1.5 Tutorial 3 MAST30005 Semester I, 2024: Categories

- 1. Carefully define the following
 - (a) group
 - (b) abeliangroup
 - (c) ring
 - (d) Z-algebra
 - (d) F-algebra
 - (d) R-algebra
 - (e) commutativering
 - (f) field
- 2. Carefully define the following
 - (a) G-set
 - (b) Z-module
 - (c) R-module
 - (d) F-module
 - (e) F-vector space
- 3. Carefully define the following
 - (a) subgroup
 - (b) subabeliangroup
 - (c) subring
 - (d) Z-subalgebra
 - (d) F-subalgebra
 - (d) R-subalgebra
 - (e) subcommutativering
 - (f) subfield
- 4. Carefully define the following
 - (a) sub G-set
 - (b) Z-submodule
 - (c) R-submodule
 - (d) F-submodule
 - (e) F-subspace
- 5. Carefully define the following
 - (a) group morphism
 - (b) abeliangroup morphism
 - (c) ring morphism
 - (d) Z-algebra morphism
 - (d) F-algebra morphism
 - (d) R-algebra morphism
 - (e) commutativering morphism
 - (f) field morphism
- 6. Carefully define the following
 - (a) G-set morphism
 - (b) Z-module morphism
 - (c) R-module morphism

- (d) F-module morphism
- (e) F-linear transformation
- 7. Carefully define the following
 - (a) group isomorphism
 - (b) abeliangroup isomorphism
 - (c) ring isomorphism
 - (d) Z-algebra isomorphism
 - (d) F-algebra isomorphism
 - (d) R-algebra isomorphism
 - (e) commutativering isomorphism
 - (f) field isomorphism
- 8. Carefully define the following
 - (a) G-set isomorphism
 - (b) Z-module isomorphism
 - (c) R-module isomorphism
 - (d) F-module isomorphism
 - (e) F-vector space isomorpihsm
- 9. Carefully define the following
 - (a) group automorphism
 - (b) abeliangroup automorphism
 - (c) ring automorphism
 - (d) Z-algebra automorphism
 - (d) F-algebra automorphism
 - (d) R-algebra automorphism
 - (e) commutativering automorphism
 - (f) field automorphism
- 10. Carefully define the following
 - (a) G-set automorphism
 - (b) Z-module automorphism
 - (c) R-module automorphism
 - (d) F-module automorphism
 - (e) F-vector space automorphism
- 11. Carefully define the following
 - (a) kernel and image of a group morphism
 - (b) kernel and image of an abelian group morphism
 - (c) kernel and image of a ring morphism
 - (d) kernel and image of a Z-algebra morphism
 - (d) kernel and image of a F-algebra morphism
 - (d) kernel and image of a R-algebra morphism
 - (e) kernel and image of a commutative ing morphism
 - (f) kernel and image of a field morphism
- 12. (a) Let G be a group and let K be a subgroup of G. Show that

K is a normal subgroup of G if and only if there exists a group morphism $\varphi \colon G \to H$ such that $\ker \varphi = K$.

(b) Let R be a ring and let I be a subabelian group of R. Show that

I is an ideal of R if and only if there exists a ring morphism $\varphi \colon R \to S$ such that $\ker \varphi = I$.

(b) Let A be an R-algebra and let B be an R-submodule of A. Show that

B is an ideal of A if and only if there exists an R-algebra morphism $\varphi \colon A \to C$ such that $\ker(\varphi) = B$.

(c) Let M be an R-module and let N be an R-submodule of M. Show that

N is an R-submodule of M if and only if there exists an R-module morphism $\varphi \colon M \to P$ such that $\ker(\varphi) = N$.

(d) Let V be an \mathbb{F} -vector space and let W be an \mathbb{F} -subspace of V. Show that

W is an \mathbb{F} -subspace of V if and only if there exists an \mathbb{F} -linear transformation $\varphi \colon V \to P$ such that $\ker(\varphi) = W$.

13. (a) Let $\varphi \colon G \to H$ be a group morphism. Show that

$$\frac{G}{\ker(\varphi)} \cong \operatorname{im}(\varphi)$$
 as groups.

(b) Let $\varphi \colon R \to S$ be a ring morphism. Show that

$$\frac{R}{\ker(\varphi)} \cong \operatorname{im}(\varphi)$$
 as rings.

(c) Let $\varphi \colon A \to B$ be an R-algebra morphism. Show that

$$\frac{A}{\ker(\varphi)}\cong \operatorname{im}(\varphi) \qquad \text{as R-algebras}.$$

(d) Let $\varphi: M \to N$ be an R-module morphism. Show that

$$\frac{M}{\ker(\varphi)} \cong \operatorname{im}(\varphi)$$
 as R -modules.

(e) Let $\varphi \colon V \to V$ be an \mathbb{F} -linear transformation. Show that

$$\frac{V}{\ker(\varphi)} \cong \operatorname{im}(\varphi)$$
 as \mathbb{F} -vector spaces.

- 14. (a) Let $\varphi \colon G \to H$ be a group morphism. Show that $\ker \varphi$ is a normal subgroup of G.
 - (b) Give an example of a group morphism $\varphi \colon G \to H$ such that $\operatorname{im}(\varphi)$ is a subgroup of H.
 - (c) Give an example of a group morphism $\varphi \colon G \to H$ such that $\operatorname{im}(\varphi)$ is not a subgroup of H.
 - (d) Let $\varphi \colon G \to H$ be a ring morphism. Explain how to use φ to make H into a G-set and show that $\operatorname{im}(\varphi)$ is an G-subset of H.
- 15. (a) Let $\varphi \colon R \to S$ be a ring morphism. Show that $\ker \varphi$ is an ideal of R.
 - (b) Give an example of a ring morphism $\varphi \colon R \to S$ such that $\operatorname{im}(\varphi)$ is an S-submodule of S.

- (c) Give an example of a ring morphism $\varphi \colon R \to S$ such that $\operatorname{im}(\varphi)$ is not an S-submodule S.
- (d) Let $\varphi \colon R \to S$ be a ring morphism. Explain how to use φ to make S into an R-module and show that $\operatorname{im}(\varphi)$ is an R-submodule of S.
- 16. Let R be a ring.
 - (a) Let $\varphi \colon A \to B$ be an R-algebra morphism. Show that $\ker \varphi$ is an ideal of A.
 - (b) Give an example of an R-algebra morphism $\varphi \colon A \to B$ such that $\operatorname{im}(\varphi)$ is a B-submodule of B.
 - (c) Give an example of a R-algebra morphism $\varphi \colon A \to B$ such that $\operatorname{im}(\varphi)$ is not an B-submodule B.
 - (d) Let $\varphi \colon A \to B$ be an R-algebra morphism. Explain how to use φ to make B into an A-module and show that $\operatorname{im}(\varphi)$ is an A-submodule of B.
- 17. Let \mathbb{F} be a field. Show that an \mathbb{F} -vector space is the same thing as an \mathbb{F} -module.
- 18. Show that a ring is the same thing as a \mathbb{Z} -algebra.
- 19. Show that an abelian group is the same thing as a \mathbb{Z} -module.
- 20. Let R be a ring. Explain how R is an R-module. Show that an ideal of R is the same thing as an R-submodule of R.
- 21. Let A be an R-algebra. Explain how A is an A-module. Show that an ideal of A is the same thing as an A-submodule of A.
- 22. (a) Let G be a group. Show that a subgroup of G is the same as an injective group morphism $\varphi \colon H \to G$.
 - (b) Let R be a ring. Show that a subring of R is the same as an injective ring morphism $\varphi \colon S \to R$.
 - (c) Let A be an R-algebra. Show that an R-subalgebra A is the same as an injective R-algebra morphism $\varphi \colon C \to A$.
 - (d) Let \mathbb{K} be a field. Show that a subfield of \mathbb{K} is the same as an injective field morphism $\varphi \colon \mathbb{F} \to \mathbb{K}$.
 - (e) Let R be a ring and let M be an R-module. Show that an R-submodule of M is the same as an injective R-module morphism $\varphi \colon N \to M$.
 - (f) Let \mathbb{F} be a field and let V be an \mathbb{F} -vector space. Show that an \mathbb{F} -subspace of V is the same as an injective \mathbb{F} -linear transformation $\varphi \colon W \to V$.