos(y) — sin(x) sin(y), and sin(x 4+ y) = sin(x) cos(y) + cos(x) sin(y).
Next,
—-T Y -y T _ ,—Z Yy _ =Y
cosh(z) cosh(y) + sinh(x) sinh(y) <€ +e > <6 +e ) <e 26 ) (e 26 )
_ewey+e TeY 4 eTe Y £ 7T eey—e TeY _ oTe~Y 4 e~ TeY
= i ;

_ 2e*eY +426—Jre—y _ %(e(zﬂy) + e*(f’”y)) = cosh(x + y)

sinh(z) cosh(y) + cosh(x) sinh(y) = <€x —2 €“> (6“-2 6y> N <e+2 ex) (ey _2 ey>

efe¥ —e TeV +efe TV —eFe Y n eTe¥ + e FeY —efe Y —e T Y
4 4

2¢%tY _ 9o~ (@+y)
== 1 c = 1(e"V — e~ @)Yy = sinh(z + v).

and
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Example 2.61. Explain why
d cosh(z) d cos(x)

ot s sinh(z), = sin(x),
W
dsinh(x) dsin(z)
T cosh(z), T cos(z)
Proof. Let i = —1. Then
de® d
de:c _da:(1+$+ ,x + ,x +i,a:4+ ,x + ,x +7,az +--)

=0+1+ 322 + 332 —|-4,4x +5,5x + 462° +W7x +--)
—O+1+x+2.x +3,x +4.:c +5.x +6,x +7,:c + -

T _ @ (4" o) = 3(e" +¢7)) = cosh(a),

dCOS(I) d i —ix - 1T . —1iT s (1T . —1iT
T:%(%(e +e 7)) = $(ie"”" —ie ") = i(e"” —ie ")

=—(- %i(eix - ie_ix)) = —sin(z),

Example 2.62. Explain why

cosh(z) =1+ ,a: + ,JI + ,x + ,a: +-- sinh(x):x—l—%x?’—i-éf—i—%x?—i-&xg—l-
cos(xz) =1— ,x + ,ﬂc — a: + ,x — sin(x):a:—%a:?’—i-% 5—%.%74-&339—

Proof.

cosh(z) = 3(e” +e™7)
1 1+x+ %3}2 + %
2\ 41+ (—2) + 5(—=

8
N W

+ + +
Softzf
—~ 8

=
_|._
=

~—

S
8
S
_|_
e
8
+
Y=
8
[«

1+x+%x2+%x3

[N
N

1
6!
T+ )
_ 13,14 1,5, 1,6_ 1,7,
+1 w+2,w 3+ [ 52 + % 72+

=1+ g2° + fat + G2l + G2t + -
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sinh(z) = 3(e” —e™)

_1( 1+ + 527 +3.x + gt + 4a® + gt 4+ LaT + )
= 1 3,1/ N4 1 5, 1 6, 1 7
2\ + (14 (=) + g (=) + 5(—2)® + (=) + 51(—2)° + §(—2)° + H(—z)"+ )
14z + 522 + 32° + Jat + §2° + §ab + f27 +
—1
)
11—z — 52"+ ,x3— CL‘ + ,x —é$6+%x7

=z 4 42° + F2° + FaT + L2 +

L~ AxX S I
. =)
Xyt zye
L 4 3 ' —t &
T T T  J— ,
-3 -y - B 1 v s 4 s J-aki's
—L.
-2
-3¢
Graphing complex numbers
% A
e =0 /2
L‘%‘ {‘f (e
e Y =
. ik gl Bz W
g 2 = Etica
& < +Lg s
» vy Zc %
% . VAR
e 7 ;’@ Lot Fegize

Ry

D’é‘g

sines and cosines of the favorite angles

23



Calculus Examples, Arun Ram, version: January 28, 2025

Example 2.63. Explain why

el = Y14 Y0, cos(0) = Y2, sin(0) = 42,
/S =l eos() =%, sin(F) =4,
G =R eos() =, sn(]) =%
=G eos(F) = sin(§) =,
eim/2 = Y0 | VA cos (3) = L, sin () = 4,

Proof. The point at (1,0) is at angle § = 0 on a circle of radius 1 and so
eV =1+ 0i, and cos(0)=1 and sin(0)=0.
The point at (—1,0) is at angle § = 7 on a circle of radius 1 and so
e = —1+0i, and cos(m) =—1 and sin(m)=0.

The point at (0, 1) is at angle § = § on a circle of radius 1 and so

em/2 =0+, and cos (%) =0 and sin (%) = 1.
The point at (0, 1) is at angle = —F on a circle of radius 1 and so
e"im/2 = () — 4, and cos(—%)zo and sin(—%):—l.
Place a square with vertices (a,a), (a,—a), (—a,a) and —a, —a) inside a circle of radius 1 so that
a?+a* =12 Then a® = % and a = % = ? The vertex at (a,a) is at angle § on the circle of radius
1. So
eim/t = @ + gi, cos (%) = @ and sin (%) = ?

Place a hexagon with vertices (1,0), (a,b), (—a,b), (—1,0), (—a,—b), (a, —b) inside a circle of radius

™

1 so that a? + b* = 12 and a is half way between 0 and 1. Then the point (a,b) is at angle 5 on the
circle of radius 1 and

a=4=4 ad bp=vIi-@=\1-(})=1-1=%

/3 = § + @i, cos (%) = § and  sin (%) = @

Flip the previous picture of the inscribed hexagon about the line y = x so that now the hexagon has
vertices (b,a), (0,1), (=b,a), (=b,—a), (0,—1) and (b, —a). Then the point (b,a) is at angle § on the
circle of radius 1. So

So
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Example 2.64. Simplify /™ 4 1.
Proof. Using that cos(mw) = —1 and sin(7w) = 0 then

€™ +1=cos(m)+isin(r)+1=—-1+i-0+1=0+0i=0.

Example 2.65. Write z = v/3 — i and y = /3 + 3i in polar form.

Proof.
2=V3—i=2( - }i) =2 (cos (F) + sin (FF)i) = 2¢77/0
and

y=V3+3i=2V3- (1 + %) =2v3(cos (5) +sin (%)i) = 2v/3¢/?

Example 2.66. Simplify (v/3 —)(v/3 + 3i).
Proof. Using V3 —i= 2¢~/6 and V3+3i= 2\/§e”/3 gives
(V3 — i)(V/3 + 3i) = 277/6 . 2/3e"/3 = 41/3€"/0
= 4/3 - (cos(m/6) + isin(r/6)) = 4v/3 - (~— + %i) = 6+ 2V/3i.

TS

Example 2.67. Evaluate (v/3 + 3)%.
Proof. Using v/3 + 3i = 2v/3€'™/3 gives

(\/§—|— 3i)30 — (2\/§€i7r/3)30 — 230330/26301'77/3 — 230315610771' — 230315 .1 = 230315_

Example 2.68. Express cos(f)? in terms of cos(nf) with n € Z.

Proof.
eia + efi@ 3 . . . . . .
COS(Q)S _ ( 5 ) — %(6326 + 362196—10 + 36106—220 + 6—319)
— %(632‘9 +36i€ _’_3671'9 + 6731'0) — %(637;9 _}_6732'9) + %(eiﬁ + efiG)
= 1cos(30) + 2 cos(0).
40 d40
Example 2.69. Evaluate ﬂ(e_t cos(t)) (and 7710 <e_t Sin(t))).
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Proof.
d40 i ,d40 . d40 . o d40 i
ﬁcﬁ cos(t)) + zﬁ(e Sln(t)> = ﬁ<e (cos(t) + zsm(t))) = ﬁ<e e )
40
_ %(e(fl+i)t) (1 4 )01 (\2(_\? N \fi))mete“
_ (\/ﬁe—iw/él)zloe—teit — 920, —40im/4 —t it
=220 1. e7(cos(t) + isin(t)) = 220 cos(t) + i2%0e P sin(t)).
So
40 40
% <e_t cos(t)) =229 cos(t) and % (e_t sin(t)) = 220t sin(t).
. d tan(z) dtanh(z)
Example 2.70. Determine . and F
Proof.
T = G () = & (e )
= sinh(2)(—1) cosh(z)) %sinh(z) + cosh(z)(cosh(x)) !
_ —sinh*(z) _ —sinh®*(z) + cosh®(z) 1 B
~ cosh®(xz) = cosh? () ~ cosh®(z) sech’(z)
and
Y = & () = @ (e )
= sin(z)(—1) cos(z)) (= sin(x)) + cos(z)(cos(x))
 sin®() _ sin?(x) + cos?(x) _ 1 sec?(x)
cos?(x) cos?(x) cos?(x) '
. dsec(x) d sech(x)
Example 2.71. Determine . and F
Proof.
dsec(r) d 1 d B
i = d (eonay) = d (e ™ = (1) cos(a)) - (cos(a)
= (—1) cos(x — sin(z :sm(x). ! = tan(z) sec(x
= (1) cos(a) (= sina)) = S5 s = tan(a) sec(o)
and

dsﬁ(@ - 575 <cos}11<x>> = 3} (cosh()) ™" = (=1)(cosh(x))~* - sinh(z)

_ sinh(z) 1

= cosh(z)  cosh() = — tanh(x)sech(x).
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d csc(x) 4 d csch(x)

Example 2.72. Determine I an I
Proof.
) () = ) = (1) sin) 2 Gina)
= (—1)sin(x))"* - cos(x) —Z?s((;) . sinl(x) = — cot(z) csc(x)
and
dodlz) ;lw(mllm) % (sinh(x)) ™ = (~1)(sinh(x))2 - cosh(z)
cosh(z) 1

~ inh(z) . Sinh(2) = —coth(x)csch(x).

Example 2.73. Determine /sin(m) dz and /tan(x) dx and /sec(az) dx.

Proof. Since d%i(m) = —sin(z) then

/sin(x) dx = /—(— sin(x))dx = — /(— sin(x))dz = cos(z) + ¢, where ¢ is a constant.

Let z = cos(x). Then

/ tan(z)dz = / izz(é))dx _ / Cosl(x)sin(x)dx _ / Cosl(m)(sin(@)cm _ / ; Zde

1
—— [+ dy=—togy) + ¢

where ¢ is a constant.
Let y = tan(z) + sec(z). Then

/sec(x)dm = /sec(x)sec(m) + tan(z) / sec(z) T tan( )(SGC2($) + tan(z) sec(z))dz

sec(x) + tan(x)

1d 1
= / Wiy = / dy = log(y) + ¢ = log(tan(z) + sec(x)) + ¢,
Yy
where ¢ is a constant.

Example 2.74. Assume cosh(z) = =2 and = € R-g. Find sinh(z) and tanh(z).

13
2
Proof. Using that cosh?(x) — sinh?(x) =

sinh(z) = |/sinh?(x) = \/cosh2( 1= ) 1= \/169 L \/1694—4 B \/;cﬁr,

and
sinh(z) Y% /165

cosh(z) L — 13~

tanh(x) =

27
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Example 2.75. Evaluate

/e’” dzx, /ewx dz, and /e_?’lx dz.

Proof.
x x . . de*
e’ dr =e” + ¢ where c is a constant, since e e
T
10z d elOz 1
/elox dx = 610 + ¢ where c¢ is a constant, since (dla? ) =10 102 .10 = 0
o3z d(e*?’“”) 1
/8_31$ dx = + ¢ where ¢ is a constant, since 37— e 3. (—31) = 7312,
— dx -31
O]
Example 2.76. Evaluate /235 dz.
Proof.
- emlog(Q) 9
/Qx dx = / (elog@)) dx = /ex 108(2) g = +c= + ¢, where cis a constant,
g2 7 log®)
since os(2)
d X dez og
log(2) — log(2) — 1 zlog(2) 1 9) — xlog(2) _ 9
dx dx log(2)e 0g(2) = e )
O

Example 2.77. Evaluate / 387 dx.

Proof.
e log(38) 38%

gy — 10g(38))* :/ z10g(38) 1, — =
/38 x /(e ) dx e x Tog(33) +c 10g(38)+c7

where c is a constant,

since ou(38)
dloz??;) _ dei)gés) _ e log(38) . log(38) — " log(38) _ 387
dx dx log(38) ’

cos(z)

Example 2.78. Evaluate / .
sin(x)?

Proof.
cos(x) cos() 1 r = [ cot(x)csc(x)dr = —csc(x) + ¢
/ d .sin(x)d / tlw) csc(x)d ) ’

sin(z)? T sin(x)

1

Example 2.79. Evaluate /1—|—Cos(g(j)dx

28

where ¢ is a constant.
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Proof.

1 1 (1 — cos(x)) 1 — cos(x)
/ 1+ cos(x) do = / 1+ cos(z) (1 — cos(x)) do = / sin(x)? de
= / (singx)Q - s(;is(( )) ) dx /(csc(a:)2 — cot(z) csc(x)) dx

= —cot(z) + csc(z) + ¢, where ¢ is a constant.

Example 2.80. Evaluate / Ysin(2z) dz (and / 3% cos(2z) dm).
Proof.
/633” cos(2x) dx + i / 3 sin(2z) do = /e3x(cos(2x) + isin(2z)) do = /63161'233 dr

| 1 | , (3 — 2i)
_ (3+22)acd _ (342i)x _ 3ac 21;1:
/e x 73_‘_21,6 + (e1 + ¢21) (3—}—21')(3—21) + ¢ ticy
_B-20) 4,

o1 © (cos(2z) +isin(2z)) + ¢1 + ico
= e (3 cos(2z) + i3sin(2z) — i2 cos(2z) + 2sin(2x)) + ¢1 + ics
Le’*(3cos(2z) + 2sin(2z)) + 01> + z(113 3 (3sin(2x) — 2 cos(2z)) + 02>,

/—\

where ¢; and ¢y constants. So

/63”” cos(2x) dx = 639”(%3 cos(2z) + & sin(2z)) + ¢ and

/639” sin(2z) dz = €% (133 sin(2x) — % cos(2x)) + ca,

where ¢; and co constants.

2.3 Inverse functions

Example 2.81. Explain why

e =1 turns into log(1) =0,
ete¥ = ety turns into log(ab) = log(a) + log(b),
| . 1
e’ =— turns into log () = —loga, and
e a
()Y = ev® turns into log(a®) = blog a.
Proof.
(a) log(1) = log(c?) = 0.
(b) log(ab) = log(e'8(®) - ¢6)) = log(el&(®)H18(1)) = log(a) + log(b).

1 1 —log(a
(c) log a) = log (elog(a)> = log (e log( )) = —log(a).
(d) log(a®) = log <(elog(a))b> = log <ebl°g(a)> = blog(a).
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d log(z) .

Example 2.82. Find
dx

Proof. Let y = log(x) so that eV = x. Taking the derivative g—x of both sides gives

dy dy 1 1
y2Jd _ At
ed:r_l’ and so w2
% d log(x) _ l
dx x
log(1
Example 2.83. Find lim M.
z—0 X

Proof. By example
dlog(l+z) 1

= =l-a+a? -3 +at -2+
dx 1+
since
(1+z) 1 —z 42> -2 +2* —2°+--+)
=(l-s+2? -3+ -2+ N+ @-2? 422 -2t +25+.. ) =1
So
d log(1 1
10g(1+:13)=/Ogc(ix—i_x)dl‘:/1+xd$=/(1—$+l‘2—CL‘3—|—£E4—."L‘5+"')CZZL‘
—3:—5:5 +13:3— 11‘4—1—%1:5—1—---.
So log(1 log(1
M—l—§x+ a:—zx—l— Lt 4. and hmwzl.
x z—0 x
Example 2.84. Prove that
arcsinh(z) = log(z + V22 + 1), arcsin(z) = (—i) log(z + iV 22 + 1),
arccosh(z) = log(z + V22 — 1), arccos(z) = (—i)log(z + Va2 + 1),
1
arctanh(z) =  log (1 + a:)’ arctan(z) = (—i)1 log (Z * x)
-z i—x

Proof. (a) Let y = arcsin(z). Then z = sinh(y) = (—i)3(e” — e~ %) and
2ix =¥ —e™W and 2ize¥ = (W) — 1.

So (e®)? — 2izeY +1 =0 and

, 2ix + v/ —4ax? —
e = 27 5 ’ TtV - and iy =log(z + iv/a? + 1).

So
arcsin(x) = (—1) log(x £iva? + 1).
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(b) Let y = arccos(z). Then x = cos(y) = (¥ + e~%) and
20 = e — e W and 2ze® = ()2 + 1.
So (e®)? — 2ze® — 1 =0 and

v 20 4+ VAax2 + 4
N 2

=zr+tvVaZ+1 and iy =log(z £ Va2 +1).

So
arccos(z) = (—i)log(z £ V% + 1).

(c) Let y = arctan(x) then

I N
v = tan(y) (Ci)l(ew ey (w21
So , 4 ;
(e¥)?r+x=ie¥)?—i and (i—2)(¥)? =i+
So . .
o2 — H—J and 21y = log <Z+$>
i—x i—x
So

arctan(z) = (—i)% log <Z + x)

1 — X

d) Let arcsinh(z) = y. Then 2 = sinh(y) and using cosh? z — sinh? z = 1,
( y y g

log (z 4+ V22 + 1) = log (sinh(y) + 1/sinh?(y) + 1) = log (sinh(y) + 1/ cosh?(y))

Y_ e Y oYt
= log (sinh(y) + cosh(y)) = log (e € 4- Te )
2 2
2eY
= — ) = Y) = = 1
10g( 5 ) log(e¥) = y = arcsinh(z).
1 1
Example 2.85. Explain why dlog(x) = —.
dz x
detos(®@) d
Proof. Since €'8(®) = z then ¢ .
dx dx
1 1 1 1
So ¢los® dlog(z) 08(2) =1. So xid 08() =1. So dlos(z) 08(2) =—.
dx dx dz x
Example 2.86. Find daLln(:z:)'
dz
) ) ) dsin(arcsin(x))  dz
roof. Since sin(arcsin(z)) = x then I Tr
: . 1
So  cos(arcsin(x)) darcsin(z) =1. So darcsin(z) = . .
dx dx cos(arcsin(x))

So we would like to “simplify” cos(arcsin(z)).
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Since 1 — cos?(arcsin(z)) = sin?(arcsin(z)) then 1 — (cos(arcsin(x)))2 = (sin(arcsin(x)))z.
) =2

)
) 2. So 1-22= (cos(arcsin(:c)))Q.
d arcsin(z) 1 1

i =122 = = .
So  cos(arcsin(z)) = V1 —x So T cos(arem(@) ~ Vi—o?

So 1 — (cos(arcsin(z

Example 2.87. Find daLos(x)'
x

dcos(arccos(z))  dx
dx S da’
_1 36 d arccos(z) _ -1

dx dx sin(arccos(z))

Proof. Since cos(arccos(z)) = x then

d arccos(z)

So  —sin(arccos(x))

So we would like to “simplify” sin(arccos(z)).

Since 1 — sin?(arccos(x)) = cos?(arccos(x)) then 1 — (sin(aurccos(yc)))2 = (cos(arccos(x)))Q.
So 1-— (sin(arccos(x)))2 =22 So 1—a?= (sin(arccos(x)))z.
) d arccos(z) -1 -1
— V1= 2 = =
So  sin(arccos(x)) = V1 — x2. So o sin(arccos(@)) ~ VI—

d arctan(z)

Example 2.88. Find
dx

dtan(arctan(z))  dz

Proof. Since tan(arctan(x)) = x then

dx dz
darct
So  sec?(arctan(z)) arcdzn(x) =1.
d arctan(z) 1
So = ]
dx sec?(arctan(x))

So we would like to “simplify” sec?(arctan(z)).
sin(z)? | cos(z)? 1

S . 2 2=1th - ’
ince  sin(x)” + cos(z) en cos(x)?2  cos(z)?  cos(z)?

So tan(z)? + 1 = sec(x)?.
So  sec?(arctan(r)) = tan?(arctan(z)) + 1 = (tan(arctan(x)))2 +1=22+1
d arctan(z) 1

So dx :x2+1'

d arccot(z)

Example 2.89. Find
dx

d cot t d
Proof. Since cot(arccot(z)) = x then cot(arccot(z) =

dz dz
d t
So - cch(arccot(x)) M =1.
dx
darccot(x) -1
So = .
dx csc?(arccot(x))
So we would like to “simplify” csc?(arccot(x)).
: 2 2
Since  sin(x)? + cos(z)? = 1 then sin(z) 4 cos(z)” 1

sin(x)?2  sin(z)?  sin(z)?
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So 1+ cot(z)? = csc(x)?.
So  csc(arccot(z))? = 1 + cot(arccot(z))? = 1 + (cot(arccot(a:)))Q =1+22
darccot(z) -1

So dx T 142

d arcsec(r)

Example 2.90. Find
dz

d d
Proof. Since sec(arcsec(z)) = x then sec(azl(;sec(a;)) = é

d arcsec(z)

So  tan(arcsec(x)) sec(arcsec(z)) T = 1.
d
So tan(arcsec(x)) - x - M(;{S;C(@ =1.
d arcsec(z) 1
So = .
dz x tan(arcsec(x))
So we would like to “simplify” tan(arcsec(z)).
: 2 2 1

, . 9 214 sin(z) cos(z) _ .

Since  sin(z)* + cos(z) en cos(2)? + cos(@  cos(a)?

So tan(x)? + 1 = sec(z)?.
So tan(arcsec(z))? + 1 = sec(arcsec(z))?.

So  (tan(arcsec(z) )2 +1= (sec(arcsec(x)))2.

~— ~—

So  (tan(arcsec(z) )2 +1 =22

So tan(arcsec(z)) = Va2 — 1.

So d arcsec(z) _ 1 ‘
dx zvVr? —1

d arccsc(x)

Example 2.91. Find
dx

d d
Proof. Since csc(arcese(z)) = x, csc(arcese(z)) =

dx dx
d
So  —csc(cse™! ) cot(arcese(x)) arcdcsc(:t) =1.
x
d
So  —zcot(arcese(x)) M - 1.
dx
So d arccsc(z) _ -1 .
dz x cot(arcesc(x))
So we would like to “simplify” cot(arccsc(x)).
L2 2

1

Since  sin?x + cos? x = 1 then s1n2 Ty 0082 - 5

sin“x  sin“x sin”® x

So 1+cot?x=csc?zx.

So 1+ cot?(arcesc(x)) = csc?(arcese(x)).
So 1+ (cot(arccsc(aj)))2 = (csc(arccsc(m)))z.
So 1+ (cot(arccsc(ac)))2 =22
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So  cot(arcese(z)) = Va2 — 1.
So d arccsc(z) _ 1 ‘
dx rVz? -1

Example 2.92. Simplify cosh(arcsinh(z)).

Proof. Let arcsinh(z) = y. Then x = sinh(y) and using cosh? z — sinh? z = 1,

cosh(arcsinh(z)) = coshy = \/1 + sinh?(y \/1 + sinh?(arcsinh(z)) = V1 + 22.

d 1
Example 2.93. Prove that — (arcsinh(z)) = ——.
dx 12 +1
Proof. Let arcsinh(z) = y. Then x = sinh(y) and taking the derivative with respect to x gives
dx  dsinh(y) dy
1=—=—— =cosh(y)—.
dx dx cosh(y) dz
Thus
dy 1 1 1

d—(arcsinh(x)) === = =
dx Cdx cosh(y) - cosh(arcsinh(z) /22 1’

where the last equality uses cosh(arcsinh(z)) = v/1 + 22 from Example
2.4 Integration with square roots

Example 2.94. Let a € C. Evaluate / Va2 —a?dz.

Proof.
/\/ —xQda:—/a\/l— dx—/a\/l—sm —dH where & =sin6,
:/a\/cos20acos«9d9:/a cos «9d9:/“22(200529—1)+“22)d9

2 2

= / (% cos(260) + ©)dd = & Lsin(20) + 20 + ¢

= “4—22$in(0) cos(0) + a 0+c= sm )m—i— %0 +c

= %2 1—(%)2+ %arcsin(%) +ec=8SxVa? -2+ %arcsin(%) + ¢,
where c is a constant.
Example 2.95. Evaluate / \/ﬁdm
Proof.

T = arcsin ) +c, where c is a constant,

[ /aﬁ

since
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Example 2.96. Evaluate / - dz
a“+x
Proof.
1 1 1 - .
S dr = IEYPERCN dxr = farctan(g) + ¢, where c is a constant,
a*+x a?(1+ (E) ) a
since ]
— (arctan(2)) = =~
x a
1+ (3)
E le 2.97. Let a € C. Evaluat / ! d
xample 2.97. Let a . Evaluate | ——=dx
p NS )
Proof.
1 1
=1 = dx T
dx—/ —a da:—/ —a with — = cosh(#),
/\/;1:2 —a? (2) 2 _ \/cosh(6)?2 d9 a 2
CL

1
1
asmh dH:/ - sinh(6 d9:/d9
\/smh sinh(6) ©)
=0+c= arccosh(a) +c,

where ¢ is a constant.

1
Example 2.98. Evaluate /d:l:
P V2 —25
Proof.
1 1
I
x2 —25 g)Q
5
1
= d T
= [ —5 with — = cosh(6),
/ \/cosh(ﬁ d9 b ©)
/ 5smh d9—/1
\/si ~J sinh(f)

= /d9 =f04+c= arccosh(%) +c,

sinh(0)do

where ¢ is a constant.

1
Example 2.99. Evaluate / V9 —4z2dux.
0
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Proof.

1 =1 1
/0 \/9—4:L‘2dx:/ 3\/1—3:172d:v:/ 3\/1—(%’3)2&%

2
/ 3y 1— (%) ?dx = / 3y/1 —sin(0 —d@ where ?x = sin(6),

r=1

= / 3+/cos(8) %cos 0do = / —cos(6)db
=0

=0

(2cos(#)? — 1) + 3)do

|
8
I
o
—
o
Il
S— i
8
I
o
—~
o
o
(@]
wn
—
[\
>
N~—
+
o
SN—
QU
>

%sm )/ 1 —sin(6 —{—99)

= (%% sin(20) + 90)]35:; = (% 2sin(0) cos(0) + %G)TZ
=

|_| N|—
H
Il
~—
)
Wl
8
—_
|
~—~
Wl
8
\_/
+
Qﬁ
=
)
0
—e
=
/"\

I
[\G][V}
—

|
[ Ne)
+
[ Ne)
<
=
o
4]
4.
=]
—
ol
S~—

|
)

|

Il
+
NI
Q
=
o
4]
o
=
—
[SUIN)
S—

2.5 Partial fractions and integration

2z* + 322 a b

E le 2.100. Find a, b such that = .
xamp-e a @b SU A T 122 1 2) — (22 1 1) T

Proof. Since (22 +1)? = 2%(2% + 2) + 1 then
1= (=2 (2® +2) + (2* + 1)
So
20t + 322 (227 -1)(2*+2)+2  22% -1 2

@+ P+ @1y @1 @)

o227 —1 2((—aH)(@? +2) + (22 + 1)?)
(a2 +1)? (22 +1)%(2? + 2)
227 -1 —2z? 2
T @A @ 22

—1 2
(22 +1)2 +:L‘2—|-2

322 — 22 +1 b(2x + 2
Example 2.101. Find a, b, ¢ such that i v+ __¢ (22 +2)

Cc

O

Proof. Since 2% + 2x +2 = (x + 1)(z + 1) + 1 then

1= (2?2 +22+4+2)— (z+1)(z+1).
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So
322 —22+1  3(@*+20+2)—-8-5 3 N —8(x+1)+3
(x4 1)(22 + 22 + 2) (x 4+ 1)(x? + 2z + 2) r+1  (z+1)(2?+2x+2)

3 8 (2 +20+2)— (z+ 1)(z+1))

Trr1l Ptoet2 (z+1)(22 + 2z +2)
3 8 3 3(x+1)

To+1 224220 +2 z+1 224220+2
6 3(22+2) 8

z4+1 22+20+2 (z+1)2+1

9z +1 _a n b
(r—=3)(z+1) -3 a+1

Proof. Since x +1=(x —3)+4then4d = (z+1) — (x — 3) and

Example 2.102. Find a, b such that

1=23@x+1)—i(=z-3).
So

9z + 1 9z +1)—8 9 8

(z-3)z+1) (@-3)(z+1) z2-3 (z-3)(z+1)

-3
9  8(i@+1)-1ta@-3)

z—3 (r—=3)(x+1)
_ 9 _ 2 n 2
rx—-3 -3 z+1

7 2

x—3+:c+1'

_a +b+c
2(x+2) x+2 x 22

Example 2.103. Find a, b, ¢ such that

Proof. Since 2% — (z — 1)(x — 2) = 4 then

4 (-2 (x+2) 2P (=2)(z+2)
2z +2) z2(z +2) - 22(x+2) z%(z +2)
1 z-2 1 1 2

T+2 22 _a:+2_;+ﬁ

4
Example 2.104. Evaluate / ——dx.
z2(x +2)
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Proof. Using 2% — (x — 2)(x + 2) = 4 gives

I T e
~JEmem [
e [
=/x+2d:v—/ d:v+/dx

= log(z +2) dx — log(x) + 2 - —1:1: Tyre

2
= log(z + 2) dx — log(x) — — +¢, where ¢ is a constant.
x

5t + 1323 + 622 + 4
Example 2.105. Evaluate/ i dx.
x3 + 222
Proof.
5xt 4+ 1323 + 622 + 4 5x(x3 + 222%) + 323 + 622 + 4
dx = dx
x3 + 222 T3 + 222
/53}(;103 + 222) 4 3(23 + 222) + 4
= dx
x3 + 222
4
= d —d
/(5x+3) $+/x2(az+2) x

2
and the last line uses Example [2.104

4
Example 2.106. Evaluate / @2+ 4;w Y dx.

Proof. Using (22 4+ 4) — (z — 2)(x — 2) = 4x gives

B = =
ot [ e
:/x%da;—/g;;;)dx 2
:/xde_/2(:132i4)dx_/$2_+4dx

1
:/mide—%/( 2+4)d:c+2/(§)§+1dx
T 1
:/x12dx_§/(xg2+4)d$+/(x)22+1dx

2
=log(x — 2) — %log(:lc2 +4) + arctan(%) + ¢,

38
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where c is a constant.

2.6 Other integration examples

Example 2.107. Evaluate /(63U2 + 10) sinh(z® + 52 — 2) dx.
Proof.

/(6562 + 10) sinh(z® + 52 — 2) da 2sinh(z® + 52 — 2) (322 + 5) da

= /QSinh(y)Zz dx (with y = 23 + 5z + 2)

= 2cosh(y) 4+ ¢ = 2cosh(z® + 5z + 2) + ¢,

where ¢ is a constant.

sech?(3z)
E le 2.108. Evaluat
Ampie Vauae{/‘ﬂ)+2taMM3x)
Proof.
sech?(3z) 13. 2sech?(3x) 1
do = [ 3 do= [ %- -3 - 2sech®(3z) d
/ 10+ 2tanh(3z) / 10+ 2 tanh(3z) / 3 10+ 2tanh(3q) o oo (Be)de

1 d

=1 / - dyda; (with y = 10 + 2 tanh(3z))
y dx

= 1(log(y) + ) = $1og(y) + ¢ = £ log(10 4 2 tanh(3z)) + ¢

where ¢ and ¢ are constants.

Example 2.109. Evaluate /3365”” dz.

Proof.

/xem dr =

Ul\»—l

U!\»—l

U!\»—l
01
Q
_|_
o

where ¢ is a constant.

Example 2.110. Evaluate /x2 log(x) dx.

39
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Proof. Using backwards of the product rule,

/x2 log(x) dz = §/3x2 log(z) dz é/(?)x log(z) + xi’% _ xsi) da

:é/(3x2log() 3y dg - / 2?1 dx

= é/(?::z:z log(z) + 2°L1) dz — %/a@ dx

= 12°log(z) — 1 - 22° + ¢ = L2” log(z) — §2° + ¢,

where c is a constant.
An alternate method would be to put x = e* so that % = e®. Then the integral becomes

/952 log(z)dx = /622 log(ez)j—jdz = /e fzefdz = /ze?’zdz = %zesz %e?’z—kc.

Example 2.111. Evaluate /log(x) dz.

Proof. Using backwards of the product rule,

/log(az) dx = /(log(ﬂz) +x
= /(log(x) +x

Example 2.112. Evaluate /63“” sin(2x) dz.

—xi)daz:/(log(:c)#—x‘i)dx—/xidaz

)dx—/ldx:xlog(x)—:c—i—c,

Bl— 8|~

where ¢ is a constant.

Proof. This is a repeat of Example This time do it by backwards of the product rule.
/63“” cos(2x) dx = % /3639& cos(2x) dx = % / (363:5 cos(2x) — 237 sin(2z)) + 2€3° sin(2z)) dx
= é/ (3¢ cos(2z) — 2e** sin(2z)) dx + 3/36393 sin(2z) dx
= %63:6 cos(2z) + 2 / ((3¢% sin(2x) + 2¢** cos(27)) — 2¢*” cos(27)) da

= %egw cos(2x) + %e% sin(2z) — & /8336 cos(2x) dx

then

13 3x _ 1 3z 2 3z / /s

5 [ e’ cos(2x)dr = 5e’" cos(2z) + e sin(2x) + ¢, where ¢’ is a constant.
So

/63’” cos(2x) dx = %63”” cos(2x) + 1363”& sin(2zx) + ¢, where ¢ is a constant.

Example 2.113. Evaluate /cosh4(«9) do.
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Proof.

(e +e %) do

/ cosh? () df

(649 + 46(3—1)9 + 66(2—2)9 + 46(1_3)0 + 6—49) d9

I
'—‘[\ﬁ"‘\\\
= R =S

(2 cosh(46) + 4 - 2 cosh(260) + 6) df

1 1
27 sinh(40) +4-2- 3 sinh(26) + 66) + ¢

—~

1 3
=35 sinh(46) + b7 sinh(26) + ?9 +c, where ¢ is a constant.

O
Example 2.114. Evaluate /sinh5 () cosh®(z) da.
Proof.
/sinh5(a;) cosh®(z) dx = /sinha: sinh?(z) cosh®(z) dx
= /sinh x(sinh?(z))? cosh®(z) dz
= /sinh z(1 — cosh?(x))? cosh®(z) dz
= /sinhx(l — 2cosh?(z) + cosh?(z)) cosh®(z) dx
= /sinh z(cosh®(z) — 2 cosh®(z) 4 cosh!®(z)) dz
Lo a7 2 49 1 1 ,
=% cosh’(z) — 3 cosh”(z) + I cosh'* (z) + ¢, where ¢ is a constant.
O
Example 2.115. Evaluate /sinh5 (z) cosh’ (z) dz.
Proof.
/sinhs(w) cosh(x) dx = /sinh(ac) sinh*(x) cosh”(z) dz
= /sinh(:p)(l — cosh?(x))? cosh”(z) dz
= /Sinh(x)(l — 2cosh?(z) + cosh*(z)) cosh () dx
= /sinh(m)(cosh7(:):) — 2cosh?(z) + cosh (z)) dz
1 8 2 10 1 12 .
= — cosh®(z) — — cosh™”(z) + — cosh™(x) + ¢, where ¢ is a constant.
8 10 12
0
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Example 2.116. Evaluate /ez cos(3x)dz.

Proof.
1, 4 . 1 . .
/e:c COS(31’)d$ — /6x2(63m + €—3zx)d$ _ 5 /(6(1-1—31)95 + e(l—i‘lz)ac)daj
1 , 1 .
= 43z . = (1-3i)z
2(1 +30)° o =8)° e
1-—

_ (=30 (4302 (1+31) L1300
2(1+9) 2(1+9)

1 . .
- 2—061’((1 —3i)ed 4 (14 3i)e—3”) +e
— 2106 < iz + 6—31'3? _ 3,L-(€3ix _ —321)) +e

1, .
=10° (cos(3a:) + 351n(3$)) +c

= 1—106 cos(3x) + 13—06:” sin(3z) + ¢
Check:
d . : 1
Ia —(= 0 e*(—3sin(3z) + 9cos(3z)) + —

10 e*(cos(3z) + 3sin(3x)

e’ cos(3z) + %em sin(3z)) = 10

Example 2.117. Evaluate /629” sin(11z)dx

Proof.

/6—2:0 sin(llx)dm _ /6—2x;(_i)(ellix o e—lli:c)dx _ (—Z)% /(e(—2+11i)x _ 6(_2_11i)x)dx

1 | 1 |
() = (21 - (—2—11i)z
511 2(—2—114)° te
= (— ')Lﬂi)e(—%rlli)m (=2 + 117) (—2-11i)z

Vo4 +121) T2t 12D)°¢ e

1 1 , ,

= (=) 5 ((—2 C1li)ellie (o 117;)6—11””) te

1 1 A , A .

— (_01725 . 56—2x ((—2)(6111&: _ e—llzx) _ 11i(€112$ + e—llzx)) +c
1

= ﬁ6_23” ((—2) sin(11z) — 11 cos(llm)) +c

— 11
= 798¢ 2 gin(11z) — —1256_2’” cos(11x) + ¢
Check:

d -2 _, 11,

—(— 11 — 11

d$(125e sin(11x) + 195 € ¥ cos(11x))

1
= of e 2%(—22cos(11z) + 121 sin(11x)) + T25° e 2%(—=2)(—2sin(11z) — 11 cos(11z)

Example 2.118. Evaluate / ¥ cos(Tt)dt.
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2.7 Additional derivative examples
Example 2.119. Find Z—y when y = log,, 10.
X

Proof.
¥ = xIng 10

Take the derivative:

= 10.

dzv d (5@ devlog(x) yl 1 dy
_ _ — nx L A
dz dz dz ‘ Yu + dz og(m))
d10
“w
1 d

ylog(z) 4%y —
So e (y . + T og(ac)) 0.

d
Solve for 2.

dx

— eV log(z) —eYlog(z) — log 1
eylog(x)@log(x) e Y So @ _ € Yy _ Y _ Oy 0 )
dx x de  wevlos(® log(z) wxlog(z) zlog(x)

Example 2.120. Find the third derivative of 2% with respect to x.
Proof. y = 2".
dy 4oz Q(elog@))z de® log(2) log(2) |
A = s l0g(2)) = (5O log(2) = 27 log(2)
d%y d (dy d2” log(2) 9
—Z = — |2 ) = —22% =1log(2) - 2%1log(2) = (log(2))=2".
= (1) = 2 < r0g(2) 2 0s() = (08(2)
Py d (P 1000)7297) = (105(2))%2° loa(2) = (log(2))2"
de®  dr \ dz? dx ’

Example 2.121. Let a,b € C. Show that if y = a cos(log(x)) + bsin(log(z)) then

d’y | dy
27 —_— =
s +xdw +y=0.
Proof.
d 1 1
ﬁ =a(— sin(log(:c))); + bcos(log(a;));
= —asin(log(z))z ™ + beos(log(x))z ™,
d*y | . -2 . L -2
i —acos(log(z))—z~" + —asin(log(z))(—1)z~~ + —bsin(log(x))—z~" + beos(log(z))(—1)z
x T x

—acos(log(z)) + asin(log(x)) — bsin(log(z)) — bcos(log(x))

2

% ((a - b)sin(log(z)) — (a + b) cos(log(x))).
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So

d*y | dy
_ 20y a4y
LHS = * =5 + a2 +y
1
=z = ((a — b) sin(log(z)) — (a + b) cos(log(z)))

+ z( — asin(log(x))z ™" + beos(log(z))z 1)
+ a cos(log(x)) + bsin(log(x))
= (a — b)sin(log(x)) — (a + b) cos(log(x))
— asin(log(x)) + bcos(log(x))
+ bsin(log(x)) 4 a cos(log(z))
= 0.

d
Example 2.122. Let a,b € C. Find d—y when asin(xzy) + bcos (%) =0.
x

Proof. Take the derivative:

B dy (T 24y -1
0 = acos(xy) <xd$+1 y>+ bSln<y> (I( Dy dm+1 Yy

d d
= acos(:cy)xd—z + acos(zy)y + bsin (i) %% — bsin <gyj> y !

Solve for @ .

dx

d d
acos(a:y)wd—z + bsin <;> %% = acos(zy)y — bsin <§) y L.

So

8

acos(x —bsin | = )yt acos(x 3—bsin<x)
dy (zy)y ( >y (zy)y ;)Y

<

dzr

8

a cos(zy)x + bsin (> % acos(zy)zy? + bsin <x) x
Y )

<

d
Example 2.123. Let a € C. Find d—y when y = tan~! (g> cot™! (f)
x x a
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Proof.

22 2+ a?
a—+ —
a
a T
—tan~* (—) a —cot™ ! (—) a
_ T + a
a? + x2 2+ a?

(s (n (2) oot ().

a x a T
If —=tanz then = =cotz and z=tan"! (—) = cot ™! (—)
T a T a

So

dy —a L a L a —2atan~! (9)
- = tan™" (=) +tan" (=) ) = L2,
dx <a2 —i—x?) ( an <:c> +ran (gc)) a? + x?

(x +2)3
(z+6)2(z + 3)

Example 2.124. Find Z—Z when y =

7 -
2

Proof. Sometimes it can simplfy calculations to take the log of both sides before taking the derivative.

(ZL'—|-2)% )
(46)2(z+3)2
=log ((z + 2)2) —log ((z + 6)%) — log ((= +3)%)

log(y) = log (

1
= glog(x +2)— B log(x + 6) — glog(x + 3).

So, by taking the derivative with respect to z,

gy 5 1 1 1 7 1
y dr 2(x+2) 2 (x+6) 2(z+3)
So
dy_y5 L1 L7 1)
dx y2(a:+2) 2 (x4+6) 2(x+3)

2(x+2) 2 (x46) 2(xz+3)

_ (@+2)3 (5 1 11 71 )

Example 2.125. If 2y" = (x + y)™ " show that % = yx.
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Proof. Sometimes it can simplfy calculations to take the log of both sides before taking the derivative.
Since

log(z™y") =log((x +3)™™")  then  log(z™)+log(y") = (m +n)log(z +y)

and
mlog(z) + nlog(y) = (m + n)log(z + y).

Take the derivative with respect to x.

m  ndy ( dy
oy 1+52).
r ydzr (m+n)m+y +d:n
So
m ndy (m+n) (m+n)dy
— - = + =,
r ydr Tty x4y dx
So
(Q_m—i-n)@_m—i-n_m
y zx+y/de zx+y =z
So
(nx—i-ny—my—ny)@_mx—i—n:l:—mx—my
y(z +y) dr z(z +y)
So
(nx—my)@inx—my
y de r
So
dy _y
de z’

Example 2.126. Let a € C. Find % when y = a® + e22(*) 4 (cot(z))o0s(*),
T

Proof. Since

y= (elog(a))m + etan(z) + (elog(cot(:c)))cos(l’) — eaclog(a) + etan(ac) + ecos(w) log(cot(z))

then
dy _ ,zlog(a) tan(z) 2 cos(z) log(cot(x)) COS(CL‘)(i CSC(:E)Q) o
= log(a) +e sec(z)“ +e ( cot(z) + (—sin(z)) log(cot(x)))
cos(T) =3
= ¢®198() Jog(a) + ') sec(z)? + 008(@) log(eot()) (7@5(1)( )\ + (—sin(z)) log(cot(az)))
sin(x)

= a”log(a) + @) sec(x)? + (cot(a:))cos(x)( — csc(z) — sin(x) log(cot(x))).

Example 2.127. Find % when y = 2"
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Proof. Since y = 2¥ then y = (e!°8(®))¥ = evlog(@) go

Y g AW10g(®) _ iega) (Y, WY
&Y og(x _ og(z) (& =1 _
dx ¢ dx ¢ (:c + dx og(:p))
So p p
Y _ Y ylog() 4 ylog(z) Y
Tr = ot + log(x)e T
So J
1-1 ylog@n Y _ Yy
(1 - log(a)er 5 2 _ ¥,
So )
dy % yxy

dr 1 —log(z) - zv - x(1 —avlog(z))

2.8 Equations
. d%y
Example 2.128. Solve the equation prohe 0.
x
Proof. If y = co + c12 + cox® + c32® + cuz* + - -+ then
d%y

ﬁ:262+3-203$+4-304$2+“- so that Yy =co+ iz,
T

O pu—
since c2cg =0, 6¢3 =0, 12¢4 =0, .... So

y=co+cz, where ¢y and ¢ are constants.

d
Example 2.129. Solve the equation d—y = cos(x).
z

Proof. Since

d
d—y dx = /cos(:c)dm then y = sin(x) + C, where C is a constant.
x

Let’s check this answer: Let y = sin(z) + C. Then

dy d . _ _
i %(sm(w) + C) = cos(z) + 0 = cos(z).

d
Example 2.130. Solve the equation d—y =q.
x

1 d 1d
i then /ydx—/ldx.
y dr ydx

log(y) =z + C, where C' is a constant.

Proof. Since

So



Calculus Examples, Arun Ram, version: January 28, 2025

So

y=e =e~ e’ = ce”, where c is a constant.

where ¢ is a constant.

Let’s check this answer: Let ¢ be a constant and let y = ce®. Then

dy d ey de®
dr dx(ce )_Cdzv - v
O

. dy 1

Example 2.131. Solve the equation e Y3,
x
Proof. Since
d d
y_%—yzl then /y_il%ydx:/ldx.
dx dx
So
%y2/3 =x+C, where C' is a constant.
So
Y23 = 2r+c and y:(%x+c)3/2,
where c is a constant.
Let’s check this answer: Let ¢ be a constant and let y = (%l‘ + ¢)3/2. Then
dy d 1 1
%:%((%x—i—c)gﬂ):%(%x—l—c)z.%:(%x—l—c)z and
1
Y2 = ((2z+0)*?)5 = Ba+o)V2
dy 1
So -2 = y3. O
© dx Y

Example 2.132. Verify by substitution that y = z? + % is a solution of the equation % + £ = 3a.

Proof. Letting y = 2 + ¥ then

d 1 2
S A (22 — 2073 4+ (22 + ) =20 — 2272 4 o + 2272 = 3,
der =z x x
. . . Cody oy
which verifies that y satisfies the equation T + < = 3z. O
x  x

d
Example 2.133. Solve the equation cTy = 2.
x

Proof.

d
Y= / di/ dr = /g;3 dr = %:c‘l + ¢, where ¢ is a constant.
T
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Sample graphs of the real solutions of these equations for ¢ € {—2,0,2,4} are

y
A
\ - 0;4 ) / /
\ B C?Z, / ’/’,
AN 0
o c=0 - / »X
-4 -2\ /2
3 c=—2
—4

Graphs of y = %x‘* +c

d
Example 2.134. Solve the equation d—y = 23 given that y(0) = 2.
x
Proof. Since fil? = 23 then

d
Y= di/ dr = /g;3 dr = %x‘l + ¢, where ¢ is a constant.
T

Since y(0) = 2 then 0% + ¢ =2 and ¢ = 2.
Soy = %x‘l + 2.

d
Example 2.135. Solve the equation Y_ Y
dr 14z
1d 1
Proof. Integrating both sides of % gives
yde 14x

1d 1
/ &d%i dx = / T2 dx and log(y) =log(1 + x) +¢, where cis a constant.
So

y = elo8) = log(l+a)re _ peplog(142) — A(1 4 g), where A is a constant.

Sample graphs of the real solutions of these equations for A € {—2, —1,1,2} are

X T »X

/ N o A=-1
’ A=-2
Real solutions of y = A(1 + z)
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d _
Example 2.136. Solve the equation d—y — ~% with y(0) = 3.
x oy

d
Proof. Integrating both sides of yd—y = —x gives
x

d 1 1
/yy dxr = /—x dx and —y? = —=22 4+ ¢, where ¢ is a constant.
dx 2 2

So y?> = —2? + d, where d is a constant. Sample graphs of real solutions these equations for d €
{1,2,3,4} are

Real solutions of 4> = —22 +d

Since y(0) = 3 then —0%2 4+ 2¢c = 32 and 2c = 9. So y = V—22+2 = v/9 —22. The graph of this
solution is the blue semicircle going through (0, 3). O

d
Example 2.137. Solve md—y +y=ce".
x

d d
Proof. Since d—(xy) = xd—y + y = €” then integrating both sides with respect to x gives
x x

d
/ d—(my) dr = /e‘B dx and zy = €e* +c, where c is a constant.
x
Soy = %ew + c%, where c¢ is a constant. O
Lody oy
Example 2.138. Solve the equation e + = =sinz.
x T

d
Proof. Since xd—y + y = xsinx then integrating both sides gives
x

Ty = /msinazd:v/((xsinx — cosx) + cosx) dv = —wcosx + /cosxdx = —zcosz +sinz + ¢,
where c is a constant. So

1. 1 :
Yy = —cosxr+ —sinx +c—, where c is a constant.
T T
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d
Example 2.139. Solve %d—y — zy = x with y(0) = —3.
X
Proof. Since ~ % — o(y 4 1) then 21— % d integrating both sides with t to  gi
rooj. mee —— =2 en — — = I andad imtegratin O s1aes wi respec O I gives
ode V¥ 2(y+ 1) da srating P &

1 1 d
/2 (y+1) ﬁ dz = /xdm and $log(y+1) = 12% +¢, where cis a constant.

Since y(0) = —3 then 3log(—3 + 1) = 30% + ¢ and 2¢ = log(—3 + 1). Thus

2 2

log(y + 1) = 2? +log(—2) and y+1= % los(=2) — g gloa(=2) _ ¥ (—2) = —2¢".
Thus ,
y=—1-—2"".
[
d
Example 2.140. Solve the differential equation d—y — Y 4 cos (%)2 by substituting u = £.
x
d d
Proof. If u =¥ then zu = y and 2% u So
v dx dx
d d
ﬁ = % + cos (%)2 is the same as :):d—z +u = u + cos(u)>.
So
1 du 1 alontl ( )2 du 1
—— = or equivalen sec(u)*— = —,
cos(u)2dx =z d Y dr =z
and integrating both sides with respect to = gives
tan(u) = log(z) + ¢, where ¢ is a constant.
So u = arctan(log(x) + ¢) and ¥ = arctan(log(x) + ¢) and
y = zarctan(log(x) + ¢), where c is a constant.
O
Example 2.141. Let ¢/ = %. Solve the equation y' + 3y = 0.
Proof. Let D = g—z. Then the equation is
(D+3)y=0 or, equivalently, Dy = —3y.
Solutions are
y = cpe 3%, where co is a constant,
Let’s check this answer: Let ca be a constant and let y = coe 3. Then
dy d —3x -3
&_a — (—3)e™% = _3y.
W — & (ere) = (~3)e™ = 3y
]

Example 2.142. Let ¢/ = %. Solve the equation g + 4y = 0.
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Proof. Let D = 373' Then the equation is
(D+4)y=0 or, equivalently, Dy = —4y.

Solutions are

y=cre 1, where c; is a constant,

Let’s check this answer: Let ¢; be a constant and let iy = c;e™**. Then

d d
ﬁ = (ere™) = ey (~4)e I = —ay.
]
Example 2.143. Let ¢/ = —y and y” d—y Solve the equation y” + 7y’ + 12y = 0.
Proof. Let D = d . Then D? = & and the equation is (D? 4+ 7D + 12)y = 0. So the equation is
(D+4)(D+3)y=0, or, equivalently (D+3)(D+4)y=0,
From Example [2.141| and Example [2.142] the equation (D + 3)(D + 4)y = 0 has solutions
Yy = 016_496 + 026_3x, where ¢; and ¢y are constants.
Let’s check this answer: Let ¢; and co be constants and let y = cre™ % + c9e 3%, Then
(D+4)(D+3)y= (D +4)(D +3)(cre™ 4 cpe73)
= (D +4)(D +3)cie™ + (D + 3)(D + 4)coe™®
=(D+4)0+(D+3)0=0+0=0.
]

Example 2.144. Solve the equation y' +2y +y=0.
Proof. Let D = %, Then D? = 4 and the equation is
(D? +2D + 1)y =0, or, equivalently, (D + 1)%y = 0.
Let z = ey so that y = e~*2. By the product rule
(D+1)e*z=e%Dz)+(D(e*)z+e “z2=€e*Dz—e “z2+e “z2=€e "Dz

So
0=(D+1)2%y=(D+1)(D+1)e"2= (D +1)e*Dz = DDz = ¢*D?z.

So the equation
(D+1)%y =0 is equivalent to D?z=0.

Since the equation D?z = 0 has solutions z = ¢; + cox where ¢; and ¢y are constants then the equation
(D +1)?y = 0 has solutions

y=e€e “z=ce *+coxe *, where ¢; and ¢y are constants.
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Example 2.145. Let ¢/ = % and y” d—y Solve the equation
6.

y" — 4y + 13y =0 subject to y(0) = 1 and ¥'(0) =

@ and the equation (D? —4D + 13)y = 0 is

Proof. Let D = fjl— Then D? =
(2+3i)x + 626(2732‘)1

(D —=(2+3))(D - (2~ 3i)) y=0,

with ¢1,co € C. Then

which has solutions y = cie

Y = (2+3i)cr T3 4 (2 — 3i)epe@ 30

and
1=90)=c1e®+ e’ =ci+ca  and  6=1y¢/(0)=(2+3i)c; + (2 — 3i)co
Solving for ¢; and cg gives 6 =2 -1+ 3i(c; — c2) so that ¢; +co =1 and ¢; — ¢ —%i.
Soq:%—%iand@:%jL%iand
y = (% g.) (2+3i)a: + (% + %i)6(2—3i)m 26 ( 3ix +e 31,2) _ %Z'GQ(GSZI 6—31':17)
= €’ cos(3z) — 3€”sin(3z).
O
Example 2.146. Solve the equation y” + 2y’ — 8y =1 — 8x~.
Proof. Let D = g—x. Then the equation (D? + 2D — 8)y = 0 is
—4z

D—-2)(D+4)y=0 which has solutions = 162" + coe™ 4,
( y Y

where ¢1,c9 € C.
Let y = az? + bz + ¢ so that ¥ = 2ax + b and y” = 2a. Then
= —8ax? + (4a — 8b)x + (2a + 2b — 8¢)

1—8z% =y" + 2y — 8y = 2a + 2(2ax + b) — 8(az® + bx +¢) =

so that a =1 and 4a —8 =0and 2a+2b—8=1. Soa=1and b= % and ¢ = ; and
y=a%+ %x + i is a particular solution.

So the general solution to y” + 2y’ — 8y =1 — 8z

x+626_4x+x2—|—%x—|—i, with ¢1, ¢ € C.

Yy = 6162

Example 2.147. Solve the equation y” + 2y — 8y = €3

Then the equation (D? + 2D — 8)y = 0 is
—4x

Proof. Let D = 4-.
which has solutions y = 1% + coe ,

(D—-2)(D+4)y=0

where c1, ¢ € (C
Let y = ae3® so that i = 3ae3® and y” = 9ae3*. Then

e:L‘:y "+ 29 — 8y = 9ae gives a:%.

3 4 6ae3® — 8ae® = Tae®®
So
Yy = %egz is a particular solution.

So the general solution to y” + 2y’ — 8y =€

y = 162 4 cpe ™ 4 %eh, with ¢1, 0 € C.
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Example 2.148. Solve the equation y” + 2y' — 8y = 85 cos(x).
Proof. Let D = 4. Then the equation (D? + 2D — 8)y = 0 is
(D—-2)(D+4)y=0 which has solutions y = ¢1€?® + coe ™12,

where ¢1, ¢y € C.
(¢c) Let y = acos(z) + bsin(z) so that ¥y = —asin(z) + beos(z) and y” = —acos(z) — beos(z) and

85cos(z) = 4" + 2y — 8y = —acos(x) — bsin(x) — 2asin(z) + 2bcos(z) — 8a cos(z) — 8bsin(x)
= (—a+2b—8a)cos(x) + (—b — 2a — 8b) sin(z) = (—9a + 2b) cos(x) + (—2a — 9b) sin(x),

giving 9b = —2a and 85 = —9a + 2b = (—9)_79134- 2b = %b. Sob=2and a= _79 -2=-9. So
y = —9cos(z) + 2sin(z) is a particular solution.
The general solution to y” + 2y — 8y = 85 cos(z) is

y = c16*® + coe 1 — 9cos(z) + 2sin(x), with ¢, co € C.

Example 2.149. Solve the equation y” + 2y — 8y = 3 — 24x? + 7e37.
Proof. Let D = j—x. Then the equation (D? + 2D — 8)y = 0 is
(D—-2)(D+4)y=0 which has solutions y = ¢;€%® + cpe™1,

where ¢q,c9 € C.
Since 3 — 2422 + 7e3* = 3(1 — 8x2) 4 7e3x, the particular solutions for Example and Example
give that
y=30Gz+3)+7 1e¥ is a particular solution

of y" + 2y’ — 8y = 3(1 — 82%) + 7e3%. The general solution to y” + 2y’ — 8y = 3(1 — 8x2) + 7e3* is

y = cr1e®® + cpe M + %:1: + % + 37, with c¢1, ¢y € C.

O

Example 2.150. Solve the equation 3" — y = e*.

Proof. Let D = g—x. Then the equation (D? — 1)y = 0 is

(D—-1)(D+1)y=0  which has solutions y = cje® + cee™ ",
where c¢1,c € C. If y = axe® then vy = aze® + ae® and vy’ = axe® + ae® + ax® and
e’ =y" —y = axe” + 2ae” — axe” gives a = %,
so that
Yy = %xez is a particular solution.
The general solution to ¢y’ —y = €% is
y=cre® +coe” " + %xem, with c¢1, 9 € C.

O
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x

Example 2.151. Solve the equation y” + 2y +y = e *.

Proof. Let D = g—x. Then the equation (D? +2D + 1))y =0 is

T

(D+1)2%y=0 which has solutions y = c1e™* + coze™™,

2 T 2 —x

where c1,co € C. If y = ax®e™* then y/ = 2axe % —ax“e”

(2azx — az?)e ¢ = (2a — 4az + azx?)e™ and
e =y +2 +y=(2a — dazx + az® + 4ax — 2az* + az?)e ™ = 2ae™" gives

so that

Yy = %wQe*x is a particular solution.

The general solution to ¢y’ + 2y’ +y =€ % is

y=ce *+coxe "+ %xQe_x, with ¢1,co € C.

Example 2.152. Solve the equation y” + 49y = 28sin(7t).
Proof. Let D = 4. Then the equation (D + 2D + 1))y = 0 is
(D+7i)(D—"Ti)y=0 which has solutions y = c1e” + cpe™ ",
where ¢1, ¢y € C. Another way to write y = c1e”® + coe™ "% is
y = Acos(7t) + Bsin(7t), where A and B are constants.
If y = at cos(7t) + bt sin(7t) then

y = atcos(7t) + btsin(7t),
y' = —Tatsin(7t) + acos(Tt) + 7bt cos(Tt) + bsin(7t)
= (7bt + a) cos(7t) + (—Tat + b) sin(7t),
y" = —7(7bt + a) sin(7t) + Tbcos(7t) + 7(—Tat + b) cos(7t) + (—7a) sin(7t)
= (—49at + 14b) cos(7t) + (—49bt — 14a) sin(7t),
so that
y" + 49y = 14bcos(Tt) — 14asin(7t) giving b =0 and a = —2.

Thus
y = —2t cos(7t) is a particular solution

and the general solution to y” + 49y = 28sin(7¢) is

y = Acos(Tt) + Bsin(7t) — 2t cos(7t), where A and B are constants.
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3 Graphing

3.1 Basic graphs

Example 3.1. Graph the lines {(z,y) € R? | y = 2} and {(z,y) € R? | y = —x}.
Proof.

The line y =z the line y = —x

Example 3.2. Graph the parabolas {(z,y) € R? | y = 2?} and {(z,y) € R? | y* = z}.

Proof. These two graphs are flips of each other around the line y = x. The first graph is obtained
by plotting the points (0,0), (1,1), (—1,1), (2,4), (—2,4) and connecting these points with a smooth
continuous curve.

T

The parabola y = 22 the parabola y? = z

Example 3.3. Graph the circle {(z,y) € R? | 22 +y? = 1}.

Proof. The set {(z,y) € R? | 24 y? = 1} is the set of points in R? that are distance 1 from the origin.

/ \ x All points in R? that are distance 1 from the origin.

_1KJ1

-1

The circle 22 +y? =1

Example 3.4. Graph the hyperbola {(z,y) € R? | 22 —y? = 1}.
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Proof.

The hyperbola 22 — y? = 1
Graphing notes:
(a) If y = 0 then 22 = 1. So = = +1.
(b) If = 0 then —y? = 1 which is impossible for y € R.
. . 2 1\2
(¢) The equation is 1 — (£)” = (1)~

T

1

If z gets very big then : gets closer and closer to 0 and the equation gets closer and closer to

1-— (%)2 = (. This is the same as (%)2 = 1, which is the same as £ = £1, i.e. y = . So, as x gets

very large the equation gets closer and closer to y = x and y = —x. As x gets very negative the basic
hyperbola gets closer and closer to y = x and y = —z.
Asymptotes:

y=ax is an asymptote of the basic hyperbola as x — +o0

y = —x is an asymptote of the basic hyperbola as x — 400

y=ax is an asymptote of the basic hyperbola as + — —o0

y = —x is an asymptote of the basic hyperbola as x+ — —o0.

Example 3.5. Graph {(z,y) € R? | y = €*} and {(z,y) € R? | y = log(z)}.

Proof. The graph of solutions of y = e® is obtained by plotting the points (—2,e72), (=1,e™1), (0,1),
(1,¢e), (2,€?) and connecting these points with a smooth continuous curve. As x — —oc the value of
e® is positive and gets closer and closer to 0.

-

Real solutions of y = e
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The functions e® and log(z) are inverse functions since
elog@) = g and log(e®) = x.

Since e” and log(x) are inverse functions then the graph of solutions of y = log(z) is the graph of
solutions of y = e” except flipped about the line y = x.

=Ilnx

.

Real solutions of y = log(x)

Example 3.6. Graph {(z,y) € R? | y = cos(x)} and {(z,y) € R? | y = sin(z)}.

Proof. The value of cos(x) is the z-coordinate of the point at angle = on a circle of radius one. If x
starts at 0 and increases then cos(z) starts at 1 and oscillates between 1 and -1, returning to 1 each

time x reaches a multiple of 27 completing a revolution around the circle.

= COS X

A /\
VR VI EVERVA

Real solutions of y = cos(x)

Since sin(z) = cos(x + 5) the graph of solutions of y = sin(z) is the same as the graph of solutions of

y = cos(z) except which the z-axis shifted by

\ /\ ANVA
_3”V /| s

Real solutions of y = sin(x)

Ny -
oY
N
b
))/
*®
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Example 3.7. Graph {(z, f(x)) € R?} where f: R — R is given by

f<:c>=1m|={”” L

—z, ifx <0.

Proof. Use the line y = x for x € R>g and the line y = —z for x € R<( to obtain the graph of solutions
of y = |z|.

Real solutions of y = |z|

Example 3.8. Graph {(z,y) € R? | y = 2°} and {(z,y) € R? | y = 2/3}.

Proof. Determine the graph of solutions of y = 2 by connecting the points (-2, —8), (-1, —1), (0,0),
(1,1), (2,8) with a smooth continuous curve. As x — oo the value of 2° gets very large positive and
as © — —oo the value of 23 is very large and negative.

Real solutions of y = 23

. 1 . . .
uncti re inv uncti i
The functions 23 and x3 are inverse ‘function’s since
1 1
(z3)3 ==z and (23)3 = z.

Since 23 and 23 are inverse ‘function’s then the graph of solutions of y = 3 is the graph of solutions
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of y = 23 except flipped about the line y = x.

ol

Real solutions of y = x

O
Example 3.9. Graph {(z,y) € R? | (z —3)%2 + (y — 2)2 = 1}.
Proof.
i To graph solutions of (z — 3)? + (y — 2)? = 1:
(a) 22 +y? = 1 is a basic circle of radius 1.
| (b) The center is shifted by
3 to the right in the z-direction,
, . 2 upwards in the y-diection.
A circle of radius 1 and center (3, 2)
0

Example 3.10. Graph {(z,y) € R? | 2y = sin 3z}.
Proof.

To graph solutions of 2y = sin(3z):

(a) y = sinz is the basic graph.

(b) The z-axis is scaled (squished) by 3.
(¢) The y-axis is scaled by 2.

Solutions of 2y = sin(3z) in R?

Example 3.11. Let a,b € R-g. Graph {(z,y) € R? | a%g;Q + b%yQ = 1.
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Proof.

To graph solutlons of La?+ bgy =1:

K f_t (a) 22+ y?=1lisa basm circle of radius 1
— A * (b) The z-axis is scaleld by a.
k/ (c) The y-axis is scaleld by b.

An ellipse with width 2a and hieght 2b

-a

Example 3.12. Graph {(z,y) € R? | y = e~ *}.

Proof. The solutions of y = e~* in R? are the solutions of y = ¢* flipped about the line y = 0.

the solutions of y = e® and y = e™* from Wolfram alpha

Example 3.13. Graph {(z,y) € R? | y = —e %},
Proof.

To graph solutions of y = —e™%:

' (a) y = ¢e” is the basic graph.
) —e " is the same as —y = e~ 7.

(b)y
(c) The z-axis is flipped (around z = 0).
(d) The y-axis is flipped (around y = 0).

Solutions of y = —e™*
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Example 3.14. Graph {(z,y) € R? | y = sinh(x)} and {(z,y € R? | y = cosh(z)}.

Proof. Since
cosh(z) = 3(e* +e™7) and sinh(z) = 3(e"e™™)

then the graph of cosh x is halfway between the graph of ¢* and the graph of e~

T

The graph of sinh x is halfway between the graph of e* and the graph of —e™*.

Z and

PICTURES
Example 3.15. Graph {(z,y) € R? | y =sin (2).
Proof.
The graph of y = sin (i)
— o 1y.

To graph y = sin (5)

(a) y =sinx is the basic graph.

(b) The positive z axis is flipped (around x = 1).

(c) The negative z axis is flipped (around z = —1).

(d) As z — oo then sin (%) is positive and gets closer and closer to 0.

(e) As x — —oo then sin (%) is negative and gets closer and closer to 0.

(f) As z — 0 and is positive then sin (%) oscillates between +1 and —1.
Example 3.16. Graph {(z,y) € R? | y = arcsin(z)}.
Proof.

S To graph solutions of y = arcsin(z):
Z (a) The graph of solutions of y = sin(z) is the basic graph.
. (b) Solutions of y = arcsin(x) is the same as solutions of sin(y) = x.
- 1 So the x and y axis are switched from y = sin(z).
\7 So flip the graph of solutions of y = sin(z) across the line x = y.
Solutions of y = arcsin(z)
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Example 3.17. Graph {(z,y) € R? | y = 1}.

€T
Proof.

v (a) As z gets large % gets closer and closeer to 0.
(b) As x gets closer to 0 (from the positive side)
then % gets larger and larger.

-1 (c) As z gets closer to 0 (from the negative side)

1 then i gets more and more negative.
(d) As x gets more and more negative % gets closer and closer to 0.
(e) If z =1 then y = 1.
(f) If 2 = —1 then y = —1.

- _1
Solutions of y = +
Asymptotes:
y =0 (the x axis) is an asymptote to real solutions of y = % as T — +00
y =0 (the x axis) is an asymptote to y = % as r — —o0
x =0 (the y axis) is an asymptote to solutions of y = % asx — 0T
x =0 (the y axis) is an asymptote to real solutions of y = % asx — 0.

Example 3.18. Graph {(z,g(z)) € R?} and {(z, h(x)) € R?} where
g: R — R is given by g(x) = 2z and h: R4 — R is given by h(x) = 2x.

Proof. Removing the point = 1 from the source of the function g: R — R given by g(x) = 2z gives
the function h: R4y — R given by h(z) = 2x.

PICTURE PICTURE
the graph of g: R — R given by the graph of h: Ry — R given by
g(x) =2z h(z) = 2z

Example 3.19. Graph {(z,y) € R? | y = 22} and {(z,y) € R? | y = 5 }.

Proof. If a € R>1 then % € Ro,1)- The graph of % is the same as the graph of #? with the region R>1
flipped with the region R 1; on the y-axis.

the graph of —; and the graph of x? with
the region R>; flipped with the region Ry on the y-axis
screenshot from Wolfram alpha
plot x°2 and 1/x"2 with x from -5 to 5 and y from -3 to 3
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Example 3.20. Let ¢ € R and graph {(z,y) € R? | y = (v — 3)? + ¢}.
Proof. The graph of (x —3)? is the graph of x? shifted 3 units to the right and the graph of (z —3)?+c
is the graph of (z — 3)? shifted ¢ units up.

PICTURE
The graph of 22, the graph of (z — 3)2,
and the graph of (z — 3)? + ¢

3.2 Additional graphing examples
Example 3.21. Let f: R — R be given by

1 —cos(z) .
f@)=d 2 if x #0,

1 ifx=0.

Graph {(z, f(x)) € R?} and determine if f(x) is continuous at x = 0.

Proof. Since

1-cos(a) _ . 1— (1= ga’t gt — gat+ )

z—0 x2 z—0 2
i ot
z—0 x?
~ i (4~ o+ et =)
=3-04+0-0+---=1

then
lim f(z) = 3. Since f(0) =1 then ili% f(z) # £(0).

xz—0

So f(x) is not continuous at z = 0. Use the graphs

y y
y=cosx y= -cosx
1

-1

y=1-cosx

7 SN S 1 T g ¥ 2t ¥ 37w
2 2 2 2 2
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to build the graph of y = f(z).

To graph y = f(z):

(a) Asx—>0then1_%;($)_>%_
7 Not () At the peaks of 1 — cos(x)
G there is an equality M = x%

@ (d) The dotted curve is the graph of y = %
(¢

e

The graph of y = f(x)

21
Example 3.22. Graph {(m,y) e R? ‘ y = 553}
r° —4dx
Proof. Notes:

-1 (@4 )-1)  (z4lz)(z-1)
S ey B ) |

(b) If z =1 then y = 0.

(¢) If z = —1 then y = 0.

0S - pos
(d) If z > 2 and z is close to 2 then y is very large and positive . PO P )

<pos pos - pos
( pos - pos )

POS - Pos - neg

(e) If x < 2 and z is close to 2 then y is very large and negative.

(f) If x > 0 and =z is close to 0 then y is very large and positive. ( DOS ' neg )
pOs - Pos - neg
(g) If x < 0 and z is close to 0 then y is very large and negative. (Lﬂeg>
neg - pos - neg
(h) If z > —2 and « is close to —2 then y is very large and positive. (%)
neg - pos - neg
(i) If x < =2 and z is close to —2 then y is very large and negative. (%)
neg - neg - neg

x? — —)* -
G) y = ﬁ is the same as (—y) = (—Ev)i”)—ll(ix)

—z then the graph stays the same.

so if y is flipped to —y and zx is flipped to
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(k) As x — oo then y is positive and gets close to 0
(k) As x — —oo then y is negative and gets close to 0

y

‘.
N
—
—_

e X

x?—1

Real solutions of y = T
x° — 4x

Example 3.23. Graph {(z,y) € R* |\/z + /y = 1}.
Proof. Notes:
If x and y are switched this graph stays the same.

Ifxz()then\/gjzlandyzllzl.

)
)

c) If y=0 then z = 1.
) If z = y then \/z 4+ /x =1 and /2 = § so that z = 1.
)

This graph should be similar to 22 + 4% =1 and z +y = 1.

x+y=1

Real solutions of y = 22 + 9% =1 Real solutions of y = +y =1
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Vx+4y=1

(=

.
.
P
.
.
.
.
.
.
1 ,
.
.
.
,
.
.

4|

L L

B

Real solutions of y = /o + /y =1

2

x4 —1
E le 3.24. G h{, R? |y = }
xample raph 4 (z,y) € |y o]

Proof. Notes:

?—1 2?41-2 2

O v= T e 2

1
Notes for th h f{ y) R |y = }:
otes for the graph of { (z,y) ¥ 211

If x =0 then y = :%:1.

_1
0%2+1

(a
(b

If x — oo then y is positive and close to 0.

(¢) If x — —oo then y is positive and close to 0.

1 _
241

)
)
)
)

(d) Since y = (—x)%ﬂ then the graph stays the same if x is flipped to —z.

/\

Real solutions of y =

2 +1
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Then
y Yy
_ 2 x*-1
5 YE T 1 T 2
YT T 1
a1
2
Real solutions of —2 Real solutions of y — *- L
cal solutions o = cal solutions o =
Y= 2 YT
O

Example 3.25. Graph {(z, f(z)) € R x Z} where f: R - R is f(z) = | x|, the round down function,
given by
f(z) = (maximal integer such that n < x).

For example f(3.2) = [3.2] = 3.
Proof.

The function f(z) is continuous if x & Z. Then
lim [z =0 and lim |z| =1.

r—1— z—1t

The function ¢g: R — R denoted g(z) = [z] is the round up function having [3.2] = 4.
Example 3.26. Graph {(z,y) € R? | y = log(4 — 2?)}.
Proof. Notes:
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(a) y =log(4 —2?) =log((2 + z)(2 — x)) =log(2 + x) + log(2 — x).
(b) Since y = log(4 — 2%) = log(4 — (—x)?) then the graph stays the same when z is flipped to —z.

y y

y=Inx y=In(-x)

—

Real solutions of y = log(z) Real solutions of y = log(—x)

oo T

T
N
=
—
—_
gV g

Real solutions of y = log(x + 2) Real solutions of y = log(2 — x)

T S Y
=

Real solutions of y = log(4 — x?)

Example 3.27. Graph {(z,y) € R? | y = x§(6 — :B)%
Proof. Notes:

(a) If z =0 then y = 0.
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(b) If z =6 then y = 0.
(¢) If x — oo then y gets close to .Z%(—J})% =.—z

(d) If z — —oo then y — oo (and y gets close to —z again).

<

I

=

w
<

Il

=

W =

Real solutions of y = 23 Real solutions of y = 3

_ -

Real solutions of y = s Real solutions of y = (—m)%
y
2
y =Xx3
T X 6
e .
y= a0

Real solutions of y = x%(G — x)%

ol

Real solutions of y = (6 — z)

Example 3.28. Graph {(z, f(z)) € R?} where f: R — R is given by f(z) = 322 — 2z — 1.
Proof. Notes:
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(a) The 22 indicates this is a parabola.
(b) Since the coefficient of 2 is positive this is a concave up parabola.

(c) There is a factorization: 322 —2x — 1 = (x — 1)(3z + 1). We know x — 1 should be. factor since
when you plug in 1 you get 3-12 —2-1 -1 =0.
. . . 1
(d) The value f(x)is 0if z — 1 or if z = —3.
df

(e) The minimum will be where %]z:a is 0. Since %]Z:a = (6z — 2)]x:a —6a — 2. So %]:B:a is 0
when a = % Then
1y _ 9(1)2 1 _1_2 __4
f3)=3(3)"-2(3)-1=3-3-1=—3
y
y=fx)
1 I1 1 x
3\| 3
"
T3
Real solutions of y = 322 — 22 — 1
O

Example 3.29. Graph {(z, f(z)) € R?} where f: R — R is given by f(z) = 22% — 2122 + 362 — 20.
Proof. Notes:

(a) If x — oo then f(x) — oc.

(b) If 2 - —o0 then f(z) — —oo.

(c) Since % = 622 — 421+ 36 = 6(2% — Tz +6) = 6(x — 6)(z — 1) then % is 0 when x = 6 and when

r=1.
f(6) =2-6%—21-62+36-6—20=6%(12 — 21 +6) — 20 = 6%(—3) — 20 — 128,
f(1)=2—21436—20 =38 —41 = —3.
(d) Since
d>f
Tl = (120 - 42)] _ =72-42=30>0,
a2f
T3l = (120 - 42)]_ =12 -42=-30 <0,

so that the graph is concave up when x = 6 and the graph is concave down when x = 1.
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y = f(x) = 2x3 - 21x% + 36x

-20

-128

Real solutions of y = 223 — 2122 + 362 — 20

O
Example 3.30. Graph {(z, f(z)) € R?} where f: R — R is given by f(z) = 2% — 2 + 1.
Proof. Notes:
(a) This graph is the graph of solutions of y = 23 — z shifted up by 1.
b) 28—z =22 -1)=2(x+1)(z - 1).
. d(z3—x) — 2.2 _ d(z3—x) . _ 41
(c) Since S5 =32 — 1 then S5 =] _ is 0 when a = + 7
y y
y=x3—x y=x3—x+1
1 ﬁ\ T
N . e
- 1 -1 —— _—
% ! v 7=
Real solutions of y = 2% — x Real solutions of y = 2% —x + 1
O

Example 3.31. Graph {(z,y) € R? | y = 2 — 22 — 27}.
Proof. Notes: The —z? indicates to us that this graph is a concave down parabola.

z—a2?—2T=—(2?—2z+27)=—(2? —z+ 71— 1+27) =—((z — 3)*+262).
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272
4
262
4

y

Real solutions of y =z

2

y=(x‘;)2+26§

N | =

SRR

Real solutions of y = (z — )2 + 263

272

Real solutions of y = z — 22 — 27

Example 3.32. Let a € Rsg. Graph {(z, f(x)) € R?} where f: R — R is given by

For which values of z is f(z) continuous?

Proof.

2—al
f
f@) =4 amar TETE
1, it z = a.
]q:—a]’ if x # a,
xr—a
1, if x = a,
v a’ if x #2a and x — a € Ry,
r—a
= (@ a)7 if v #aand x —a € Re,
r—a
1, if x =a,
1, ifzx#aandx—aeRyy,
=4 -1, ifx#aand z—a € R,
1, ifzx=a,
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y=fx)

Graph of {(z, f(z) € R?}

The graph has a jump at x = a. So f(x) is not continuous at x = a. O

3.3 Graphing: Slope and areas

Example 3.33. (The fundamental theorem of change) For a smooth continuous function f: R — R
let

y

fla+ 4x)
f(a@)

) = @)

h—0 h

i 1
I 1

! !

i 1

I 1

Lo

I L x
a a+Adx \

So that Dy(a) is the slope of f at & = a (the rate of change of f with respect to x at = = a).
Let ¢ be a constant and let f and g be functions and assume that Dy and D, exist. Show that

Proof.
h Dy(z) = lim EFM =T P 11
v _h—>0 h _h—>0h_h—>0 -
Deg(x) = lim (cf)(z+ h})L —(cf)(=) _ lim c- flo+ hg —c flz) _ f - (f(x + h})b — f(x))
=c- (}Lin% Jlat h})l — f(x)> =cDy(x) (by continuity of scalar multiplication).
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o (f+g@+h) - (f+9)(=) .. fl@+h) +g@+h) - f(=z)+g)
Dysgle) = finy h = h
_(fle+h)— fl@)  glz+h)—g(x)
- ;lfi%( h * h )
= (}1113%) fl+ h})b UG )) + (;ILE,% gl + h]i — g(m)) (by continuity of addition)
= Dy(x) + Dy(x).
Do) — timg L@ = (@) _ (ot h) - glo+ 1) = fo) )
fg h—0 h h—0 h
_ iy @A) — f(@))(g(z + h) — g(x) + flz+ h)g(x) + f(2)g(z + h) — 2f(z)g(z)
h—0 h
_ iy L@ ) — f(@))(g(z + h) — g(2)) + (f(z +h) — f(2))9(z) + f(z)(g(x + h) — g())
h—0 h
gy (LD =S ol ) =g St 0 ) gyl 1) = gl
(flz+h)—f@)\ (. (gz+h)—g(z))
= () (=) (g =)

. . . —alz by continuity of
(P ) () (i?iﬁ;‘i?ciﬁin )
=0-Dy(x)Dy(x) + Dy(x)g(x) + f(x)Dy(x)
= Dy(z)g(x) + f(x)Dy(x).

O

Example 3.34. (The fundamental theorem of measure) For a,b € R with p < a < b and a smooth
continuous function f: R — R let

y

/fda:—hm LZhEJfa—th ) ﬂmﬂm‘ Aﬂw

Ax b

If f: R = R>g then f; f dz is the area under f between x = a and x = b.

y
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Let p € R with p < a <b and let A: R, ;) — R>o be the function given by

:/prdac.

Prove that ) 4 \
lim @+ ]z @) _f) and  A®) — A(a) :/a fdz.
Proof.
}llii% Az + h})L A(z) _ }ng(lj (area of las}: little box) _ ]1112% f(i)h _ ]lllg%f(x) ~ i)
and

A(b) — A(a) = (area under f(z) from p to b) — (area under f(x) from p to a)

(area under f(x) from a to b)

/fdm

2
Example 3.35. Compute the limit / e” dr (without using the fundamental theorem of measure).
0

O]

Proof.

Suppose h = % Then
Oh +eh + b + e3hh 4+ eth + .+ 2P

— Ol peslpeilpesl pesl el
= L(1+e3+ (€9))* + (e3))” + (€9))" + (3))”)
L\\6 6y 1
e I (e
e3 —1 e3 —1 es —1

Suppose h = % Then

— Pl peslpeflpesl4 el
n 1 1012 1013 1019
=5(1+es+(e5)) 4 (e5))" +--+ (%))
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Suppose h = % Then

h 4+ e"h + e2'h + &3Ph + eMh + .+ 2

1 2 3 1
=t pev i tevttent 4o gt vl
1
eN —1

So

h
lim (e°h + e"h + e2"h 4+ ' h + e*'h + -+ 27"h) = lim(eg—l)( ) =(?-1)-1=€>—1.
h—0 h—0 1

Note: If ¢ is a constant then
2
(ex—l—c)]jj) =(?4c)—(+c)=e*—1 :/ e* dx.
0

O]

1

1
Example 3.36. Compute the limit / — dx (without using the fundamental theorem of measure).
1T

Proof.

By adding up areas of little boxes:

1 , 1 1 1 1
/lﬁdx_%fé<(—1)2h+ Cirne ' T gt T (1—h)2h>

1 1 1 1 1
h—0 OooPSs!!

)

So [, L da does NOT EXIST in R.

1
Note: /2 dx = /33_2 dez = —z~ ! + ¢, where ¢ si a constant and
x

(e 4] = (1 e — (1) e = 11 -c= -2
b df
So this is an example when / e dz # f(b) — f(a). O
o dx
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3.4 Graphing: Tangent and normal lines

The tangent line to a curve f(x) at the point (a,b) is the line through (a,b) with the same slope as
f(z) at the point (a,b).

The normal line is the line through (a,b) which is perpendicular to the tangent line.

y

tangent line

y=fx)

X

normal line

The slope of the tangent line at the point (a,b) is

il

If a line has slope %

. 1 5
then the perpendicular line has slope 5.

Example 3.37. Find the equations of the tangent and normal to the curve y = 2*—623+1322—102+5
at the point where x = 1.

Proof. The slope of the tangent line at x =1 is
4

2 71:(4903—18:524—263:—10)} —4=18+26—10=2.

r=1

The tangent line goes through the point

=1,
y=1-64+13-10+5=3.
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The equation of a line is y = mx + b, where m is the slope. So, for our line
m=2 and 3=m-14+b=2-1+0.

So b= 1. So the tangent line is

y=2x+1.
The slope of the normal line is }2 = —%. The equation of the normal line is y = ma + b with m = —%
and3:m-1+b:—%+b. So
b= % and Yy = —%x + % is the normal line.

Example 3.38. Find the equation of the tangent and normal lines to the curve
x = acos(f), y =bsin(f), at 0= —.
Proof. First graph solutions of the equations. Let
x Y )
— = cos(h), Z = ).
L =co (0) b sin(6)

2

Then graph solutions of (%)2 + ()" =1

P
N |

When 6

s
A0

(77) V2
xr=acos(—)=-—a
4 2

T ﬂ
= bsin(—) = —0b.
y=bsin() = =
The slope of the tangent line is
dﬁ} - fig B dbscilg(g) _ bcos(0) B b? _é
Z:Ja_dl 71_(1 [ 7£__ 1 73_ 2_ '
dx y:%b az lo—% %f() g="1 asin(f)lo=1 —a% a

So the equation of the tangent line is y = mx + yg with

V2 V2

b bv2
m=—— and —b=m—a+yo= —fia—}—yo.
a 2 2 a 2
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So yg = @b + @b = \/2b. So the equation of the tangent line is

Y= —éx+\/§b.
a

The equation of the normal line is y = mx + yo with

V2 V2 av2

p and Srb=mradyo =g Smatyo.

m =

So

_\/ib \@a2_\/§<62—a2>
D=7 "9y 2\ )
So the equation of the normal line is

O
Example 3.39. Find the equations of the normal line to 222 —y? = 14, parallel to the line 2 + 3y = 4.

Proof. The line x + 3y = 4 is the same as
1 4
y:—gx—i—g. So it has slope —%.

So the slope of the normal line is —%. So the slope of the tangent line is 3. So

dy

dCC r=a

=3.

Now p
dr — 29y =0, So —r_ =
dx

So we want %x =3 and 222 — 3% = 14. So

2 2 \2
Y= =z and 22% — (fx> =14
3 3
S0 4 14
202 — 22 =14 and 5:52 = 14.
So

2=9 and r = +3.

Soz=3andy=2-3=2o0rz=-3andy=2(-3)=—-2.
In the first case:
The normal has slope —% and goes through (3,2).
Som:—% and2:m-3+y0:—%-3+y0.
So yo = 3 and the equation of the normal line is y = —%x + 3.
In the second case:
The normal has slope —% and goes through (-3, —2).
Som:—% and —2:m-3—|—y0:—%'(—3)+y0.
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So yg = —3 and the equation of the normal line is y = —%x —3.

The graph should explain how there can be two normal lines parallel to x + 3y = 4.

y

(3,2)
first normal line

w

|

- - x+3y=4
('37'2)

second normal line

Notes:
(a) If y = 0 then z = +/7.
2 2
(b) 2— (%) = 916—3. So, as x — 00, this becomes 2 — (%) = 0 which means

x

3.5 Areas and volumes
For computing areas and volumes:

1) Carefully draw the region.

(1)

(2) Slice it up, draw a typical slice.
(3) Find the volume of a slice.

(1)

Add up the volumes of the slices with an integral.
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Typical slices might look like:

— |} =

distance around

————— \/

Example 3.40. Calculate the area of the region bounded by the parabolas y = 2% and y? = .

Proof.

_
T

Slice: HLI
dx
Area of slice Ldx
Add slices from x =0 to x = 1.

r=1 r=1 =1
/ Ldx = / (yupper - ylower) dr = / (\/«E - .1'2) dx

xz—0
= G-

- G- 5)- Go-9) -

wl N

Example 3.41. Find the area of the region bounded by y = —1, y = 2, z = y3 and x = 0.
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Proof.

y=-1
. L . L
Type 1 slice: dy Type 2 slice: dy
Area of slice: Ly dy Area of slice: Lo dy
Add slices from y =0 to y = 2. Add slices from y = —1 to y = 0.

y=2 y=0 y=2 y=0 y=2 y=0
/ ley+/ dey—/ xdy+/ (—x)dy—/ y?’dy+/ (—y°) dy
y=0 y=-1 y=0 y=-1 y=0 y=—1

y= - y= 4 —1)4
R [ o R G B

Example 3.42. Find the volume of a sphere of radius r

Proof.

Slice: E—=pdy
Volume of slice: mR? dy
Add slices from y = —r to y = r.

X
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y=r y=r y=r
Volume of sphere = / TR? dy = / mx? dy = / W(TZ - 92) dy
Yy Yy

y=—r =—r =—r
3

=),

Example 3.43. Compute / Va2 —z?dz.
—a
Proof. If x = asin(f) then
/ Va2 —x?dr = / Va2 —a?sin(0)? dx = / Va2 cos(0)? dx = / acos(f) dx
a dx a a 9 9
= a cos(0) "7 do = acos(6) acos(f) df = a” cos(0)” db

%az(cos(ﬁ)2 + cos(6)?) do

Il
\Q‘\Q\|

|

Q

|
Q

; 2(cos(6)? + (1 — sin(8)?)) df = / " %az(cos(9)2 — sin(6)® + 1) do

—a

a
1
= —a?(cos(260) + 1) d6
a0 2
1 4 /sin(260) z=a
- 0 )
24 ( > 0D,
1 sin(260 1sin(0)=1
Sa( ( )+9)))
2 2 1sin(f)=-1
1 4 /sin(260) 10="/2
i 0 )
2¢ ( 5 O
1 ,ysin(m) W L gsin(—m) @y 1,7 1 2( 7r>_7ra2
_2a<2 +2> 2a< 2 2)‘2“2 29\ 7 2) T 4
r=a
Example 3.44. Compute / Va2 —x?dz.
r=—a
Proof.
y
y=VaZ-x2 Slice:
dx
Area of slice: Ldx
Areaslices fromx = —atox = a.
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7I.(12 r=a T=a T=a
- = Area of semicircle = / Ldx = / ydr = / Va2 —x?dz.
xr xr X

=—aqa =—aqa =—a

O
Example 3.45. Find the volume of a right circular cone of height h and radius r.
Proof.
y
CR—>
H
Slice: I-‘
dx
Volume of slice: 27RHdx
Add slices fromx = Otox =r
T=r r=r xr=r h
/ 2rRH dx = / 2nxy dr = / 27rac(—— + h) dx
=0 =0 =0 r
r=r 2mh
= / ( _ T + 27rhx) dx
=0 r
(=T )]
r 3 =0
27h 3
= (=2 4o 2) — (=040
( r 3 ol (=0+0)
2 1
= —§7r7"2h + 7r?h = Z7r?h.
O

Example 3.46. Use integration to find the area of the triangle with vertices (—1,1), (0,5) and (3, 2).

Proof.

y—1=4(x+1)
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Type 1 slice: HLl Type 2 slice: MLZ
dx dx
Area of type 1 slice: L1z Area of type 2 slice: Lox

Add slices from x = —1 to x =0 Add slices fromz = —-1toxz =0

=0 =3 =0 =3
/ Lydx + / Lydr = / (ytop 1= ybottom) dr + / (ytopQ - ybottom) dx

r=—1 —1 x=0

A4z +1)+1) - (i(x+1)+1))d:v+/m3(—x+5—1x—1—1)d:v

-0 4 4
r=3 5
)dx—i—/ (- -2+ —)da
=0 4
ot
15 ( 5!

[
[

_ (152%  15 \1e=0 5

(T3 *)Lz,l 12 T 1) s

() (SR o) (3 )0
15 15 45 45 15 45 60 1

0t st Ty Ty T T

Example 3.47. Find the curved surface area of a cone of radius r and height h (a right circular cone).

Proof.

Cut the cone open and lay it out to get

The region C' is a portion of a circle of radius s, where s is the slant height of the cone. The area of
Cis %052. The arc length along the border is fs. This arc length is also the length around the circle

at the base of the cone, which is 27r. So
0s = 27r.

So
1, 1 1
curved surface area = 593 = 5(93)3 = 5(27?7")3 =mrs =nry h?+r?
O

Example 3.48. Find the volume generated by the area bounded by y = 22 — 2z and y = 0 when it
is rotated about the z-axis.
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Proof.

Slice: @

Volume of a slice: mR? dz
Add slices from z = 0 to x = 2.

r=2 r=2 =2 =2
/ TR dx = / m(—y)dr = / my? dr = / m(x? — 2x)? da
=0 x=0 T T

=0 =0
5

r=2 4zt 43\ q1e=2
(2
/E m(zt — 423 + 42®)de =7 3 1 + 5 )]

_ (7_24+ 23)—w(0 04 0)
on(Eoard) (2o

(_74_) ( 18+20) 877-2_16l
15 15 15 15

O

Example 3.49. The base of a solid is 2 + 32 = a?. Each plane section, perpendicular to the z-axis,
is a square, with one edge of the square in the base of the solid. Find the volume

Proof.

Slice:
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/_ Sde:/_ (2y)2d3::/_ 4y2dx:/_ 4(a® — 2%) dx

MR CREC BCREEE

1 1
=4(a* — 3a°) —4( ~a’ + 30°)
2 2 4 16a3
= fa3—4(—fa3):4-fa3: -
3 3

O

Example 3.50. Find the volume generated when the area bounded by y = /z, y = 2 and z = 0 is
rotated about the line y = 2.

Proof.

~

; y=2 Slice: @
\’:

Volume of a slice: 7R%dx

Add slices fromx = 0tox = 4.

Add slices from x = 0 to x = 4.

Example 3.51. Find the volume generated when the area bounded by y = sin(z) for 0 < z < 7, and
y = 0 is rotated about the y-axis.

Proof.
Yy
R;
/\ T /\ Slice: @}”
L A A 0
y =sinx
/ . \ . Volume of slice: (7R§ — 7R})dy
2 " Add slices fromy = Otoy = 1.

88



Calculus Examples, Arun Ram, version: January 28, 2025

y=1 y=1 y=1
| R —am) = [ b —ata)dr= [ (= o) oba)) dy
y= y= y=
y=1 y=1 d
= / m(n? = 2z + 2?2 — 2% dy = / m(n? — 2mx) Y g
y=0 y=0 dx

x=m/2 x=m/2
= / m(n? — 27z cos(z) dr = / (73 cos(z) — 2m2x cos(z)) dx
=0 =0

= (% sin(z) — 2 (zsin(z) + cos(ﬂc))]iig/2
(

73 sin(mw/2) — 27T2(g sin(m/2) 4 cos(7/2)) — (73 sin(0) — 27%(0 + cos(0))

3 22

+ 27% = 272,

O]

Example 3.52. Find the volume of a bagel produced by rotating the circle 2 + y? = a? about the
line y = b.

Proof.

\ Volume of slice: 2zrRHdx

Add slices fromx = atox = a.

/ 27rRHd3::/ B 27r(b—3:)2yda::/ - 27(b — )2V a? — 22 dx

=—a r=——a r=—a

= / B (47rb\/ a? —x?2 —4dnx\/a? — xQ) dx

=—a

:/: 47rb\/a2—xQd:p—%—Zx\/aQ—xQ)dx

= 4rb(area of a semicircle of radius a) + (27T(a2 - 372)3/2” xi“

2 4 2.2
= 4%6% +2m(0%/2) — 27 (0%/2) = Ama’h = 271%a”D.

O]

Example 3.53. Find the volume generated when the area bounded by y = sin(z) for 0 < z < 7, and
y = 0 is rotated about the z-axis.
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Proof.

< y =sinx
Y Slice:

x dx

Example 3.54. Find the volume generated by rotating the area bounded by the curves y = 3z — 22

and y = z about the z-axis.

Proof.

/ Volume of a slice: 7R?dx

Add slices fromx = Otox = 7.

/x 5 (sin()” + sin(x)?) da

[, Bn 1 cos(e?)de

[, 30 feonta —sino) e

/xi? g(l — cos(2x)) dz = g(x ~ Sin(22x) )} :Z
(r-220) 20— 20) 2= T

X

y=3x—x?
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r=2 r=2 xr=2
/’0<wR3—wR%dx=i/(JOW&p—nyammodx=1/ (r(3w —?)? —ma?) da

=2
= / m(92% — 623 + 2t — 2%) dx
=0

r=2
:/ m(82% — 623 4 21) dx

x=0

8x3 6zt ad\qe=2 8.8 6-2¢ 2°
=G T 5= ) 040

2 3 1 40 45 12, 327-7 _8-Tm _ 56m

=725 -S4 2)=3271(— — — =T
m (3 4+5) (60 60+60) 60 15 15

O]

Example 3.55. A barrel of height A and maximum radius R is constructed by rotation of the parabola
y = R — ca? for —%Sxﬁ%.

Proof.

<

“, Volume of a slice @ ismy?d
! dx

] Add up slices fromx = — g to g

S
[SEE

3-8 * 525

O]

Example 3.56. You are given two spherical balls of wood, one of radius r and a second one of radius

R. A circular hole is bored through each ball and the resulting napkin rings have height A. Which
napkin ring contains more wood?
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Proof.

—=—=
T o S ERREIY Volume of a slice I is2zrxHdx.
: , /\ . I.d‘x'

. 1,\2
Add slices fromx =, [ r2 — (E h) tox=r.

/I:m%'rngdx = /x:mzlﬁxmdx
- /xih<_2”)(_2x)(r2 — 2?2 dz
= (_27T)(T2 _ $2)3/2§} izm

2 2 2
= (—2m)(r? — r2)3/2§ — (=2m)(r? — (r? - Z ))3/2§
h? 3/22 hys2 4xh3 xh?
:0 2 —:2 —_ _—_——_ = —,
() =5 3 =55 =%

This doesn’t depend on r!! So both napkin rings contain the same amount of wood.

O

Example 3.57. Find the volume of a tetrahedron where each side of the tetrahedron is an equilateral

triangle with side length a.
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Proof.
a ," a
," Volume of a slice
\ 1\(V3
‘|“ is dy (base)(zheight) _ (2 S)(ZT s) dy
a \ a
' Add up slices fromy = 0toy = height of tetrahedron = H.
1
H a a a E a 3
d T cos30” = >
d a
So .
d=2%_
VERNVES
So
2 2
He oo (o= f 22 V2
V3 3 3 V3
So we want
y=H f(Ll4) (L35 y=H 352
y=0 2 y=0 8
1
H a a a 5 a 3
d 7 cos30° = T
d a
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But H—y= gs Soy = —%S.SO%:—%_
[ [ e [ 24 e
y=0 8 y=0 8 ds y=0 8 \/g
=2 \/§53<_\@}y’{_ V22 }
TR 3T Bl T T8 30
:<_m03>_ _\/5‘2a3)_\/§23 \fs
8-3 8-3 24 12

Since H = “f we can also write this as

V3

V2 3 V2 \V3 9 V3a? V3a2H
—a :< a) —a“ = H = = .
12 12 12 12
O

Example 3.58. Find the volume generated by rotating the area bounded by y = 3z — 22 and y =
about the y-axis.

Proof.

N1 . 7} H
Volume of a slice - is2rRHdx.

Add slices fromx = 0tox = 2.

=2 =2 =2
/ 2nRH dx = / 272 (Yupper — Yiower) dT = / o2rz(3r — 2? — z) dx
x=0 =0 =0

r=2 =2 3 4 —
2 =2
= / o (2x — 2°) dx = / 2r (222 — 23) dx = Qﬂ(i _ 2)]
=0 =0 3 4 x=0
2-8 16

O]

Example 3.59. Find the volume generated by revolving the triangle with verttices (1, 1), (1,2) and
(2,2) about the y-axis.
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Proof.
y
E RF—>
Volume of a slice I- is2rRHdx.
dx
x Add slices fromx = 1tox = 2.
r=2 r=2 r=2
/ 2rRH dx = / 2nx(2 —x)de = / o2r (2 — x?) dx
=1 r=1 r=1
3 =2

T°\ 1% 8 1 4 2 Ar
:2<2_7>} —om(4— ) —2n(l— 2) =272 —2ns =1
@ =3 )],, T g) = g) = 2wy = 2mg =

Example 3.60. Find the volume of the chunk obtained by chopping off the end of a sphere of radius
r, if the chunk has thickness h at its thickest point.

Proof.

h
/ \ Volume of aslice SE=>% iszRdy.

Add slices fromy = htoy =r.

95



Calculus Examples, Arun Ram, version: January 28, 2025

4 Rates, optimization, changes, growth, decay, mixing, motion

4.1 Motion models
If p is position and v is velocity and a is acceleration then

v = d—p and a = @
T dt : T dt

Example 4.1. A TV camera is 4000 feet from the base of a launch pad. A rocket is launched and
has a speed of 600 ft/s when it is 3000 ft high. How fast is the distance between the camera and the
rocket changing?

Proof.
b H = (height of rocket),
H D = (distance between camera and rocket),
) velocity = (change in height as time changes) = %.
— 40—
We know iH
— = in ft/s.
dt }H:3000 600 in ft/s
We want to determine
dD
=] = 600.
dt 1 H=3000
From the picture 40002 + H? = D?. So
dH 2D
2h— =2D—.
dt dt
So
dD 3000 dH 3000 3000 - 600 600
=] - oL - 1600 = T 3. 27 = 3,120 = 360,
dt JH=3000 /30002 + 40002 dt 1H=3000 /50002 5000 5
in feet per second. How fast is the angle of the camera changing? We want %} 000"
H de 1 dH
Si tan(f) = ——  th —sec()? = ————.
nce  tan(9) = 7550 em g 50" = J000 ar
1 D do D? 1 dH

them =

Since  sec(f) = dt 40002 4000 dt

cos(6) ~ 4000

% dd 40002 1 dH _ 4000 dH
dt ~ D2 4000 dt  D? dt’
So
do 4000 dH 4000 4-600 4-120 24
@) —s000 ~ (30002 + 40002) dt ) s—soon 50002 000 T 51000 ~ 1000 5o "edians per second.

O]
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Example 4.2. A runner runs around a circular track of radius 100m at a speed of 7 m/s. The runner’s
friend is standing 200m from the center. How fast is the distance between them changing when their
distance is 200m?

Proof.

velocity of runner = change in runner’s distance w.r.t time = —.

dt
We want

change in distance between friends w.r.t. time = T

t aF

dt :
F=200
The arclength R = 100 - 6 if 6 is the angle at the point (z,y) at which the runner is at.

Really we wan

F =/(200 — 2)2 + 32 = /2002 — 400z + 22 + 32 = /2002 — 400z + 1002.

So
dF dx
F? =200% + 1002 — 4 2F—— = —400—.
00 + 100 00x and 7 00 7
So
ar _ 20ds
dt  F dt’
_ _ dR _ do
Now 2 = 100 cos(#) and 7 = % = 100%;. So
d df
di; = —100sin(6)— = ~100 sin(G)% = —Tsin(0).
50 dF —(200) 1400 sin(6)
- ) B sin
=R (—7sin(0)) = —
S0 dF 1400 sin(0) 1400
sin
h—— = "7 = in(0 = Tsin(0 )
dt 1 F=200 F 200 200 sin(f) ]F:200 sin(6) F=200
When F' = 200,
so sin(6) 200 — 50°
i = — .
200
200
So
@] _ 7v2007 507 _ 7y/40000 — 2500 _ TV37500 _ 7 o
dt Jr=200 200 B 200 200 2
in meters per second. O
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Example 4.3. A steel ball falls from the top of a tower and in the last second before it hits the
ground it falls % of the total height of the tower. Find the height of the tower.

Proof. To get control, find equations for the acceleration a, the velocity v and position p of the ball.
The acceleration of the ball is @ = 9.8 m/s?. So

So dv = —9.8. /dt /—9.8dt.
dt

So [dv= [—9.8dt and
v = 9.8t + c, where c is a constant.
At t = 0 the velocity v is 0.

So 0=-98-0+c. Soc=0and v =—9.8¢.

d
p= /pdt /vdt /98tdt —98 toe,

where ¢; is a constant. At ¢t = 0 the position is H. So

Since v = % then

9.8

H=-=" 0%+ 1. So ¢; = H.
So 9.8
p=—"—t*+H.
2
The ball hits the ground when p is 0. When p is 0,
9.8 9.8 2H H
-5 +H d —t*=H d #?="="
0 * o 2 o 98 49
So, when the ball hits the ground
P
4.9
On second before the ball hits the ground its height is 5z H. So
H 9
when ¢ = 4’9—1 then p:%H
So
2
gH——%( E—l) +H
25 2 4.9
So
9 H 2
o =—49(15 =~ =VH+1) + H = —H + 2VAVH 49+ H = 2V19VH — 4.9.
25 49 4.9
So

%H—Q\/ OVH +4.9=0.
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So
21/4.9 + \/(2\/4.9)2 -32(49) 2v49+ \/4 4.9 —-4-4.95
VH = 9 = 18
2.2 18
25 25
VA9 L
16 EX 5v/4.9
B 2v4.9+2v4.9¢/ 5 24 /4.9(1 + %) B 25 B
= 18 = 18 =\ —\or
9F bES 1
25 25 \/497)g gm
25
So H=25-490r H=2-49. O

4.2 A cooling model
Example 4.4. (Cooling model) Let k, T, Ty € R. Solve the equation

dT
i —k(T —T), assuming 7'(0) = Tp.
Proof. Since
1 dT 1 dT
—— = —k th ———dt = [ —kdt
(T —T,) dt o / (T —T,) dt /
and
log(T' — Ts) = —kt + C, where C' is a constant.
So
T-T, = e FHC = ce*kt, where c is a constant.
So
T =T+ ce ™, where c is a constant.
Then
To=T0) =Ty 4 ce *0 =T, + ¢ so that c=Ty—T,.
So

T =T+ (T — Ts)e ™, where ¢ is a constant.

O

Example 4.5. (Cooling model) A roast turkey is taken from an oven when its temperature reaches
85C and is placed on a table in a room where the temperature is 22C. It cools at a rate proportional
to the difference between its current temperature and the room temperature.

(a) If the temperature of the turkey is 60C after half and hour what is the temperature after 45
minutes?

(b) When will the turkey have cooled to 40C?

Proof. Idea: The change in temperature is propotional to current temerpature — room temperature.

dr
i k(T — R), where k is the proporition.
50 dt 1 dr
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So
log(T' — R) = kt +c, where ¢ is a constant.
So
T — R = eMHe = ¢l = CeM, where C is a constant.
So
T =CeM + R.

If t =0 then T =85 = CeFY 422 = C' + 22.. So
C=8-22=63 and T = 63" +22.
If t = L then T = 63¢*2 + 22 = 60. So

_60—22 48
63 63

ek

[N

and %k = log (%) and k= 2log (%).

So

48
63

T = 63e218(53)t 1 29,

(a) If t = 2 then

. 3 3
T = 63¢2°8(5)7 + 22 = 63¢3 18 4 22 = 63 (éog(%)) 2192 = 63(%) 2 492,

48

= then 63e 637" + = 40. do
b) If T = 40 then 63e21°8(53)t + 22 = 40. S

40 -22 18 48 18

and 2log(—=)t = log (@)

e2log(g5)t — - -°
63 63 63

So s
. log(g3)
210g(%)

Example 4.6. (Tree growth model) Let a, b, hy € R. Solve the equation

Z—ZL = a(l — bh), assuming h(0) = hy.

Proof. Since

1 dh 1 dh
—_—— = th —b)—dt = —b)dt
1—ohydt e /1—bh( ) a /a( )
and
log(1 — bh) = —abt + C, where C' is a constant.
So
1 — bh = e~ ®tHC — (Cpmabt — o—abt where c¢ is a constant.
So )
h = g(l — ce ), where ¢ is a constant.
Then
hozh(O):g(l—ce):T so that c=1—bhyg.
50 1 1 (1—bho)
= 2(1=(1-= —abtzi__io—abt'
h b( (1 —bhg)e™ ) 2 A e
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4.3 Interest and loans

Example 4.7. (Interest and loans) If you buy a $1,000,000 home and put 5% down and take out a
30 year fixed rate mortgage at 5% per year compute how much your payment would be if you paid it
all off in one big payment at the end of 30 years.

Proof. 1dea: The change in the money is .05 of its current amount.

M
DT _ 5.
dt

50 1 dM 1 dM

—— =.05 d ——dt = [ .05dt.

M at o M dt /
So log(M) = 0.5t + ¢, where c is a constant. So

M = e®te = ¢ 05t = 005t where C is a constant.

At time t = 0 we owe 1,000,000 — 50,000 = 950, 000. So
950000 = Ce®* =C  and M = 950000e%".

After 30 years we owe
M = 950000e %39 = 950000e!®  dollars.

Note that 950,000e!® ~ 4,257, 604.62. O

4.4 Radioactive decay

Example 4.8. (Radioactive decay) The majority of naturally occurring rhenium is 3'Re, which is

radioactive and has a half life of 7 - 10'0 years. In how many years will 5% of the earth’s %§7Re
decompose?

Proof. 1dea: The change in ¥"Re is proportional to the existing amount of 3" Re.

d

d—f = kR, where k is the proportion.
So 1 dR 1dR
So

log(R) =kt +c and R = eftte = ecekt = O,

where C' is a constant.
When t = 0 the amount is Ry. So

Ry =Ce"0 =C and R = Rpe.

When t = 7-10'° the amount is %Ro. So
1R0 — Roel 7107 and L_ ek 710",

2 2
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So (1)
1 10 log(5
So
log(%)t
R = Rpe7 10107,
We want to know when R = .05Ry.
log(l) 1 log(l) 1 l 1
05Ry = Rype 71010°  then 20~ e7100  and log(%) = 7(?91(021)015.

So
B 71010 log(%o)

log(3)
O
Example 4.9. (Radioactive decay - carbon dating) A sample of a wooden artifact from an Egyptian

tomb has a *C/19C ration which is 54.2% of that of freshly cut wood. In approximately what year
was the old wood cut? The half life of 14C' is 5720 years.

Proof. Idea: The change in C is proportional to the existing amount.

a“c
- ke, where k is the proportion.
50 aic a4c
1 1
So

log(M4C) =kt + ¢ and 10 = ektte = goekt — ekt
where K is a constant. Suppose that at t = 0 the amount of '4C is Cy. Then
Co = KefV = K and e Coekt.

The half life of "C is 5720 years. So,

1
at t = 5720, 500 = Cpelt = Cpek5720,

So
log(
1 k5720 and log(l) =k 5720 and k= gi(ﬁ
So .
log(})

40 = Che o7t .
Now there is 54.2% of the original '4C. So

los( 5 los(3 ,

((542) - Co = Cpes0t  and  (.542) = esm20 ",

SO
log(L ) .
Og(2)t and t—lo— g(542)5720

5720 log(3)

log(.542) =
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4.5 Population models

Example 4.10. (Population model) Let k, h € C with k # 0. The elements p € C((¢)) which satisfy
the equation

—=kp—nh
a ~ "
are
p= %(ekelekt +h) = Cet + %, where C' is a constant.
Proof. Since
L9y then Llog(hp—h) = t+ h i tant
— = en +lo —h) =t+c1, where ¢; is a constan
(kp—hydt B OB b ' ’
and
p= %(ekqekt +h) = Cet + %, where C' is a constant.

Then Do = C+ % and
p= (e + h) = (po — )e* + f, where po = p(0).

PHASE PLOT and SOLUTIONPLOT
O

Example 4.11. (Population model) Let a,k,h € C with k # 0 and a # 0. The elements p € C((t))
which satisfy the equation
dp 1
D (1= 1y —h
o = k(1= 2p)

are
a+p

(1 — Ceal@=A)t

p=-B+ , where C is a constant,

and where p? —ap + 22 = (p — a)(p — B) with

2~ dha/k — /a2 — dhajk
a=2T “2 ok na g 2TV afk. (4.1)

Proof. Let a and 8 be as in (4.1)).

dp o _ ko, ha
g = aoP + kp h—a(p +ap—52)
and 1 d 1 1 1 d
Pk . P _ %
- T _=E ives — -— ==
(p—a)p—p)dt & a—6<p—a p—B)dt a
so that N
— k
log(p — @) —log(p — B) = E(a = B)t + 1 and ];_ 5= Cealo=Pt (4.2)

where ¢; and C are constants. Then

a+ BCeal@=P
(1 — Ceale=B)ty

p(1— Cef(a_ﬁ)t) =a+ BC@E(‘X—B)t and p=
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So
p=-0B+ a t b , where C' is a constant.
(1 — Ceala=P)ty
From (4.2))
bo —«
C= .
po— B

PHASE PLOT and SOLUTIONPLOT
O

Example 4.12. (Population model) If the bacteria in a culture increase continuously at a rate pro-
portional to the number present, and the initial number is Ny find the number at time ¢.

Proof. Idea: The change in bacteria is proportional to the amount of bacteria.

dB
i kB, where k € R, is the proportion.

What could B be?

1db 1dB

So log(B) = kt + ¢, where c is a constant. So
B = eltte = ¢eft — Ceft, where C is a constant.
At time t = 0,
B=Ny=Ce" =,

So C' = Ny and
B = Nye*.

O
Example 4.13. (Population model) A pharmaceutical company grows engineered yeast to produce

a drug. The yeast is continuously harvested to collect the drug.
The population p (in millions of yeast cells) at time ¢ days is described by

dp _

P 3p — 2, for p € RZU and t € Rzo.

(a) For what initial polulation sizes p(0) will the yeast population eventually die out?

=

Find the time taken for the population to die out, if the initial population size is p(0) = %

@)

o
~ — ~— ~—

Find all equilibrium solutions.

Draw a phase plot,

[
&

Sketch the family of solutions of the ODE, including any equilibria.

Describe the long term behaviour of solutions with initial conditions

(i) p(0) = 3;
(i) p(0) = 1;

(d) Determine the stability of the equilibrium.

—
o
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Proof. The phase plot determines the solution plot.

dx

& AX
A
d—X>O
dt equilibrium
x(t) =2/3
23 = .
- »x 2/3
172
dx
=<0
dt
. : . : dp _
Phase plot: Graph of % as a function of p Solution plot: Solutions of % = 3p — 2

and

(A) If the initial population is less than % then the population decreases and eventually dies out
as times passes. In particular, if the initial population is 1 then the population decreases and

2
eventually dies out.

B) If the initial population is greater than 2 then the population gets larger and larger as time
3
passes. In particular, if the initial population is 1 then the population gets larger and larger as
time passes.

(C) If the initial population is % then the population will stay % forever, but this equilibrium is
unstable as any chance aberration will cause the population to start to increase and grow forever,
or to start to decrease and then eventualy die out.

Since
1 dp

1 dp
—_—— =1 th ———dt = [ 1dt.
(Bp—2) dt o / (3p—2) di /

Since g—p(%log(?)p— 2)) = 317%2 and [1dt =t + c then

% log(3p—2) =t+e¢, where cis a constant,

Then
3p—2=e*e3 = Ce¥  and p= %C’e?’t + %, where C' is a constant.
(b) Assume that the initial population is 3. Then p(0) = § and § = 1C + % so that C' = —3. So
plt) = b + 3
Then
p(t) =0 when 3t =log(—3 - (—6)) = log(4).
So the population dies out when ¢ = £ log(4). O

Example 4.14. A population is modelled by the logistic model

dp _

=p(1-1
- p(1—3p),

find the equilibrium solutions, determine their stability and sketch the family of solutions for the ODE.
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Proof. The phase plot is

dp
E>0
1+
. . . . . »p
0 2 4
dp
—<0
s
Graph of % as a function of p
and the phase plot indicates that the solution plot is
P
A
p0)=4
p(0)=0 .

Solutions of % =p— %p2

The equilibrium solutions are p = 0 and p = 4 since these make p(1 — %p) = % =

(A) If the initial population is greater than 4 then the population decreases to 3 as t — oo,
(B) If the initial population is less than 4 then the population decreases to 3 as t — oo,

(C) If the population starts out at 3 then it stays 3 forever. This equilibrium is stable and is not
disturbed by small aberrations. After any emergency it will naturally return to the stable value

of 3 as time passes.
O

Example 4.15. (Population model) For a population described by the logistic model with harvesting

dp
(IO !

determine the long term consequences for the population predicted by the model.
Proof. The equation is

@_ (1_1 ) —

- =D = +p—5=—100"—4p+3)=—3(-D(p-3).
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Thus the phase plot (the plot of % versus p) and the solution plot (the plot of p versus t) are

Phase plot:

p
dp A
dt
A
dp
—>0
1 dt
4 ) . p(0)=3 P—
1 3
dp dp
—<0 —<0 0=1 ——
St dt PO =
\\ \\ pt
* dies out! dies out!
Graph of % as a function of p Graph of p as a function of ¢

(a) If the initial population is greater than 1 then the system is stable and the population approaches
3 in the long term.

(b) If the iniial population is less than 1 then the population will die out in the long term.

(c) If the initial population is 1 then the population will stay constant at 1, but this is not a stable
situation, any small deviation will cause the population to either start to die out, or start to
increase to 3.

O]

4.6 Mixing

Example 4.16. Effluent (pollutant concentration 2g/m3) flows into a pond (volume 1000m?, initially
100g pollutant) at a rate of 10m?/min. The pollutant mixes quickly and uniformly with pond water
and flows out of the pond at a rate of 10 m?/min.

(a) Find the concentration of pollutant in the pond at any time, and intepret the long term behaviour
of the system.

(b) Derive an ODE describing the amount z of pollutant in the lake at time ¢ (minutes), if the input
flow rate is decreased to 5 m3/min.

Proof. (a) The volume of water in the pond is
V = 1000.

Let p be the amount of pollutant in the pond. Then

dp P P 1 .
2. 10— -2 .10=20— — = ——(p—2000 th p(0) = 100.
dt 1000 100~ 1007 ), with p(0)
So
1
log(p — 2000) = —mt +c, and p = 2000 + Ce~ oot with C' = e¢ == —1900.
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The concentration of pollutant in the pond is

conc. (g/m3)
A

K= 1(% =2 1.9¢ 100,
0.1+ > (min)
Graph of K as a function of ¢
(b) The volume of water in the pond at time ¢ is
V = 1000 — 5¢.
Let p be the amount of pollutant in the pond. Then
dp 4 10p
—=2-5-=-10=10— ———.
dt |74 1000 — 5t
At time ¢ = 200 the pond is empty. The equation is
dp 10
— — |p=10
a (1000 - 5t)p ’
which can probably be solved with an integrating factor (product rule). O

4.7 Oscillating motion: swings and springs

Example 4.17. A %kg mass streches a spring hanging from a fixed support by 0.2m. The mass is
released from the equilibrium position with a downward velocity of 3m/s. Find the position of the
mass y below the equilibrium at any time ¢, if the damping constant [ is

Proof. Let y(t) be the position of the mass at time ¢, let a(t) be the acceleration of the mass at time
t and let F' denote the force on the mass.

d2y

7o) =q and F =ma=my".

Let
g = 9.8m/s be the acceleration due to gravity,

k be the spring constant,
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B be the damping constant,
s be the position of the mass at rest.

Then

my” = F = (gravitational force) + (restoring force) + (damping force)

=mg+ (—=k)(s +y) + (=8)y' = —ky — By

When the mass is at rest then y” = 0 and v = 0 and y = 0 so that

0=mg+(-K)(s+0)~5-0 and s5="%
In our case,
40
20 9.8
m =13 and k:%:A‘QOQ =40  so that Ry" + By + 40y = 0.

In our case the mass is released from the equilibrium (rest) position with a downward velocity of 3 so
that

y(0) =0 and  ¢/(0) = 3.

(a) If B =0 then the equation is y” + 49y = 0. Let D = %. Then the equation is
(D—=Ti)(D+Ti)y=0 which has solutions y=cre™ 4 cpe

Y

where ¢1, o € C. Since y(0) = 0 then ¢1 + ¢ = 0 and since y'(0) = 3 then 3 = Tic; — Tice. So

3 it ie—'ﬁt — §Sln(7t>

V=14 " 14 7

y
A

3
E

Equil.

<0y

< w

Simple harmonic motion
Graph of y = 2 sin(7t)

(b) if B = 180 then the equation is y” + 4y’ + 49y = 0. Let D = %. Then the equation is
—(—2+ 5 —(—2+4+091)) = which has solutions =cre\’ ‘ + coet T ' ,
(D — (=2 +3))(D— (—2+3) =0 hich has soluti y (—2+3v/5i)t (-2-3V5i)t

where ¢y, ¢z € C. Since y(0) = 0 then ¢; 4 c2 = 0 and since 3/(0) = 3 then 3 = (—2+ 3v/5i)c; + (—2 —
3v/5i)ca. So
3 o 3v/5it 3 —2t_—3+/5it 1o
= ——e “e ———e “e = —e sin 3\/§t .
Y 6+/5i 6+/5i V5 ( )
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-

Equil.
_\/_lg’ Weak damping
Graph of y = %e‘z’f sin(3v/5t)
(c) if 8 =% then the equation is y” + 14y’ + 49y = 0. Let D = %. Then the equation is
(D+7)(D+7)=0 which has solutions y=cire 4 cyte ",
where ¢1, co € C. Since y(0) = 0 then ¢; = 0 and since y'(0) = 3 then 3 = —7¢; + ¢2. So

y = 3te ",

p<

0.15¢
0.1 ¢ critical damping

005«

Equil. . .
05 1
Graph of y = 3te™ ™
(d)if g = % then the equation is y” 4+ 50y’ + 49y = 0. Let D = %. Then the equation is
(D+1)(D+49)=0 which has solutions y =cre ' + e

where ¢q, ¢ € C. Since y(0) = 0 then 0 = ¢; + ¢2 and since y'(0) = 3 then 3 = —¢; — 49¢3. So

_ 3 —t 3 —49t 1 —t 1 —49¢t
“ RS T wY T 16

Y

y
A
0.06¢

0.03¢ strong damping

Equil.
. . >t
2 4

t 1 _—49¢

Graph of y = 1—166_ i6€

O]

Example 4.18. Apply an external downwards force f(t) = 222 sin(7t) in Example (a) and (c).
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Proof. (¢) The position y of the spring satisfies the equation y” + 14y’ + 49y = @ sin(7t). This has
general solution

y=Ae "+ Bte " — %cos(?t), where A and B are constants.

The initial conditions y(0) = 0 and y/(0) = 3 give that A = 2 and B = 5. So the position of the mass
on the spring at time ¢ is

y=2e"+ Ste” Tt — Zcos(Tt) = (24 5t)e T — 2 cos(Tt).

»<

4 H tributs
041 o GS(H) contributes

Equil.|

04+ oscillatory motion due to PS(IH)
Graph of y = (£ 4 5t)e™ " — 2 cos(7t)
(a) The position y of the spring satisfies the equation y” +49y = &70 sin(7t). This has general solution
y = Acos(Tt) + Bsin(7t) — 2t cos(7t), where A and B are constants.
The initial conditions give A =0 and b = % so that the position of the mass on the spring at time ¢ is

y = 2sin(7t) — 2t cos(7t).

o Pt

—5e
Resonance

—10e

Graph of y = 2 sin(7t) — 2t cos(7t)

4.8 Optimization
Example 4.19. Find the local maxima and minima of f(z) = 223 — 242 + 107 in the interval R 3-
Proof. The critical points are

(a) points where % is 0;

N NS s
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(b) points where f(x) is not continuous or not differentiable;

(c) points on the boundary of where f(x) is defined.

o o N\ e

If f(x) = 22% — 242 + 107 in the interval Ry 3 then x = 1 and = = 3 are critical points of type (c),
and
df

¥ = 6xz® — 24 and 63:2—24:0whenm2:%4:4.
T

So xz € {—2,2} when % is 0. So z = 2 is a critical point in Ry 3.
Critical point = = 1:
af
dx

So f(z) is decreasing at x = 1. So (from the picture) z = 1 is a mazimum.

|, =(62>—-24)]  =6-24<0.

y

Critical point = = 3:
)
dx
So f(z) is increasing at = = 3. So (from the picture) z = 3 is a mazimum.

z=3 (6I2724)]x:3 =6-32-24=30>0.

y
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Critical point x = 2:

zf
dx?

daf

d:z:] 2 = 0 and

oy =122] _, =24 >0.

So f(z) is slope zero and concave up at x = 2. So z = 2 is a minimum.

y

O]

Example 4.20. An enemy jet is flying along the curve y = 22 + 2. A soldier is placed at the poit
(3.2). At what point will the jet be at when the soldier and the jet will be the closest?

Proof.

d (3.2

If the jet is at the point (p, q) then the distance between them is

d=+/(p-3)2+ (¢ -2

The point (p, q) is on the curve y = 22 + 1 so ¢ = p? + 2.
Sod=+/(p—3)2+ (p2+2—2)2.
We want to minimize d (as the jet moves, i.e. as p changes).
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The distance d will be minimum at the same time that d? will be minimum.
So we can minimize d2.

@ =(p—-3°+ ") =(@-3)7°+p"

Find a critical point. When is

dd?
o 2p—3)+4p> =4p> +2p— 6= (p — 1)(4p*> + 4p + 6) equal to 07
p
_d(d?) : i . : .
Since p ]pil = 0 then p = 1 is a critical point. The picture helps confirm that when the jet is at
D Ap=
(1,3) (i.e. p=1 and g = 3) then the distance to the soldier is minimum. O

Example 4.21. Maximize the volume of a cone with a given slant hieght. Show that the angle of
inclination is tan~—!(y/2).

‘ ¢ =slant height,
% h 4 f = angle of inclination,
K — sin(6),
p = cos(f).

The volume of a cone is

Proof.

SIS

1 1 1
V= §7TT2h = §7r(€ sin(f))%h = gﬂ'(ﬁ sin(#))2¢ cos(6).

The value of ¢ (the slant height) is fixed. We want to maximize V as 6 changes.
av dim ell® sin(0)? cos(6)
do do
1
= §7r€3(2 sin(#) cos(6)? — sin(8)? sin(6))

= %7%3 sin(6)(2 cos(0)? — sin()?),

A critical point is when % is zero: where 2 cos(6)? — sin(0)? = 0 or sin(f) = 0.

So 2 = tan(#)? or § = 0.
So v/2 = tan(f) or § = 0.
So 6 = tan"!(1/2) or 6 = 0.

When 6 = 0 the cone is infinitely thin which does not have maximum volume.
So # = tan~!(1/2) maximizes volume. O

4.9 Lengths and surface area
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Idea: Use the grid to slice up the curve into little pieces.

M

dy%is has ds = +/(dz)? + (dy)?.

Add up the lengths of the little pieces with an integral.

Each little piece

Example 4.22. Use integration to find the length of a circle of radius r.

Proof.

The length of the circle is 4 times the length of

(a) Divide this part of the curve into little pieces ¥ l}js .

(b) Each little piece has length ds = +/(dz)% + (dy)?.
(¢) Add up the lengths of the little pieces with an integral.
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[ v
@ @R,

x=0 dx
- xT=r dy 9
—AZO \/1"‘(%) dCU
T=r o0 9
= \J1+(—5) dx,
/xO ( 23/) !

dy _
de

since

d
2?4ty =7 gives 2z + 2y 0 which gives d—[: -
x

So

So the total length of the circle is

Example 4.23. Find the length of the curve x =t —sin(t), y = 1 — cos(t), where t € Rg o]
Proof. (a) Divide the curve into little pieces ¥ %is .

(b) Each little piece has length ds = +/(dx)? + (dy)?.

(¢) Add up the lengths of the little pieces.

116



Calculus Examples, Arun Ram, version: January 28, 2025

I
5
—
|
(@)
[}
wn
—~
~
~
S~—

V)
_l_
n
=
=
—~
~
S—
[\
U
<~

t=27
:/ V1 —2cos(t) + 1dt
t—

t=27
:/ /2 — 2cos(t) dt
t

Example 4.24. Find the length of the curvex = %y

ds
es dy% )
X

Proof.  (a) Divide the curve into little piec

5
3

—%y% fromy=0toy=1.

(b) Each little piece has length ds = +/(dz)? + (dy)?.

(¢) Add up the lengths of the little pieces.
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y=1 y=1
/ ds = / (dz)? + (dy)?
y=0 y=0
y=1 dx)? 2
[T T,
d
y=0 Yy
/y:1 (dz)* + (dy)*
y=0 (dy)
y=1
— / (Ey2 414y
y=0 dy
y=1 1
:/ \/(y§—4y_§)2—|—ldy
y=0
y=1 \/ 4 1 1 4
= Y3 ——+ —y 3+ 1dy
/yzo 2 16
/yl\/ IR
= Y 5T TRy Y
y=0 2 16
y=1 1
— / (y% + —y_§)2dy
y=0
y=1 1 2
=/ (y5 + 7Y ) dy
y=0
_3§ 1 ;y_1_3 3 _12 15_§
=(Gys g )y =5 T~ O+0 =55+ 55 =15

O

Example 4.25. Let a € R-g. Find the surface area obtained by rotating the curve determined by
x = acos(f)?, y = asin(f)? about the z-axis.

Proof. To graph the curve:

1 1
cos(6)® = T and sin(0)® = g So cos(f) = (E)g and sin(f) = (g)g.
a a a a
Since cos(6)? + sin(#)? = 1 then
2 2
(f)§ + (g)§ =1, which is S +y§ — a3,
a a
24y2=q? xt+yl=aql a 2. 5 2
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So when this is rotated about the z-axis

y

Slice: @
ds

Surface area of a slice: TR? ds.
Add up slices from x = 0 to £ = a and then multiply by 2.

r=a
Surface area = 2 / mR% ds

= 0
=2 / V/(do)? + (dy)?
_ + (dy)?
= 2/ d9 do
r=a dy
=2 / ) + ( d9) o
Since # = acos()? and y = asin(6)? then
dr 9 . dy ) 9
i 3a cos(#)” sin(0) and 0= 3asin(f)“ cos(6).

So

xr=

Surface area = 2/ my*\/(—3acos(9)?sin(f))2 + (3asin(h)2 cos(h))? df

=0

2/ ma’® sin(0)%/9a2 cos(0)4 sin(0)2 + 9a? sin(0)4 cos(6)2 d
=0

2/ o sin(#)%3a sin(6) cos(h) db
=0
:2/  3nd® sin(#)7 cos(8) db

=0

= 6ma

3sin(9)8} z=a
8

67TCL3 . acos(8)3=a
8 Sln(e)g] acosE9;3:O

37’(&3 . g7cos(f)=1
= 4 Sln(e) ]cos(@)zo

3

= 37;“ sin(6)°]
3

_ 37;“ sin(0)® —

=0

B

o=
0=
wa® | s 3ra
4 5 ( ) -

W

. 3
So the surface area is 3”4‘1 .
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4.10 Averages
Average of a bunch of numbers:
(a) Add up the numbers

(b) Divide by the number of values

Example 4.26. Compute the average of 1,2,3,...,100.

Proof.
r + 2 + 3 = 4 = + 97 + 98 + 99 + 100
100 + 99 + 98 + 97 + + 4 + 3 + 2 + 1
101 + 101 + 101 + 101 + + 101 + 101 + 101 + 101 = 10100

So
10100
1—}—2—1—3—|—~-+100=T:5050.

So the average is 1f5(1+2+4 3 + -+ + 100) = 3% = 50.5.

Example 4.27. Compute the average of 1, %, 3%, 3%, e 3% .
Proof. Since

A+z+a?+-- 420 -2)=1+z+22+23+-.- 427

g2 g3 B0 _ 51
—1_ 0
then 51
1
l+a4a? 4 4270 =7
11—z
S0 151 1 1
11 Liso 1—(3) -5 3— 30
1 — —_— .. —_— = prmm—
t3tmE o+ (3) 1 : 5
So the average is
1 1 1 1,50 1 3—35%5 3—g5 3
(1 (Z = . = ~ — = .03.
51( +3+32+ +(3) )) 51 2 102 100
Example 4.28. Estimate the average of 1, %, %, R ﬁ.

Proof. Since 1+ % + % + 4 % is the area of the boxes in the picture
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then 100
1 1 1 1 z=100
+ 5 + 3 + -4 99 = /1 ~dw og(m)]le 0g(100)
So

it e S e100) +
273 99 " 100 = & 100°

Since % + % + -+ 9—19 + ﬁ is the area of the boxes in the picture

then 100
1 13 1 =100
54—:--‘—#@ < /1 ;dwzlog(m)]le = log(100).
So 11 11
1 oot — 4 — < 1 +1og(100).
Tttty g = 1 1ee00)
Since
L (100)<1+1+1+ PR (100)
PR O — — PR — — O
100 '~ & =1ToTy 99 " 100 = &
then 11 1 11 11 1
e (—— 4+10g(100)) € —— (14 = 4 =4 — + —) < —(1 + log(100)).
101 (qog T108(100)) < 757+ 5+ 5+ + g5+ 755) < 7g7 (1 +10g(100)
So the average of 1, %, %, e ﬁ is
]
between 0g(100) 1 and M L
101 10100 101 101

Example 4.29. Find the average value of f: Rjp 2} — R given by f(x) = sin(x)%

Proof.

y =sin%x

oy
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The average value is

/0 : £(z) da

jus

2 9
sin(z)” dx

S—

-0 ™0
_ % /0 ; %(sin(a})Q + sin(z)?) de
_ 72r/0 %(1 ~ cos(x)? + sin(z)?) dz
_ % /0 * (1 = (cos(x)? — sin(2)?)) dz
_ i/og@ ~ cos(22)) da
SECE <Ol
G G

So

is the same area as

4.11 Center of mass

A moment and a center of mass are the same thing.

The center of mass is the average position of the mass in an object.

(position of mass) - mass
Center of mass =

mass

/ (position of a slice) - mass of a slice

/ mass of a slice

Note:
mass of slice = (volume of slice) - (density of the slice).

Center of mass and center of gravity are the same thing.
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Example 4.30. Find the center of mass of a solid hemisphere of radui r if its density at apoint P is
proportional to the distance between P and the base of the hemisphere.

Proof.

(a) Volume of a slice: mR? dy;
(

b) Density of a slice = Height of the slice;

(c) Mass of a slice = mR? dy(height of slice)

(d) Add slices from y =0 to y = 7.

)
)
)
)
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/ (center of mass of slice) - (mass of slice)

Center of mass =

/ (mass of slice)

y=r
/ ymR? dy(height of slice)
y:

y=r
/ 7 R? dy(height of slice)
y

So the center of mass is at (07 %)

Example 4.31. Find the center of gravity of the arc length of one quadrant of the circle.

¥y

x =rcosf
y =rsinf

Proof. The center of mass will be on the line y = = so its z-coordinate and its y-coordinate will be

the same.

d
Chop up the curve into little pieces % %g
X

(a) The mass of the little piece is (density) - ds.
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(b) Add up the little pieces from § =0 to 6 = 7.

0=%5
xd ds
z-coordinate of center of mass = fe;gﬂi (where ¢ is the density)

Jo—o® 9 ds
_ Jomo’ 20/(d)? + (dy)?
Jomo’ 6:/(dx)? + (dy)?

g=x
_ Jo—o® 6 (%)2 + (%)zde

=5 )2 dy\ 2
Jo=o® 0/ (35)" + (3)"dv
oo o1 cos(0)y/(—rsm(0))2 + (r cos(0))2d6
2 6/ (=rsin(0))2 + (r cos(0))2 df
B f99:0§ 61 cos(0)/r2 sin(0)2 + 12 cos(6)2d6
90::0% §y/r2sin(0)2 + 12 cos(0)2 db
B f::oi or cos(0)rdb
9o orde

_ or? sin(G)]z:O?

6]y
B érsin(%) — 6r? -0
org —or-0
ot
ory

O]

Example 4.32. Find the center of gravity of the area bounded by the curve y = z — 2% and the line
r+y=0.

Proof.

Slice: L

a) mass of slice: (density) L dz;

b) y-coordinate of center of mass of slice is at halfway between top and bottom;
(c) z-coordinate of center of mass of slice is at x-position of slice;

(d) Add up slices from = = 0 to the z-value at the right intersection point.

(
(
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When z 4y =0 and y = 2 — 22 intersect y = —x = 2 — 2.

So 22 — 2z = 0, So z(x —2) =0. Soxz=0orxz=2.

=2
/ (z-position of slice)d L dz
x

=0
=2
/ 0L dx
/ ytop ybottom) dz

/ ytop*ybottom) dz
x
x

x-coordinate of center of mass of area =

(where § is the density)

(x —2%) — (—z))dz

L

/ (e —at) = (o)) da

=2
/ 26 (2x — x?) dx
_ Jx=0
- =2

52z — 2%) dx
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=2
/ (y-position of slice)d L dx
=0 (where ¢ is the density)

r=2
/ 0L dx
x=0

r=2 Ytop — Ybott

o ottom

/ ((%) + ybottom) 5(ytop - ybottom) dx
=0

y-coordinate of center of mass of area =

/::2 s(U=0 = ()@@ - ) (~a)) do

=0

=0
r=2 2 r=2 3 4
2
/ 5<—$—>(2m—x2)daz / 5(—i+£)d$
_ Jz=0 2 _ Jz=0 2 2
- =2 - =2
/ 62z — ) dx 62z — 2?) dx
=0 =0
x x° 2
(5(—— —) _ 2t | 28 -1 l) 1
cti)leo_-Z+5 2(-it5) 2(-4)
- 3 - 23 3 1 - 5
T —2 24 _ =~ 29(2 — 3 2
5(302 _ ?)]E_O 3 ( 3) 3
_—23 3 3
©5-20  5-10 50
: 3
So the center of mass is at (1, —%). O
5 Limits
5.1 Limits by algebra
2
—14
Example 5.1. Evaluate lim x 9.
z=7 x—1T
Proof.
249 -7 7
lim i EZO0@HD) e =TT =14
=7 x—T =7 xr—7 T—7
O
> — 3125
Example 5.2. Evaluate lim xi'
T—5 r—5
Proof.
. ox®=3125 . 25" (2 —5)(a*+ 523 + 5%2% + 532 + 5%)
lim —— = lim = lim
=5 x—5H =5 T —5H T—5 r—>5
= lir%:n4+5x3+52:c2+53x+54:54+54+54+54:55 = 3125.
z—
O
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252
Example 5.3. Evaluate lim
T—a Tr—a

b2

Proof.
15/2 _ 45/2 (1:5/2 _ a5/2) ($5/2 + a5/2) 25— ab 1
lim lim = lim .
e r—a w—=a (r—a) (JU5/2—|—CL5/2) zoa x—a x5/2 — gb/2
i (z —a)(zt + ax® + a*2? + a®x + a*) 1 _ ot + ax?® + a%2? + @z + ot
= m I —a 252 1 g2 ahe 25/2 1 ¢5/2
a*+a* +a* + a* + ot 5at 9 3/9
= 5 = = —Q / .
a®/2 + ab/? 2a5/2 2
Particularly useful limits
Example 5.4. Evaluate lim Sy
z—=0 X
Proof.
hmsinx_hmx—g—i-%?—%—l-%—-”
z—0 T _xﬂo T
2 4 6 8
) T T x x
—ilil%)l_ﬁjLﬁ_W*&_"‘—1_0+0_0+0_'”—1‘
-1
Example 5.5. Evaluate lim M.
z—0 X
Proof.
2 4 6 8
L)1 (- o) -
—0 x —0 x
: : .1’2 x4 $6 .T8
= lim — Ml -
z—0 T
3 5 7
r x T T
= 1i 4z 2 4T = — —...=0.
Iim — 2'+4' 6!+8! 0+0-0+0 0
e —1
Example 5.6. Evaluate lim .
z—0 x
Proof.
2 3 4
b €7 I+z+L+%+24+---) =1
z—0 T z—0 X
PRI R LR TN
— lim of T 3T T
z—0 X
2 3
=l 14 S+ e = 140+ 0 4040+ = 1.
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log(1
Example 5.7. Evaluate lim M.
z—0 X

Proof. Let y = log(1 + z). Then

eV=1+z, zxz=¢Y-1, and y—0asxz—0.
50 log(1 1 1
z—0 T y—=0e¥ —1 y—0 Ly 1

Example 5.8. Evaluate lim (1 4 z)'/*.

z—0

Proof.
. . 1 . 1 . log(1tz)
lim (1 + 2)/% = lim (elog(lﬂ”)) /% — lim ex 98049) = Jim et = ¢
z—0 z—0 z—0 z—0

Note: n — oo means as n gets larger and larger.

Example 5.9. Evaluate lim (1+ 1)".

n—o0

Proof. Let x = % Then z — 0 as n — co. So

n—o0

1 n
1le+-> = lim(1 +2)Y/% =e.
n z—0

sin(m)'

Example 5.10. Evaluate lim

=T X — T

Proof. Let y=ax —m. Then y — 0 as x — 7. So

sin(x) — lim sin(y + ) sin(y) cos(m) + cos(y) sin(7)

lim = lim
=T —m  y—0 Y y—0 Yy
 lim sin(y)(—1) + cos(y) - 0 ~ lim — sin(y) _ 1
y—0 Yy y—0 Yy
2
-7 11
Example 5.11. Evaluate Ill)rgo %
Proof.
o2 —Tz+11 . 1-T41122 1-0+40 1
lim ——— = lim — = = —.
sin(3x)

Example 5.12. Evaluate lim — .
z—0 sin(Hx)
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Proof.
s?n(?)x) — lim sin(3x) B — Sw 1 lim sin(3z) . 1 3z
a—0sin(br) 220 3w sin(bx) bxr 2—0 3z sin(bzx) bx
%4
i 1 1
:hmsm(?)x) ‘ §:1.7'§:§'
a0 3z sin(bz) 5 1 5 5

. 1—=z
Example 5.13. Evaluate ,71;1—>Hi W

Proof. Let y = cos™'x. Then y — 0 as x — 1 and o = cosy. So

lim l—z lim 1 — cos(y) ~ lim (1 —cos(y)) (1+cos(y))
a—1 (cos™H(x))?2  y—0 12 y—0 Y2 (1 + cos(y))
~ lim (1 — cos(y)?) ‘ 1 ~ lim sin(y) sin(y) 1 _1.1. 1
y—0 Y2 1+cos(y) vy=0 vy Yy 1 + cos(y) 2

flz+Ax) — f(x)

Example 5.14. Evaluate Alim when f(x) = sin(2z).
T—

Az
Proof.
lim flz+ Az) — f(x) — lim sin(2(x + Az)) — sin(2x) — lim sin(2z 4+ 2Ax) — sin(2x)
Az—0 Ax Az—0 Ax Az—0 Ax

. sin(2x) cos(2Ax) + cos(2z) sin(2Az) — sin(2z)

= lim
Az—0 Az

L ) (cos(2Az) — 1) sin(2Ax)
= Alm sin(2e) - = Heos(2)— =
L ) (cos(2Ax) — 1) sin(2Ax)
= Al;}rgo sin(2x) Y va— 2 + cos(2z) ToAr 2

=sin(2z)-0- 2+ cos(2x) - 1 -2 = 2cos(2x).

flz+ Ax) — f(x)

A when f(z) = cos(z?).

Example 5.15. Evaluate lim
Azr—

130



Calculus Examples, Arun Ram, version: January 28, 2025

Proof.
cos((z + Ax)?) — cos(z?) . cos(2? 4+ 2zAz + (Az)?) — cos(x?)
im = lim
Az—0 Ax Az—0 Az
— lim cos(x?) cos(2zxAx + (Ax)?) — sin(z?) sin(2zAz + (Ax)?) — cos(z?)
N Ai*)(] Ax
L 2y (cos(2zAz + (Az)?) —1) o2y Sin(2zAz + (Ax)?)
= dimgeos?) ¥ o)
L 5. (cos(2zAz + (Az)?) — 1) 2zAx + (Ax)?
N Alglglgo cos(a”) 2xAx + (Ax)? Ax
: 2 2
B sin(:z:Q)Sln(QxAx + (Az)*)  (2zAz + (Az)?)
20Az + (Ax)? Ax
L 2y (cos(STUFF) —1) w2\ 8in(STUFF)
= Alglvgo cos(z*) STUFF (2z + Az) — sin(z )7STUFF (2z + Az)
= cos(2?)-0- 2z —sinz? - 1- 2z = —2zsin(z?),
where STUFF = 2zxAx + (Az)?) — 1.
Example 5.16. Evaluate lim fo+ Ax) = flz) when f(x) = z”.
Az—0 Az
Proof.
x+Az _ @ log(z+Ax)\z+Ax _ (log(z)\x
lim (z+Az) T = lim (e ) (e )
Az—0 Az Az—0 Az
i e(z+Am) log(z+Az) _ P log(z)
= Arso Az
z+Ax) log(x+Ax)—x log(x
iy orloE) (el ) log( )—wlog(@) _ 1)
Az—0 Ax
. ) (elzt+Az)log(z+Az)—zlog(z) _ 1) ((z + Az)log(z + Az) — zlog(x))
= lim e*le(®) :
Az—0 ((z + Az)log(z + Az) — zlog(z)) Az
STUFF
o alog(a) [ € — 1\ [zlog(xz + Az) — xlog(x)
Al e ( STUFF ) ( Az +log(w + Aa)
STUFF _ 1 (1+ g)) — zlog(x)
BT zlog(z) [ € 1 x1og ($ x &
Alme ( STUFF > ( Az + log(z + Ax)
STUFF _ log(z4 log(1 + M)) — zlog(x)
BT zlog(z) [ € 1 J}( 0g\T+ 10g x g
Alme ( STUFF > ( Az + log(x + Az)
STUFF _ log(1 + Az)
BT zlog(z) [ € 1 x Og( z
Alm e ( STUFF > ( Ay tlosle+Aq)
STUFF _ log(1 + M)
— 1 zlog(z) [ € 1 Og( z
Aligoe ( STUFF > ( % + log(z + Az)
e 18(®) . 1(1 + log(z)) = 2 + 2% log(z),

where STUFF = (z + Axz) log(x + Az) — zlog(x).

131



Calculus Examples, Arun Ram, version: January 28, 2025

5.2 Additional limit examples
Example 5.17. Evaluate lirn1(6:r2 — 4z + 3).
T—r

Proof.
1ini(6x2—4x+3):6-12—4-1+3:6—4+3:5.
Tr—r

5
Example 5.18. Evaluate lim o

z—0 X
5¢ 72 0
Proof. lim — = —.
roof- Iy " =0 -
lim—xz lim 5 = 5.
z—0 T z—0
1
Example 5.19. Evaluate lim ﬁ
z—0 2T
17 0
Proof. lim STz
z—0 2x 0
. 17x . 17 17
V 1-1
Example 5.20. Evaluate lim L
z—0 X
Proof.
. Vr+1-1 . Wr+1-1)(14+z+1)
lim — = lim
z—0 T z—0 T (\/ 1+xz+ 1)
14+z—-1
=lim ———
x—0 x(\/m + 1)
T
=lim ——
e=0 z(y/14+xz+1)
1
R
20T o+ 1
B 1 1
V1041 2
24
Example 5.21. Evaluate lim x 9.
x—=7 r— T
Proof.
2
—4 _
im &= gy B2 0@ED 77— 14
=7 T —7 =T T—17 T—7
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5 312
Example 5.22. Evaluate lim S il 3 5.
r—5 xr—25

Proof.
x5 —3125 . 2% —5°
im ——— = lim
r—5 r—5H =5 r —H
5 (z — 5)(a* + 52 + 5%2% + 53z + 5%)
= lim
r—5 r—5

= lim (2! + 52® + 5%2? + 5%z + 5%)
x—5
= 5%+ 5+ 5% + 5+ 5% = 5° = 3125.

5 5
2

Example 5.23. Evaluate lim e
T—=a T — Q

Proof.

5
2

[Slfey

)
)

_ws—ad . (27 —ad)(
lim ——— = lim
r—a T —a r—a (x—a) (
5_ 5
= lim (@ a). = =
v=a (r—a) (12 4a2)
. (z—a)(z* + ar® + a®2? + aPv + a?)
= lim .

1
r—a (v —a) (m% +a

Nt N

+a
+a

Nt N

T
T

—_

— lim (z* + ax® + a?2® + a3z + o)

T ioa (w% + ag)

(a'+a*+a'+a*+a?)  Ba
(ag + ag) 2a

W~

T —1
Example 5.24. Evaluate lim ¢ .
z—0 T

Proof.

et 1 <1+z+%x2+%m3+$x4+-~>—1
lim = lim
z—0 T z—0 X

1,2 1,3 1.4

z—0 T

11 1
— lim1+ — T2y — a3
e S TR T T

=1404+0+0+--=1

-1
Example 5.25. Evaluate lim M.
z—0 X
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Proof.
1,2, 1,4_ 1.6
cos(z) —1 . (1—530 Tar - E” +"'>_1
lim ————— = lim
z—0 T z—0 X
z—0 X
L 1 15 15 15
7911—%(_5964_13; —a” —i-gx —)
=—0+0-04+0-0+---=0.
. sin(z)
Example 5.26. Evaluate lim .
z—0 x
Proof.
. 1,3, 1.5 1.7, 1,9
hmsm(a:):hma:—gx + 52 — 5t + gt — -
z—0 T z—0 x
= lim (1= gpo® 4 ot = a4 g
=1-040-0+---=1.
log(1
Example 5.27. Evaluate lim M.
z—0 X

Proof. Let y =log(1 4+ z). Thene? =1+ zand x =¢e¥ — 1. Alsoy — 0 as x — 0. So

log(1 1 1
T ) TR . S S
z—0 X y—0e¥ — 1 y—0 &=L
Example 5.28. Evaluate lim (1 + x)%
z—0
Proof.
1
lim (1 + z)* = lim (610g(1+m)) ® = lim ex 198042) — Ji ¢ 55 = oL,
z—0 x—0 x—0 x—0

1\n
Example 5.29. Evaluate lim (1 + —) .
n—00 n

Proof. Let x = % Then z — 0 and n — co. So

1
lim (1 + —)n = lim(1 —|—x)% =el.
n

n—oo z—0
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Example 5.30. Evaluate lim M

=T X — T

Proof. Let y=x —m. Then y — 0 as x — 7. So

sin(z) ~ lim sin(y + )

lim
T—T X — T y—0 Yy
— lim sin(y) cos(m) + cos(y) sin(7)
y—0 Yy
— fim sin(y)(—1) + cos(y) - 0
y—0 Yy
— lim (— Sm(y)) - 1.
y—0 Yy
OJ
3+ 222 —1

Example 5.31. Evaluate lim
T—2 5 —3x

Proof. Since addition, multiplication, scalar multiplication and division away from 0 are continuous
in R then

2?4222 -1 (limgoo @) + 2(limgpx)? =1 294222 -1 8+8—-1 215

li = =,
b S 5— 3limy_0 7 5 — 32 —27 27
O
372 —2r +3
Example 5.32. Evaluate lim &
z—oo g2 +4x +4
Proof.
. 32?2 —20+3 ) (3962—295—1—3)%2 _ (3—2%4_3;12)
lim —————— = lim 5 = lim ——F——"4—=
vooo g2 +4dx+4 wooo (24w +4)y 7o (1445 +43)
) since addition, multiplication,
_ (3 —2limy—00 (%) + 3limy; oo (%) ) scalar multiplication,
(14 4Tim, o0 (L) 4 41im, 00 (1)%) and division away from 0
are continuous in R
~ (3-2-0+3-07 _3_,
C(1+4-0+4-02) 1 7
O

Example 5.33. Evaluate lim (V22 +1— ).

T—r00

Proof.

) 1— /2 1
lim (\/x2—|—1—:v) = lim (Va2 + p)(Val+1+2)
T—00 T—00 (1 /2 +1+ J})
241 —22 1 1
= lim 2T ~ lim — —0.

m ——
z—00 (\/x2+1+$) T z—00 (‘/3324-:6) z—00 20
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If z is large then # € Ry and if x € Ry then V22 +1 — 2 € Ryg. So lim (\/ x2+1-— x) > 0.
T—00

So 0< lim (\/ 2 +1- m) <0 giving that lim (\/ 2 +1— :c) =0.
T—00 T—>00

O
. sin(z)
Example 5.34. Evaluate lim .
z—0 X
Proof.
. 1.3, 1.5 _ 1.7
limsm(ac) It G + g =t 4
z—0 X z—0 T
1 1 1
— Bm (] — — g2 gt 6
M =g+ g = o)
1 1 since addition, multiplication,
=1— —(limz)? + = (lim 2)* — = (lim )% + - -- and scalar multiplication,
31 z—0 51 z—0 7 z—0 . .
are continuous in R
= 1.
O

Example 5.35. Evaluate lim (a:*%log(x)).

T—00

Proof. Let x = €Y so that y = log(z) and = gets larger and larger exactly when y gets larger and
larger. Then

lim (mfélog(aﬁ)) = lim ((ey)*%log(ey)) = lim ((e*%y)y) = lim ——

T—00 Yy—00 Y—r00 Y=o o3Y
_ y
=00 1+ gy + 5 (5)%2 + 51(3)%° +
i 1
= l1m
R N A I
1
< lim = 0.
y=o0 5+ (3)%

If 2 € Roy then 272 log(z) € Rs, Thus, if ILm (x*% log(z)) exists in R then 0 < le (af% log(z)).
So X )
< I _1 < . : _1 _
0 < lim (x 2 log(:n)) <0 giving xlggo (:L’ 2 log(w)) 0.

T—00

. 3" +2
Example 5.36. Evaluate lim .
n—oo 4" 4 20
n 3" 42 3"+ 2
3749 . . . . >
Proof. It n € Z> then 750 € Ryo. Thus, if nll_}n;o o exists then nh_)rrolo o 2

342 _ 342 342

. 3\n 1\n
Jim e < Jim g = Jim S = i ()" +2(1)")
since addition, multiplication,

= lim (%)n + 2 lim (i)n and scalar multiplication,
n—o0 n—o00 . .
are continuous in R
=0+0=0.
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So
.3 +2 . R )
< < =
OS5 =0 evistat I e

1+ sin? (&¢
Example 5.37. Evaluate lim A

n—oo \/ﬁ

-2 (nm
Proof. If n € Z~( then w € R-g.
1+ sin2 (2 1+ sin? (2&
Thus, if lim L(?’) exists in R then lim L(?’) > 0.
n—00 n n—o00 \/ﬁ
If n € Zwg then 1 + sin® (%) < 2.
So
1+ sin? (2F 2
lim (%) < lim =0,
n—co Vn n—00 4/MN

since % gets closer and closer to 0 as n gets larger and larger. So

1+ sin® (%7 1+ sin? (%%
0< lim — (%) o giving that  lim Lsin? () _

n—r00 T - n—00 \/ﬁ

Example 5.38. Evaluate 1i_>m log(3n? 4 2) — log(n?).
n—oo

Proof. Let f: Rsg — R be the function given by f(x) = log(3n? + 2) — log(n?).
If lim f(z)= li_}rn log(3z? + 2) — log(x?) exists then

T—00

lim log(3n? +2) — log(n?) = lim f(z) = ILm log (322 + 2) — log(x?).

n—oo T—r 00
Since
327 + 2 1
lim /() = lim log(32® +2) — log(¢?) = lim log (= i ) = lim log (3+2-5)
T—00 T—00 T—00 2 T—00 2
1 since log, addition,
= lim log <3 + 2( lim —2)> and scalar multiplication,
T—r00 T—00 I . .
are continuous in R+
= log(3 + 0) = log 3.
So

lim log(3n? + 2) — log(n?) = log 3.

n—o0

logn

Example 5.39. Let p € Ryg. Evaluate lim

n—oo NP
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log x log x
& exists in R then lim &
n—oo P

Proof. Let f: Rsy — R be the function given by f(x) = log(z) 1i_)m

xP
exists in R. Llet x = e¥ so that y gets larger and larger as x gets larger and larger. Then

. logx . logeY . logeY . Y
lim = lim = lim = lim =
z—o00 P Yy—00 (ey)p y—oo ePY y—o0 ePY
= lim T Y i
y—oo | + py + §p2y2 + §p3y3 4+ ..
. 1
= lim

y=o0 L+ p+ gp?y + Py’

< lim =0.
T y—o0 %pr
1 1
If z € Ry then l‘fpx € Ryg. So if lim 98T exists in R then lim —2.= > 0. Thus
r—o00 P rz—oo P
1 1
0< lim 2% <0 giving that  lim —22 =,
rz—oo P rx—o00 P
So |
lim —2" — .
n—oo NP

—2 4n?
Example 5.40. Evaluate lim ((n )n + i)

n—00 3n

Proof. Step 1.

lim (n — 2>n = lim (1 _ g)n — lim (elog(l—%))n — lim enlog(l—%) _ elimnaoonlog(l—%).

n—00 n n—o0 n n—00 n—o0
Step 2. Then
. 2, .. 2 1,2, 1,254
Jim mlog(l =2 = tim n(Z+ 5 (07 +3 (3 + )
~ lim (2 122 123 )
- nl—>nolo + 2n + 3 n2
=2404+0+---=2.
So
lim (n — 2>n _ elimnﬁwnlog(l—%) —e2.
n—00 n
Step 3.
L 4n? L 4n? o 4n?
nl—>ngo 3n nl—>nt}o (elOg?’)” N nl—g)lo (6"10g3)
. An?
= lim

n—oo 1+ nlog3 + 4n2(log3)2 + 4n3(log3)3 + - -)
1

= lim 4
n—oo " L+ Llog3 + 5 (log 3)2 4 gn(log3)3 + - )

: .
< lim 4 =
n—o0 gn(log 3)
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4n? 4n?
If n € Z<q then % € R-g. Thus, if lim il exists in R then lim o > 0. Thus,

4n? 4n?
< 1 < .. ) _o.
0< nll_}ngo o S 0 giving that nh_)rgo 3 0
. . . 4n? . /m=2\" . L . .
Final step. Since lim —— and lim ( ) exist in R and addition is continuous in R then
n—oo 3N n—00 n
—2\n 4n? — 2\n 4n?
lim ((n ) +i>: lim (n ) + lim i:e2—|—0:(32.

Example 5.41. Let ¢ € R-(. Show that lim arctan(cn) = T
n—00 2

Proof.
lim arctan(cn) = lim arctan(en) = lim arctan(z) = lim arctan(tan(y)) = lim y = T
n—00 cn—o0 T—00 yﬁ%+ yﬁ%+ 2
. o
Example 5.42. Evaluate lim —.
z—0 X
Proof.
lim 2% = 1im 5 = 5.
z—0 X z—0
642
Example 5.43. Evaluate lim x.
z—0 X
Proof.
642
lim ——— = lim 642 = 642.
z—=0 T z—0
72
Example 5.44. Evaluate lim —.
z—0 T
Proof.
2
lim — = lim z = 0.
z—0 T z—0

Example 5.45. Evaluate lim z

0 22 '
Proof.
. 1 ..
lim — = lim — does not exist in R
z—0 T z—=0 T
since
. T . 1 ...
lim — = lim — is very large and positive, and
z—0t T z—0t T
. N .
lim — = lim — is very large and negative.
z—0— T z—0- X
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1
Example 5.46. Evaluate lim og(x).
z—1 x—1

Proof. Let y=x—1. Theny - 0asx — 1. So

1 log(1
lim 0g() — lim M =1,
=1 x—1  y=0 Y
by Example 777.
. log(z)
Example 5.47. Evaluate lim .
r—o0o0 e¥r
Proof. Let x = €Y. Then y = log(x) and y — oo as x — 00. So
1 1 Y
lim 08(2) = lim og(c") = lim Yo lim
z—o0 ev y—oo e y—oo ef Yy—00 %eey
. 1
= lim 5 5 =0,
y=o0 L (1+ev + ge + -
since the denominator is very very large when y is very large.
1 2
Example 5.48. Evaluate lim %.
T—00 T
Proof. Let x = €Y. Then y = log(x) and y — oo as x — 00. So
1 2 1 Y 1
lim og(;u) = lim og(c”) — lim L = lim T
T—00 I y—oo (e¥)? y—oo €2Y  y—oo 5623,
1

y—o0 %(1+e2y+%e4y+...>
since the denominator is very very large when y is very large.

Example 5.49. Evaluate lim z log(z).
z—0

Proof. Let x = e Y. Then —y = log(z) and y — 0o as z — 0. So

_ S i , _ Ty
— ) Yy — — Y= - = E
sy wrlog(z) = Jim e ™Vlog(e™) = Jim —pe™ = 7 =l 1oy

-1
y—>00 %(1+y+%y2+-~)

since the denominator is very very large when y is very large.

Example 5.50. Evaluate lim (z — 7) cot(z).

T—T

Proof. Let y=2 — 7. Theny — 0 as x — 7. So

lim (z — ) cot(z) = lim (L)@ _ pp yeosly+m)
—y s sin(w) y—.0 sin(y + )
= limm: lim ,y cos(y) =1-1=1.
y—.0 —sin(y) y—.0 sin(y)
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8=

Example 5.51. Evaluate lim (1 — 2x)=.
z—0

Proof.
1
lim (1 — 22)% = lim (¢°%(1722))% = i 3 log(1=22)
z—0 z—0 z—0
= lim 6—2105(2;—22) =e 2l =2
z—0 '
O
Example 5.52. Evaluate lim z*.
z—0
Proof.
lim 2% = lim (elog(w))x — lim e*1o8(@) — 0
x—0 x—0 2—0 )
by Example 0O
Example 5.53. Evaluate lin})(mfl — csc(x)).
T—
Proof.
1 1 i —
lim (27! cse(z)) = lim (— - — ) = lim M
2—0 a—0 \z  sin(z) a—0 xzsin(x)
T ke i i )_96
=0 x(r — %Ig—f— %x‘r’ )
g A4
z—0 L (.%'2—%1‘44-5]]6—---)
— lim ( 77+ 52’ — ')
a0 1 — —xQ + gzt —
1.2
=limx- _g—i_ax I
z—0 1—%'%2_}_%1;4_
—1
=0- ETE =0.
O

5.3 Limits by graphing

For now, the pictures are taken, by screenshot, from the Melbourne University Lecture slides for
MAST 10006 Semester 1 2024.

2z, ifx #1,

Example 5.54. Let f: R — R be the function given by f(z) = {4 . )
, ifz=1.

Compute hHi f(x) and determine if f(x) is continuous at = = 1.
T—
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Proof. The graph of {(x, f(z)) € R?} is

f(x)

—_ N W A

As x gets closer and closer to 1 then f(z) gets closer and closer to 2. So

lim f(x) = 2.
z—1
Since f(1) =4 then
lim f(z) # /(1).
z—1
So f(z) is not continuous at z = 1. O]

1
Example 5.55. Let f: Ry — R be the function given by f(z) = —.
x

1
Compute lim — and determine if f(z) is continuous at x = 0.
z—0 T

Proof. The graph of {(x, f(z)) € R?} is

L L
1 1

the graph of x—g

As x gets closer and closer to 0 then f(z) = 9712 gets larger and larger. So

.1 .
lim — does not exist in R.
z—0 21

Since f(0) is not defined it doesn’t make sense to ask if lim,_,¢ f(z) is equal to f(0). So, because f(0)
is not defined it does not make sense to ask if f(z) is continuous at z = 0. O]

1, ifzx <0,

Example 5.56. Let f: R — R be the function given by f(z) = )
2,, ifx>0.

Compute 1i1rr%J f(z) and determine if f(z) is continuous at z = 0.
T—

142



Calculus Examples, Arun Ram, version: January 28, 2025

Proof. The graph of {(x, f(z)) € R?} is

»x

As x gets closer and closer to 1 from the positive side then f(x) gets closer and closer to 2.
As x gets closer and closer to 1 from the negitive side then f(x) gets closer and closer to 1. So

lim f(zx) =2 and lim f(x)=1.

r—1t z—1—

As x gets closer and closer to 1 then f(x) does not get closer and closer to a single real number. So

lim f(x) does not exist in R.

rz—1
Since f(1) =2 and lim1 f(z) is not equal to f(1) then f(x) is not contnuous at x = 1. O
T—r
o LA g 42,
Example 5.57. Let f: R — R be the function given by f(z) = 4”” . )
, if x =2.

Compute lin% f(z) and determine if f(z) is continuous at z = 2.
T—

Proof.

f(a) A ifr#2,  [rx+2, ifr#2,
x fry =
4, ifz=2 |4, if z = 2.

The graph of {(z, f(z)) € R?} is
PICTURE

As z gets closer and closer to 2 (from either the positive or negative side) then f(x) gets closer and
closer to 4.
So

lim f(x) = 4.

z—2

Since f(2) = 4 then
lim f(x) = f(2) and f(z) is continuous at x = 2.

T—2

O]

x4+ 2, if x <1,

Example 5.58. Let ¢ € R. Let f: R — R be the function given by f(z) =
(r—3)%+¢c,, ifz>1.

For which values of ¢ is f(x) continuous for 2 € R?

Proof. The graph of {(x, f(x)) € R?} is
PICTURE
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Then

lim f(x)=1+2 and lim f(z) = lim (z —3)>+c= (-2 4+c=4+c

z—1— z—1+ z—1+

So lim f(z) = lim f(x) exactly when 4+ ¢ = 3.
—1- z—1t

So,mif c = —1 then
lim f(z) =3 and  f(1) =3.

z—1

So, if ¢ = —1 then f(x) is continuous at z = 1. If ¢ # 1 then lim1 f(x) does not exist in R. O
z—

Example 5.59. Let h(x) = sin(2logx).

For which values of z € R is h(z) defined?
For which values of 2z € R is h(x) continuous?
Always carefully justify your answers.

Proof. Let f: Rsg — R be the function given by f(x) = 2log(x). The graph of {(z, f(z)) € R?} is

y=Ilnx

/

1

x

the graph of 2log(x)

The function f(z) is continuous for z € Rs.
Let g: R — R be the function given by g(y) = sin(y). The graph of {(y, g(y)) € R?}g(y) is

PICTURE

The function g(y) is continuous for y € R.
Let h: Rsg — R be the function given by h(z) = g(f(x) = sin(2log(x)). The graph of {(z, h(x)) €
R?} is
PICTURE

The function h(x) is defined for x € R-¢ and continuous for z € R+. O

xT

Example 5.60. Evaluate lim e™*.

T—00

144



Calculus Examples, Arun Ram, version: January 28, 2025

Proof. Let f: R — R be the function given by f(z) = e~®. The graph of {(z, f(x)) € R?} is

solutions of y = e® and y = e~® from Wolfram alpha
As x gets larger and larger then f(x) gets closer and closer to 0. So
lim e”* = 0.

T—r00

Example 5.61. Evaluate lim sin(x).
T—00

Proof. Let f: R — R be the function given by f(x) = sin(x). The graph of {(z, f(x)) € R?} is

y .
y=sinx
3an BN n\z/znz 3\ *
2 2 2 2 2 2
-1

real solutions of y = sin(z)

As x gets larger and larger then f(x) oscillates between 1 and -1 and does not get closer and closer to
any single real number. So

lim sin(xz) does not exist in R.
T—>00

Example 5.62. Evaluate lim sin(e™?).
T—00

Proof. Let f: R — R be the function given by f(z) = e ®. The graph of {(z, f(x)) € R?} is
PICTURFE

As x gets larger and larger e~ gets closer and closer to 0.
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Let g: R — R be the function given by g(y) = sin(y). The graph of {(y, g(y)) € R?} is

=sinx

\A%A
AVARVERVERN

real solutions of y = sin(z)

As y gets closer and closer to 0 then sin(y) gets closer and closer to 0. The function g(y) = sin(y) is
continuous. As e~ % gets closer and closer to 0 then g(e™) gets closer and closer to 0. Thus

o an e 1 —py _
xlggo sin(e™®) = sin (xlggoe ) =sin(0) = 0.

O
Example 5.63. Evaluate lim 2 sin (1)
z—0
Proof. Let f: R — R be the function given by f(z) = 2?sin (1). The graph of {(z, f(z)) € R?} is
plot x* sin[% )
solutions of y = % sin(5) from Wolfram alpha
As x gets closer and loser to 0 then f(x) gets closer and closer to 0. So
2
xhﬁn(r)lox sm( ) =0.
O

If a € Ry then 1 € R(g ;). The graph of {(z,sin(1)) € R?} is the same as the graph of {(z,sin(z)) €
R?} with

(a) the region R>; flipped with the region R ;) on the r-axis and

the region R<«_; flipped with the region Rj_q ¢y on the x-axis.
b) the region R<_; flipped with the region R(_; gy on th i

=sinx

\vﬂw%va\ A

2
the graph of {(z,sin(z) € R?} the graph of {(z,sin(;) € R?}
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Example 5.64. Evaluate lim z sin (%)
z—0

Proof. Let f: R — R be the function given by f(z) = xsin (1). The graph of {(z, f(z)) € R?} is

[oas] {oap o015
Wt

0.05 V

0.10

solutions of y = xsin(;) from Wolfram alpha
As z gets closer and loser to 0 then f(x) gets closer and closer to 0. So

lim zsin (%) =0.

T—>00
1
Example 5.65. Evaluate lim —.
n—oo n
Proof. Let
fi Zso — R 1

n oo oa be the function given by a, = o

Then (a1,as,...) = (1,3, 3,1, %, 5, - . .) and the graph of {(n, f(n)) € Zso x R} is
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As n gets larger and larger a, = % gets closer and closer to 0. So
1
lim — =0.
n—oo N

Example 5.66. Evaluate lim (—1)""1.

n—o0

Proof. Let
no = ay

Then (ay,as9,...) = (1,—1,1,—1,1,—1,...) and the graph of {(n, f(n)) € Z~o x R} is

n—1

be the function given by a, = (—1)

a,
1A ° ° °
»N
1 2 3 4 5
-1 ° °

As n gets larger and larger a, = (—1)""! oscillates between 1 and —1 and does not get closer and
closer to any single real number. So

lim (—1)""! does not exist in R.

n—oo
O
Example 5.67. Evaluate lim n.
n—oo
Proof. Let
fio Zs — R be the function given by a, = n.
n = ay
Then (a1,a2,...) = (1,2,3,4,5,6...) and the graph of {(n, f(n)) € Z>o x R} is
PICTURE
As n gets larger and larger a,, = n gets larger and larger. So
lim n does not exist in R.
n—oo
O
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5.4 Continuity and behavior of 2" and e*

Example 5.68. (2" is continuous) Show that if n € Z>p and a € C then lim z" = a".

r—a
Proof. Assume n € Z>p and a € C. Then
lim 2" = lim(z - x---x)
T—a T—rq ——
n times
= ( lim ;U) . ( lim a:) e ( lim x) (by continuity of multiplication)
r—a r—a Tr—a
n t‘irmes

=a-a---a=a".

n times

Example 5.69. (e is continuous) Show that if @ € C then lim,_,, e* = e“.

Proof.
Case 1: a = 0. To show: lim e* = ¢°.
z—0
Using Theorem ?7?(a), To show lir% le® — 1] = 0.
d

z—0

lim |e® —1\—11%‘<1+x+++ >
T—

= lim |z <1+a:+ +7+

z—0
2
< lim || ( + || + o ’ ‘ + JzI% +- > (triangle inequality for | |)
z—0 3!
< lirr%) || (14 || + \m| +]z + ) (by term by term comparison)
z—
1 . .
= il_r)r%) |z| ——— =] 0-1 (by geometric series)
=0.

Case 2: a # 0. To show lim e* = ¢e®. Let x =y + a. Then y — 0 as x — a and
T—a

lim e = lim Y1

T—a y—0
= lim e%eY = € lim €Y (by continuity of scalar multiplication)
y—0 y—0
= - (by Case 1)
— 6CLJrO —

Example 5.70. (Behaviour of 2™ as n gets large) Let € C. Show that

0, if |z] < 1,
T diverges in C, if |z| > 1,
im 2" =
n=>00 1, itz =1,

diverges in C, if |z| =1 and = # 1.
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Proof. Let xz € C.
Case |z| < 1. To show: lim z" = 0.
n—oo

Let N € Z~ such that |z| <1 — ﬁ Then

1 n
lim |2" — 0| = lim |z|" < lim (1 >

n—00 n—00 ~ n—oo _N—|—1
— lim (N+1_1>n: lim <N>n: lim L
= lim !
n—>ool+n%+...+(%)n
1 N
ST Ty T By T 0T

Case |x| > 1. To show: lim z™ diverges in C.
n—oo

Let N € Zs such that |z| > 1 — 3. Then

) () () ()

Since (W) n is unbounded as n gets larger and larger then |z|™ is unbounded as n — co.
So limy, o ™ diverges in C.
Case x = 1. In this case (z, 22, 2%, 2%,...) = (1,12, 13,1%,.. ) = (1,1,1,1,...).

So lim 2" = lim 1" = lim 1 =1.
n—oo n—oo n—oo

Case |x| =1 and x # 1. Then x = " with 6 € Rg,2r). FINISH THE PROOF to show that this case
diverges in C. IGUESS THE point is that if a € R then

|ez’a . ei(a+9)‘ — ’eia| . ’1 _ 6i0| — ‘1 . €i0| £ 0.
YUP clean THIS UP. O]

Example 5.71. (exponentials dominate polynomials) Assume n € Z~(. Show that, in R,

lim — =0
r—o00 el
Proof. Let n € Z~g. Then, in R,
0< tim o < tim % = gim Dy L =0
z—o00 e T—00 pn+1 T—00 T T—00 I
(n+1)!
O
Example 5.72. (polynomials dominate logs) Assume o € R~(. Show that
lim 108) _
z—o0 %
Proof. (b) Let o € R5o. Then
1 1 Y 1
0< tim OBy 1By gy, — < lim ;5 =0,
=00 T y—oo (eY) y—oo eV yﬁ\oog—}—a—kﬁay—i—-” Y=o 5%y
O
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Example 5.73. Let p € Ryg. Show that

Proof. (c) Let p € Ryg. Let k € Zso and let Ny = (eglog(m)} so that ny € Zso and eP8WVr) —
(N)P > 10% = klog(10),

1 1 1 1
<—< =< —. im — =0.
If n > Nj, then O_nP<N,f_10k Sonh_{rolonp 0
O
Example 5.74. Let p € Rog. Then lim p'/™ = 0.
n—oo
Proof. Let p € Ryg.
lim pl/n — lim (elogp)l/n — lim e%logp _ elogplimnﬁoo(l/n) _ elogp~0 _ 60 -1
n—00 n—00 n—00
O
Example 5.75. Show that lim n'/" = 1.
n—roo
Proof. Using that polynomials dominate logs (Example |5.72)),
lim nl/n — lim (elog(n))l/n — lim (eilog(n)) _ €1im"”°°(log,<ln))) _ 60 —1
n—oo n—oo n—oo
O
Example 5.76. Show that nhﬁrgo <1 + % + (%)2 + (%)3 +---+ (%)n) =2.
Proof.
1; 141 1)2 1\3 L\ 1*(%)7”1_ 1 -9
Jm (13 ()*+ @+ ()) = Jim = =2
O

Example 5.77. (Behaviour of 1 + x4 22 4+ --- 4+ 2™ as n gets large) Let € C. Show that if |z| < 1
then

1
lim (1+x+22+---+2") = .
n—oo 1—=x
Proof. By continiuity of addition and division away from 0,
1—2mt 11— (limpsye ™) 1-0 1
lim (14 z+ 22 +---+2") = lim ’ = (i o0 ): = .
n—00 n—oo 1 —=x 1—=z l—2z 1-=x

O]

Example 5.78. (Behaviour of 1 + 2 + 22 + --- + 2" as n gets large) Let « € C. Show that if x| > 1

then 1
lim (1+z+22+---+2") = does not exist in C.

n—00 1—z
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Proof. By continuity of addition and scalar multiplication,

lim (142422 +--- +2") = lim =

n—00 n—oo 1 —x 11—z
and the right hand side does not converge in C. O
Example 5.79. Show that lim sin(z) =1.
z—0 X
Proof.
i 1
lim S0 _ (1— =2+ )=140+0+---=1.
z—0 T z—0 3!

This proof has the right reason, but it is not quite complete because ‘the sum of an infinite number
of 0s’ is really ‘the sum of a infinite number of really tiny numbers’ and we to be sure that sum really
is 0. How should the proof be tightened up? (with a comparison to a geometric series, see the proof

of Example |5.69}) O
log(1
Example 5.80. Show that lim M =1
z—0 x
Proof.
. log(l+x) . 1 1 4 14
lim ———= =1lim (1 - o+ 2" — -2’4+ ) =140+0+---=1.
z—0 T z—0 2 3 4

This proof has the right reason, but it is not quite complete because ‘the sum of an infinite number
of 0s’ is really ‘the sum of a infinite number of really tiny numbers’ and we to be sure that sum really
is 0. How should the proof be tightened up? (with a comparison to a geometric series, see the proof
of Example [5.69}) O

5.5 Continuity of addition, multiplication, composition and order

Example 5.81. (scalar multiplication is continuous) Let n € Z~g. Let f: R” — R and g: R® - R
be functions and let a € R™.

Assume that liin f(x) exists.
Then, if ¢ € R then liLn cf(x)=c ligl f(z),
Proof.
Assume ¢ € R and let [ = lim f(x).

r—a
To show: ligl cf(z) =cl.

To show: If e € Z~( then there exists d € Z~q such that

if 2 € R™ is within 107 of @ then cf(x) is within 107¢ of cl.

Assume e € Z~.

Let r € Z~¢ be such that ¢ < 10".

Since [ = lim f(x) then we know that there exists d € Z~¢ such that
T—a

if z € R” is within 10~¢ of @ then f(z) is within 10~(+") of [.
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To show: If x € R" is within 10~% of a then cf(x) is within 107¢ of cl.
Assume x € R" is within 10~ of a.
To show: ¢f(x) is within 107¢ of ¢l.

d(cf(z),c) = |ef(x) —d| = |e| - |f(@) = 1| < |c|- 107+ < 107107+ = 107°.

So c¢f(x) is within 107¢ of cl.
So li_r>n cf(x) = cl.

O]

Example 5.82. (Addition is continuous) Let n € Z~. Let f: R” — R and g: R” — R be functions
and let a € R™.

Assume that  lim f(z) and lim g(x) exist.
r—a Tr—a

Then lim (f(z) + ¢(z)) = lim f(z) + lim g(z),
Proof.
Let Iy = ilg}l f(z) and Iy = E_I)I}lg(x)
To show: hin(f(:c) +g(x)) =11 + lo.
To show: If e € Z~( then there exists d € Z~¢ such that

if 2 is within 10™¢ of a then f(x) + g(x) is within 107¢ of I; + l.

Assume e € Z~y.

Since lim f(x) = {1 then we know that there exists dy € Z~¢ such that
r—a
if & is within 10~% of @ then f(z) is within 10~(¢*1) of 7.

Since lim g(x) = la then we know that there exists da € Z~q such that
r—ra

if z is within 10~% of a then g(x) is within 107(¢*1) of [y.

Let d = max(dy, d2).

To show: if z is within 1077 of a then f(x) 4 g(x) is within 107¢ of I;+1s.
Assume z is within 1079 of a.

To show: f(z)+ g(x) is within 107¢ of [;+1s.

((f(2) +9(x)) = (b +l2)| = [(f(x) = ) + (9(2) — 12|
< |[f(@) =Ll + lg(z) — L]

2
<107¢tt y 107 (et = E10*6 <107¢.

So (f(z) + g(z) is within 107¢ of I} +ls.
So lim (F(2) + 9(@) = i + 12 = lim f(x) + lim g(x).
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Example 5.83. (multiplication is continuous) Let n € Zsg. Let f: R" — R and g: R” — R be
functions and let a € R™.

Assume that  lim f(z) and lim g(z) exist.

Tr—a T—a

Then lim (f(z)g(z)) = (lim f(z))( lim g(z)).

r—a r—a T—a
Proof.
Let I3 = lim f(z) and ls = lim g(z).
Tr—a r—a
To show: ligl (f(z)g(z)) = lila.
To show: If e € Z~( then there exists d € Z~( such that

if z € R" is within 107¢ of @ then f(z)g(z) is within 107¢ of I1l5.

Assume e € Z~.
Let 7, s € Z~¢ such that |[¢1] < 10" and |¢2| < 10°.
Since liin f(z) =l; then we know that there exists d; € Z~ such that

if z € R" is within 10~% of a and f(z) is within 10~(¢+5+1) of [;.

Since lim f(x) =l then we know that there exists dy € Z~ such that

r—a

if 2 € R" is within 107 of a and f(x) is within 10~ (41 of [,.

Let d = max(dy, d2).
Assume z € R" is within 107¢ of a.
To show: f(x)g(x) is within 107¢ of I1l5.

[f(@)g(x) — llo| = |(f(z) — l)g(@) + L(g(x) — l2)]
<|(f(x) = l1)g(x)| + [l1(g(x) —l2)|, by the triangle inequality,
= [(f(z) = h)(g(z) — I2) + (f(z) = L)l2| + [la] |g(z) — L]
< |(f(z) = )(g(x) = i) + |(f (@) — l)la| + || [9(x) — L2
<|f(x) —hllg(z) — L] +1f(z) = Ulll2] + [l1] |g(x) — I2]
< |[f(@) = hllg(z) = L] + [f(z) — 4| 10° + 10" |g(z) — L]

S 10~ (6+T+1) . 10—(e+5+1) + 10—(8+8+1)105 + 107’10—(6+7‘+1)
=107¢(10~ (42 L 107 4107 < 107¢ - 1 = 107°.

So f(z)g(z) is within 107¢ of I1ls.
So there exists d € Z~q such that

if z € R” is within 10~ of @ then f(x)g(z) is within 107¢ of I1l5.

So lim (f(x)g(x)) = lila.

Tr—a
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Example 5.84. (Limits and composition of functions) Let m,n,p € Z~q. Let Let f: R” — RP and
g: R™ — R"™ be functions and let « € R™ and £ € R™.

Assume that  lim g(x) = /¢ and 1in; f(y) exists.
Yy—

r—a

Then
lim f(y) = lim f(g(x)).
y%

r—ra

Proof.
Let L = lim f(y).
y—{
To show: lim f(g(x)) = L.
Tr—a
To show: If e € Z~( then there exists d € Z~ such that

if 2 € R™ is within 107 of @ then f(g(z)) is within 107¢ of L.

Assume e € Z~y.
To show: There exists d € Z~q such that

if 2 € R™ is within 107 of a then f(g(x)) is within 107¢ of L.

Since lin} f(y) = L we know that there exists d; € Z~( such that
Yy—

if y € R" is within 10™% of ¢ then f(y) is within 107¢ of L.

Since lim g(x) = ¢ we know that there exists d € Z~ such that

r—a

if 2 € R™ is within 107 of a then g(z) is within 1079 of .

To show: If 2 € R” is within 10~ of a then f(g(x)) is within 107¢ of L.
Assume z € R" is within 10~ of a.
To show: f(g(x)) is within 107¢ of L.
Since z is within 107¢ of a then g(z) is within 10~% of ¢,
and so f(g(x)) is within 107 of L.
So, if z € R™ is within 1079 of a then f(g(z)) is within 107¢ of L.
So there exists d € Z~q such that if z € R™ is within 10™% of a then f(g(z)) is within 107¢ of L.
So lim f(g(z)) = L.
O

Example 5.85. (Limits and order) Let n € Z~g and let f: R” — R and g: R®™ — R be functions.
Let a € R™. Assume that lim f(z) and lim g(x) exist and
r—a T—a

if x € X then f(z) < g(x).
Then  lim f(z) < lim g(z).

Proof.
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Let ¢; = lim f(z) and /3 = lim g(x).
r—a r—a
To show: If f and g satisfy the condition

if z € X then f(z) < g(x),

then ¢1 < /5.

Proof by contrapositive.

Assume /1 > 05 (the opposite of £1 < ly is €1 > l3).

To show: There exists € R" such that f(z) > g(z)

(the opposite of ‘if z € R™ then f(z) < g(z)’ is ‘there exists x € R™ such that f(z) > g(x).").
Let r € Z~¢ be such that 107" < 1 — /5.

Since il_r)ré f(z) = ¢; then we know that there exists d; € Z~¢ such that

if £ € R" is within 1074 of a then f(x) is within 10~"+1) of ¢;.

Since lim g(x) = f2 then we know that there exists da € Z~¢ such that
r—a

if £ € R" is within 107% of a then f(x) is within 10~ +1) of £y,

Let d = max(dy,ds) and let x € R" be within 107 of a (so that 2 # a but x is quite close to a).
To show: f(z) > g(x).

@) >0 =107 ) = p) — o+ 0, — 1070 > 107 4+ 6, — 1070 > 45 + 1070 > g(2).
This proves that if f and g satisfy the condition ‘if z € X then f(z) < g(z)’ then ¢1 < /s.

O]

Example 5.86. (Limits and order for sequences) Let (ai,as,...) and (b, ba,...) be sequences in R.
Assume that lim a,, and lim b, exist and
n—oo n—oo

if n € Z~q then a, <b,.

Then lim a, < lim b,.

n—o0 n—oo

Proof.

Let /1 = lim a, and ¢5 = lim b,.
n—oo n—oo

To show: If (a1, az,...) and (b, b, ...) satisfy the condition
if n € Z~q then a,, <b,,

then fl < 62.

Proof by contrapositive.

Assume ¢; > ly (the opposite of {1 <l is €1 > l3).

To show: There exists N € Z~ such that ay > by

(the opposite of ‘if n € Z~¢ then a,, <b,’ is ‘there exists N € Z~¢ such that ay > by’).

Let r € Z~¢ be such that 107" < £1 — /5.
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Since li_>m an, = f1 then we know that there there exists N1 € Z~q such that
n o

if n € Zwg is at least Ny then a,, is within 10~ 1 of ¢;.

Since li_>m b, = f5 then we know that there there exists No € Z~( such that
n o0

if n € Zsy is at least Ny then b, is within 10~ of £,.

Let N = max(Nl,Ng).
To show: an > by.
any > 01 — 10~ — O — by + 0y — 10~ (1)
> 107" + 0o — 107 > 4y 4107+ > py

This proves that if (a1, ag,...) and (b1, ba,...) satisfy the condition ‘if n € Z~¢ then a,, < b’
then ¢1 < /5.
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5.6 The interest sequence

Example 5.87. If you borrow $500 on your credit card at 14% interest, find the amounts due at the
end of two years if the interest is compounded

—~
&

annually,

G

quarterly,

o

monthly,

’a/—\

daily,
hourly,

~—~~
—

every second,

every nanosecond,

= ¢)
Ra B SN NI IR SN

—~ o~
o

continuously.

Proof.

(a) You owe

500 4 500(.14) = 500(1 + .14) after one year and 500(1 4 .14)(1 + .14) after two years.

(b) You owe
.14 14
500 + 500<E> - 500(1 + 1—2) after one month.
You owe
.14 .14
500(1 + ﬁ) (1 + E) after two months.
You owe
J14N\24
500(1 + E) after two years.
(f) You owe
14
500 + SOO(m) after one second.
and
14 2:365-24-3600
500(1 + m) after two years.
In fact,
142 . 2
lim 500(1 n —) " Z 500 lim (elog (”174)) !
n—oo n n—o00
— 500 lim ¢2nlos (1+5)
n—oo
21408050
=500 lim e =
n—oo
. Slog(lJr%)
=500 lim ¢ = =500e%,
n oo
since

lim 710g(1 +2)
z—0 x

=1.

So you owe 500e2® after two years if the interest is compounded continuously.

24
Note: 500(1 +.14)2 = 649.80, 500(1 + %) ~ 660.49, and 500e28 ~ 661.58. O
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5.7 Series
Example 5.88. (Constant series) Show that

[ee]
Z 1 does not converge in R or C.
n=1

Proof.
o T
Z 1= lim (Z 1) = lim r» does not converge in R or C,
r—00 T—00
n=1 n=1
since r is growing and is unbounded. O

Example 5.89. (Geometric series) Let « € C. Show that if |z| < 1 then
o
n=0 -

Proof. By continuity of addition and division away from 0,

oo
Zm”:lim(1+x+x2+--'+:c7"):lim - —
r—0o0

n=0

Example 5.90. (The zeta function) Show that

1
Z — does not converge in R.
n

n=1

oo
1
Proof. This proof is by comparison to a constant series. The sum ((1) = E — does not converge in
n
n=1

R since
il—1+1+1+1+1+1+1+1+ >1+1+1—|—1+
n 2 3 4 5 6 7 8 2 2 2 ‘
n=1 —_—— —
and the right hand side is growing and is unbounded. O

Example 5.91. (The zeta function) Show that

o0
1
if p€ R,y then Z " does not converge in R.
n=1
[e.e]

1
Proof. This proof is by comparison to ((1). The sum ((p) = Z — does not converge in R since
n

n=1
oo
1 1 1 1 1 1 1
S T R E S [ R R R R |
2 +2p+3p+4p+ > +2+3+4+ ¢(1)
and ((1) is growing and is unbounded. O
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Example 5.92. (The zeta function) Show that

o
1
if p€ Rs; then Z — converges in R.
np
n=1
o
Proof. This proof is by comparison to a geometric series. The sum ((p) = Z — converges in R since
n
n=1
1 AR SRS SN SRS SIS SO
v +f+3p+§+§+67+7p+
<1+ =+ 4 + 5 +
2P 4p 8P
1 1 1

Example 5.93. (The zeta function) Assume p € R-(. Show that

o0

1

Z —p converges if and only if p € R+ 1.
n=1
Proof. Case 1: p= 1. In this case ((1 Z diverges since

n= 1

il—1+1+1+1+1+1+1+1+ >1+1+1+1+
n 2 3 4 5 6 7 8 2 2 2
—_— —

o0

1
Case 2: p € Roq. Then ((p) = Z - diverges since

n=1

o

! 1+ 5 e I
np_ 3P 4p 2 3 4

n=1
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o0

1
Case 3: p € R>1. Then ((p) = Z p converges since
n=1
1 FRRESNNR NS SRS SIS SO
=P 2r 3P 4p 5P 6P TP
1 2 4 8
< +27p+@+87p+“.
! 1 1
=lt o tpatpat
! 1) 1)
=1+t (1) Tle)
1 op—1
1_217171 2r—1 —1°

Example 5.94. (Ratio test for convergence) Let (a1, az,as,...) be a sequence in R.

Assume lim 1]
n—00 |an|

= ¢ exists and a < 1. Show that

oo
Z |an| exists in R.
n=1

Proof. Assume lim [t
n—oo |ap,|
Let ¢ € Ry be such that a + ¢ < 1.
a
Since lim [@n 1]

n—yoo |an|
Then

= q exists and a < 1.

= a there exists N € Z~g such that if n € Z>x then lanna] 4 o

lan|

o0
> lan| = laol + las| + -+ + lan| + lan 1] + lanta| + -
n=0

a a a
= lao| + -+ + |an| + lan+1] + lan+1] <’ NH‘) + an41] <’ N“‘) <‘ N+3’> 4+
N+1 N+1 N+2
a1 lan+1]/ \lan+2|

< lao| + -+ |an| + |an41] + lant1|(a + &) + anyi(a+e)* + -
=lag| + -+ |an + |ans1|(1+ (a +¢) + (a4 )2 +--)

1
= lao| + -+ + |an| + |an+1] <1—@L+E)>

oo
Then, since a +¢ < 1, E |ay| converges.

n=0
Example 5.95. (Ratio test for divergence) Let (ai,as2,as,...) be a sequence in R.

Assume lim 1]

= q exists and a > 1. Show that
n—oo |an|

o
Z |an| does not exist in R.

n=1
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= g exists and a > 1.

a
Proof. Assume lim [2n 1]
n—oo  |ap
Let € € Ry be such that a +¢ > 1.
a
Since lim [@nt1]

n—00 |an|
Then

= a there exists N € Z~( such that if n € Z> then % <a-—E¢.

+
Qn

o
> lanl = laol + lar] + -+ + lan| + lans1| + lans2| + -+
n=0

a a a
:’a0‘+...+’a]v‘+‘GN+1’+’6LN+1‘<| N+2|>+’CLN+1‘<| N+2|> (| N+3’>+...
|an+1] lan+1]/ \lan+2|

= lao| + -+ + lan| + |ans1] + |lant1|(a — ) + ant1(a —€)* + - -
> lag| + -+ + lan| + lanpa|(L+ (a—e) + (a—&)* + )
> lag| + -+ lan| + a1 |(L+1+1 4 ---).

oo
So Z lan,| does not exist in R.
n=0

Example 5.96. (Root test for convergence) Let (a1, az,as,...) be a sequence in R.

Assume If lim |a,|'/" = a exists and a < 1. Show that
n—oo

o0
Z |an| exists in R.
n=1

Proof. Assume lim |ap|"/" = a exists and a < 1.
n—o0

Let € € Ry be such that a +¢ < 1.
Since lim |a,|'/™ = a then there exists N € Zsq such that if n € Zsy then |a,|'/™ < a +«.
n—o0 -

Then
(o]
> lanl = laol + lar| + - + an| + lan 1] + |anyo| + -+
n=0

N+1 N+2
:’a0|+'”+aN‘+(‘GNH’U(NH)) ! +(’aN+2|1/(N+2)) BRI
<lag|+ - +lan|+ (a+ )N + (a+ )V T2 4.
=lag|+ - +lan| +(a+ )N TTA+(a+e)+ (a+e)*+--)

1
— N+v (=~
|(10|+ —|—|(IN|+(CL+E) <1—(a+5)>

oo
Then, since a +¢ < 1, Z lan| exists in R.

n=0

Example 5.97. (Root test for divergence) Let (a1, az2,as,...) be a sequence in R.
Assume If li_>m |a,|Y/™ = a exists and @ > 1. Show that
n—0o0o

[e.e]
E lan| does not exist in R.
n=1
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1n — g exists and a > 1.

Proof. Assume lim |a,|
n—o0
Assume lim |a,|"" = a exists and @ > 1. Let ¢ € R be such that a +& > 1.
n—oo

Since lim |a,|'/™ = a there exists N € Zwg such that if n € Zsy then |a,|V/" < a —¢.
n—oo -
Then

o
lan| = |ao| + |a1] + - - - + |an| + |an1| + |ans2| + - -

2

n=0
= Jao| + -+ lan| + (Jaya[ VO 4 (Jay o/ NFD) I 4
> lao| + -+ lan| + (@ — )N+ (a— )V P2 4. ..
=lag|+ - +|an| +(a—e) " TTA+(a—e)+ (a—e)+--+)
>|CLO|+"'+\aN|+(a—5)N+1(1+1+1+...)_

oo
So Z la,,| does not exist in R. —

n=0

Example 5.98. (Absolute convergence gives convergence) Let (a1, a9, as,...) be a sequence in R or

C.
[e.e] o0
If Z |an| converges then Z a, converges.

n=1 n=1

Proof.

o0
Assume that g |an| converges.
n=0

o
To show: E a, converges.
n=0

Let An:’a0|+|a1\+~-+|an\ and s, =ap+ a1+ -+ ay.

o0

Since Z lan| = (Ao, A1, ...) converges then the sequence (Ag, A1, ...) is Cauchy.
n=0

Let m,n € Z>qg with m < n.

Since
S0 = Sm| = |am+41 + -+ + an| < |amtr| + -+ |an| = [An — Anl,
then the sequence (sg, s1, ...) is Cauchy.

Since Cauchy sequences converge in R and C (in any complete metric space),

o
then the sequence (sq, s1,...) = E a, converges.
n=1

O

Example 5.99. (Radius of convergence) Let (ag, a1, az,as,...) be a sequence in R or C. Let r,s € C
and

o0 [e.e]
assume Z ans" converges. If |r| <|s| then Zan\ﬂ" converges.
n=0 n=0

Proof.
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o
Since Z aps™ converges, lim,_, |ans™| = 0.
n=0
Let ¢ € R>O.
Then there exists N € Z~ such that if n € Z>y then |a,s"| < e.
Then
o
> lanr™| = laol + larr| + -+ + lanr™| + [ayir ¥ 4
n=0
FN+2
SN+2

PN+
SN+1

= lag| 4+ -+ |ant™ | + |anp 15V + lan o5 12

PN+l rN+2

<lao| + -+ |anr™N| + ¢ +e +---

sN+1 gN+2

r T2
(1 50 251 )

el (=)

TNJrl

= lao| + -+ + lant™| +¢ SN+1

= lag| + |a1r| + - + lanT™| + €

sgN+1

(o.9]
Thus, since |r| < |s| then Z |anr"| converges.

n=0
00

So, by the previous Proposition, Z ap|r|™ converges.

n=0

Example 5.100. (Alternating series) If (a1, ag,as,...) is a decreasing sequence in R>

o
such that  lim a, =0 then Z(—l)”an converges.
n—oo
n=1
Proof.
Assume (ag, a1, ...) is a sequence in R>g, lim a, =0 and if n € Z>( then a, > an41.
- n—oo -
[o¢]
To show: Z(—l)"*lan =a; —as +az — aq + as — - - - converges.
n=0

Let
Som = (a1 — ag) + (a3 — aq) + -+ + (a2m—1 — agm).

Then s2; < S(m41)-
Since s9, = a1 — (a2 — a3) — (a4 —as) — - -+ — (@2m—2 — A2m—1) — G2m, then s9, < aj.
So the sequence (s2, $2, Sg, - . .) is increasing and bounded above.

So lim s9,, exists.
m—0o0

Let £ = lim s9p,.
m—r0o0

Let somy1 = S2m + a2m41-
Then
lim sgopmy1 = lim sop + lim agpmi1 =44+ 0=2~4.
m—00 m—00 m—00
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So lim s, =£.
m—0o0

So Y ()" lan =
n=0

5.8 Additional series examples

o0
Example 5.101. Evaluate Z 2.

n=1

Proof.

o0 T
32 = Jim (322) = Jim 2
n=1 n=1

which gets larger and larger as r gets larger and larger.

o
So Z 2 does not get closer and closer to a single real number. So

n=1
oo
Z 2 does not exist in R.
n=1
o0
Example 5.102. Evaluate Z (%)n
n=1
Proof. Since
oo o0
n n
> =-1+(X3)")
n=1 n=0
and
r 1— 1y\r+1
S (0= i (5 0) = i (527
2 r—00 2 r—00 1-1
n=0 n=0 2
— 1 (L4l 9 _ —
= lim 2(1—(3)"") =2-2lim =5 =2-2:0=2,
then
o0 [ee]
1\n _ 1\n) _ _
S =1 () = ee-
n=1 n=0
o 10"
Example 5.103. Evaluate Z _—.
n!
n=1
Proof. By the definition of e,
oo oo
10" 10" 10
S = ()= e
n=1 n=0
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n+1
Example 5.104. Evaluate Z .

n

n=1

Proof. Since
T T

St = () 2 (L) =

n=1 n=1 n=1

.
1
then Z ntl gets larger and larger as r gets larger and larger. So
n

n=1
o
1
Z nt does not exist in R.
n=1 n
O
o
2n)!
Example 5.105. Evaluate Z (L)
n!n!
n=1
Proof.
i (2n)! 75‘@: 1-2---(n=1)n-(n+1)(n+2)---2n
In! .2 (n — 1.2 (n—
‘e onlnl = 1.2 (n=1)n-1-2---(n—1)n
_i(n+1)(n+2)-~-2n_i(n+1) (n+2) 2n
= 12 (n—1)n — 1 2 n
[e.e] oo
=Y =Y
n=1 n=1
which gets larger and larger and does not get closer and closer to a single real number. So
o
2n)!
Z ﬂ does not exist in R.
nln!
n=1
O
Example 5.106. Determine whether Z 55— exists in R. Always carefully justify your an-
= 2n +n+2
swers.
Proof.
00 5 oo 00 o 2
3+ 2 1
)t S o . BN o P Y
2n2 +n+2 2n2 + n2 4 2n2 5n2 5 n? 5 6
n=1 n=1 n=1 n=1
So the sequence (a1, ag,...) given by
T 5 2
3+2 8
ar = nz:l m is an increasing sequence in R bounded by 5 %
So - ;
3+ 2
Z 5% = lim a, converges in R.
o 2n“4+n+2 rooco
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0 2
4
Example 5.107. Determine whether g n3 5 exists in R. Always carefully justify your answers.
n
n=1
T2
n° +4
Proof. Let ...) be th i b = e —
roof. Let (a1, as,...) be the sequence given by a, 321 Bs
T 2 T 2 T T
n°+4 n 1 1 1
> T S———— _— = — —
Zn3+5—zn3+5n3 Z(m Gzn
n=1 n= n=1 n=1

,
1

Let (b1, b2, ...) be the sequence given by b, = Z — is a p-series with p = 1. The sequence (b1, ba, .. .)
n

n=1
gets larger and larger as r gets larger and larger.

Since a, > %br then the sequence (a1, asg,...) gets larger and larger as r gets larger and larger. So

9
n 4
Z nre does not exist in R.
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