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16.1 Problem Sheet: Navigation

1. Why should the symbols ⇢, 8, 9 be banned? What should they be replaced by?

2. Why should the phrase “Let a > 7” be banned? What should it be replaced by?

3. What does the symbol 7! mean and how should it be used?

4. What comes at the end of a sentence? and at the end of an equation that ends a sentence?

5. Why should the phrases ‘for all’, ‘for every’, ‘for each’, and ‘for some’ be banned? What should
they be replaced by?

6. Why is it bad style to start a sentence with a mathematical symbol? What should be written
instead?

7. Why do we never use a comma in place of the word ‘then’ in mathematical writing?

8. What are the symbols for “subset of”, “proper subset of”? “element of” and “equal”?

9. What is the form of a mathematical definition (for a noun)?

10. What is the form of a mathematical definition (for an adjective)?

11. What is the definition of equal sets?

12. What is the defnition of equal functions?

13. What is the definition of a function?

14. What is Proof type I? How does proof type I proceed?

15. What is proof type II? How does proof type II proceed?

16. What is proof type III? How does proof type III proceed?

17. What is proof by contrapositive? How does a proof by contrapositive proceed?

18. How do proofs of uniqueness proceed?

19. What is the underlying source of proof by induction? How does proof by induction proceed?

20. Why should proof by contradiction be banned? What should it be replaced by?

21. What is the structure of a universal property? What property ‘in English’ is a universal property
capturing? Give an explicit example of something that is defined by a universal property and
state the definition carefully and completely.

22. What property is “there exists” capturing? What property is “there exists a unique” capturing?

23. Prove that if x2 < y
2 then x < y. (Correct the statement as necessary before proving it.)

24. Prove that if a2 is divisible by 2 then a
2 is divisible by 4. (Correct the statement as necessary

before proving it.)

25. Prove that a function is invertible if and only if it is bijective. (Correct the statement as necessary
before proving it.)
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26. When is it appropriate to use the symbols =), (), �! and when is it not? When they should
not be used, what should they be replaced by?

27. Carefully define a field.

28. Carefully define a vector space.

29. Carefully define span(S).

30. Carefully define linearly independent.

31. Carefully define basis.

32. Carefully define Q and prove that it is a field.

33. Carefully define C and prove that it is a field.

34. Let m 2 Z>0. Carefully define Z/mZ.

35. Let p 2 Z>0. Show that Z/pZ is a field if and only if p is prime.

36. Show that 3 · 6 = 1 · 6 in Z/12Z.

37. Let m 2 Z>1. Show that if m is not prime then there exist a, b, c 2 Z/mZ such that ac = bc and
c 6= 0 and a 6= b.

38. Let F be a field. Show that if a, b, c 2 F and ac = bc and c 6= 0 then a = b.

39. Show that if a, b, c 2 Z and ac = bc and c 6= 0 then a = b.

40. Carefully define R[x] and determine which of the axioms of a field it satisfies and which axioms
of a field it does not satisfy.

41. Show that if a, b, c 2 R[x] and ac = bc and c 6= 0 then a = b.

42. Show that the R-subspace of C with R-basis {1, i} is a field.

43. Show that the Q-subspace of C with Q-basis {1, i} is a field.

44. Let 21/3 2 R�0. Show that the Q-subspace of C with Q-basis {1, 21/3, 22/3} is a field.

45. Let ⇣ = e
2⇡i/3. Show that ⇣2 = �1 � ⇣ and that the Q-subspace of C with Q-basis {1, ⇣, } is a

field.

46. Let ⇣ = e
2⇡i/3. Show that ⇣

2 = �1 � ⇣ and that the R-subspace of C with R-basis {1, ⇣} is a
field.

47. Let 21/3 2 R�0 and ⇣ = e
2⇡i/3. Show that theQ-subspace of C withQ-basis {1, ⇣, 21/3, 21/3⇣, 22/3, 22/3⇣}

is a field.

48. Let 21/3 2 R�0 and ⇣ = e
2⇡i/3. Find a Q-basis of the smallest field contained in C that contains

Q and 2
1
3 ⇣.

49. Carefully define the following

(a) group
(b) abeliangroup
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(c) ring
(d) Z-algebra
(d) F-algebra
(d) R-algebra
(e) commutativering
(f) field

50. Carefully define the following

(a) G-set
(b) Z-module
(c) R-module
(d) F-module
(e) F-vector space

51. Carefully define the following

(a) subgroup
(b) subabeliangroup
(c) subring
(d) Z-subalgebra
(d) F-subalgebra
(d) R-subalgebra
(e) subcommutativering
(f) subfield

52. Carefully define the following

(a) sub G-set
(b) Z-submodule
(c) R-submodule
(d) F-submodule
(e) F-subspace

53. Carefully define the following

(a) group morphism
(b) abeliangroup morphism
(c) ring morphism
(d) Z-algebra morphism
(d) F-algebra morphism
(d) R-algebra morphism
(e) commutativering morphism
(f) field morphism

54. Carefully define the following

(a) G-set morphism
(b) Z-module morphism
(c) R-module morphism
(d) F-module morphism
(e) F-linear transformation

55. Carefully define the following

192



Algebra notes, Arun Ram February 11, 2024

(a) group isomorphism
(b) abeliangroup isomorphism
(c) ring isomorphism
(d) Z-algebra isomorphism
(d) F-algebra isomorphism
(d) R-algebra isomorphism
(e) commutativering isomorphism
(f) field isomorphism

56. Carefully define the following

(a) G-set isomorphism
(b) Z-module isomorphism
(c) R-module isomorphism
(d) F-module isomorphism
(e) F-vector space isomorpihsm

57. Carefully define the following

(a) group automorphism
(b) abeliangroup automorphism
(c) ring automorphism
(d) Z-algebra automorphism
(d) F-algebra automorphism
(d) R-algebra automorphism
(e) commutativering automorphism
(f) field automorphism

58. Carefully define the following

(a) G-set automorphism
(b) Z-module automorphism
(c) R-module automorphism
(d) F-module automorphism
(e) F-vector space automorpihsm

59. Carefully define the following

(a) kernel and image of a group morphism
(b) kernel and image of an abeliangroup morphism
(c) kernel and image of a ring morphism
(d) kernel and image of a Z-algebra morphism
(d) kernel and image of a F-algebra morphism
(d) kernel and image of a R-algebra morphism
(e) kernel and image of a commutativering morphism
(f) kernel and image of a field morphism

60. (a) Let G be a group and let K be a subgroup of G. Show that

K is a normal subgroup of G if and only if
there exists a group morphism
' : G ! H such that ker' = K.

(b) Let R be a ring and let I be a subabeliangroup of R. Show that

I is an ideal of R if and only if
there exists a ring morphism
' : R ! S such that ker' = I.
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(b) Let A be an R-algebra and let B be an R-submodule of A. Show that

B is an ideal of A if and only if
there exists an R-algebra morphism
' : A ! C such that ker(') = B.

(c) Let M be an R-module and let N be an R-submodule of M . Show that

N is an R-submodule of M if and only if
there exists an R-module morphism
' : M ! P such that ker(') = N .

(d) Let V be an F-vector space and let W be an F-subspace of V . Show that

W is an F-subspace of V if and only if
there exists an F-linear transformation
' : V ! P such that ker(') = W .

61. (a) Let ' : G ! H be a group morphism. Show that

G

ker(')
⇠= im(') as groups.

(b) Let ' : R ! S be a ring morphism. Show that

R

ker(')
⇠= im(') as rings.

(c) Let ' : A ! B be an R-algebra morphism. Show that

A

ker(')
⇠= im(') as R-algebras.

(d) Let ' : M ! N be an R-module morphism. Show that

M

ker(')
⇠= im(') as R-modules.

(e) Let ' : V ! V be an F-linear transformation. Show that

V

ker(')
⇠= im(') as F-vector spaces.

62. (a) Let ' : G ! H be a group morphism. Show that ker' is a normal subgroup of G.
(b) Give an example of a group morphism ' : G ! H such that im(') is a subgroup of H.
(c) Give an example of a group morphism ' : G ! H such that im(') is not a subgroup of H.
(d) Let ' : G ! H be a ring morphism. Explain how to use ' to make H into a G-set and

show that im(') is an G-subset of H.

63. (a) Let ' : R ! S be a ring morphism. Show that ker' is an ideal of R.
(b) Give an example of a ring morphism ' : R ! S such that im(') is an S-submodule of S.
(c) Give an example of a ring morphism ' : R ! S such that im(') is not an S-submodule S.
(d) Let ' : R ! S be a ring morphism. Explain how to use ' to make S into an R-module and

show that im(') is an R-submodule of S.

64. Let R be a ring.
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(a) Let ' : A ! B be an R-algebra morphism. Show that ker' is an ideal of A.
(b) Give an example of an R-algebra morphism ' : A ! B such that im(') is a B-submodule

of B.
(c) Give an example of a R-algebra morphism ' : A ! B such that im(') is not an B-

submodule B.
(d) Let ' : A ! B be an R-algebra morphism. Explain how to use ' to make B into an

A-module and show that im(') is an A-submodule of B.

65. Let F be a field. Show that an F-vector space is the same thing as an F-module.

66. Show that a ring is the same thing as a Z-algebra.

67. Show that an abeliangroup is the same thing as a Z-module.

68. Let R be a ring. Explain how R is an R-module. Show that an ideal of R is the same thing as
an R-submodule of R.

69. Let A be an R-algebra. Explain how A is an A-module. Show that an ideal of A is the same
thing as an A-submodule of A.

70. (a) Let G be a group. Show that a subgroup of G is the same as an injective group morphism
' : H ! G.

(b) Let R be a ring. Show that a subring of R is the same as an injective ring morphism
' : S ! R.

(c) Let A be an R-algebra. Show that an R-subalgebra A is the same as an injective R-algebra
morphism ' : C ! A.

(d) Let K be a field. Show that a subfield of K is the same as an injective field morphism
' : F ! K.

(e) Let R be a ring and let M be an R-module. Show that an R-submodule of M is the same
as an injective R-module morphism ' : N ! M .

(f) Let F be a field and let V be an F-vector space. Show that an F-subspace of V is the same
as an injective F-linear transformation ' : W ! V .

71. Show that the symmetric group Sn is presented by generators s1, . . . , sn�1 and relations

s
2
j = 1, sks` = s`sk, si, si+1si = si+1sisi+1,

for j 2 {1, . . . , n� 1}, j, k 2 {1, . . . n� 1 with k 62 {k + 1, k � 1} and i 2 {1, . . . , n� 2}.

72. Show that the dihedral group Dn is presented by generators s, r with relations

s
2 = 1, r

n = 1, sr = r
�1

s.

73. Show that the cyclic group µn is presented by a single generator ⇣ with relation ⇣
n = 1.

74. Show that the cyclic group Z/nZ is presented by a single generator 1 with relation n = 0.

75. Show that the dihedral group Dn is presented by generators s1, s2 with

s
2
1 = 1, s

2
2 = 1, (s1s2)

n = 1.

76. Carefully define permutation matrix. Show that the symmetric group Sn is (isomorphic to) the
group of n⇥ n permutation matrices.
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77. Carefully define cyclic matrix. Show that the cyclic group µn is (isomorphic to) the group of
n⇥ n cyclic matrices.

78. Carefully define dihedral matrices. Show that the dihedral group Dn is (isomorphic to) the
group of n⇥ n dihedral matrices.

79. Show that the symmetric group Sn is (isomorphic to) Aut({1, . . . , n}).

80. Determine the subgroup lattice of Z/2Z.

81. Determine the subgroup lattice of Z/3Z.

82. Determine the subgroup lattice of Z/4Z and Z/2Z⇥ Z/2Z.

83. Determine the subgroup lattice of Z/5Z.

84. Show that Z/6Z ⇠= Z/2Z⇥ Z/3Z.

85. Determine the subgroup lattice of Z/6Z.

86. Show that S3
⇠= D3.

87. Carefully define the quaternion group and determine its subgroup lattice.

88. Show that C is the R-algebra presented by a single generator i and the relation i
2 = 1.

89. Show that R[x] is the R-algebra presented by a single generator x (and no relations).

90. Show that Z is the group generated by single generator 1 (and no relations).

91. Show that R[x, x�1] is the R-algebra presented by a generators x, y with relation xy = 1.

92. Show that F4 is the F2-algebra presented by a single generator ⌧ with relation ⌧
2 + ⌧ + 1 = 0.

93. Let I be an ideal of Z. Let m 2 Z>0 be minimal such that m 2 I. Show that mZ = I.

94. Show that if I is an ideal of Z then there exists m 2 Z>0 such that mZ = I.

95. Show that Z>0 indexes the ideals of Z.

96. Show that p 2 Z>0 is prime if and only if there does not exist c 2 Z>1 such that pZ ( cZ ( Z.

97. Let m,n 2 Z>0. Show that n is divisible by m if and only if nZ ✓ mZ.

98. Show that p 2 Z>0 is prime if and only if Z/pZ is a simple Z-module.

99. Let m,n, ` 2 Z>0 and assume that m` = n. Show that ` is prime if and only if mZ/nZ is a
simple Z-module.

100. Let n 2 Z>1. Show that there does not exist an infinite sequence n > m1 > m2 > · · · > 1 such
that nZ ( m1Z ( m2Z ( · · · ( Z.

101. Show that if M is a Z-module and N ✓ M is a Z-submodule of M and M/N is not simple then
there exists a Z-module M

0 such that N ( M
0 ( M .
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102. Assume that k 2 Z>0 and p1, . . . , pk 2 Z>0 are prime. Let

n = p1 · · · pk, m1 = p2 · · · pk, . . . , mk�1 = pk.

Show that nZ ( m1Z ( · · · ( mk�1Z ( Z and that Let m0 = n and mk = 1. Show that if
j 2 {1 . . . , k} then mjZ/mj�1Z is a simple Z-module.

103. Let n 2 Z>0. Show that there exist k 2 Z>0 and primes p1, . . . , pk 2 Z>0 such that n = p1 · · · pk.

104. (Eisenstein criterion) Let f(x) = anx
n + an�1x

n�1 + · · ·+ a0 2 Z[x] and let p 2 Z>0 be a prime
integer.
Assume that

(a) p does not divide an,

(b) p divides each of an�1, an�2, . . . , a0,

(c) p
2 does not divide a0.

Show that f(x) is irreducible in Q[x].

105. Let f(x) = anx
n + · · · + a0 2 Z[x] and let p be a prime integer such that p does not divide an.

Let
⇡p : Z[x] ! Z/pZ[x]

anx
n + · · ·+ a0 7! ānx

n + · · ·+ ā0,
where ā denotes a mod p.

Show that if ⇡p
�
f(x)

�
is irreducible in Z/pZ[x] then f(x) is irreducible in Q[x].

106. Show that if f(x) 2 Z[x], deg
�
f(x)

�
> 0, and f(x) is irreducible in Z[x] then f(x) is irreducible

in Q[x].

107. Let f(x) 2 Z[x]. Show that f(x) is irreducible in Z[x] if and only if

either f(x) = ±p, where p is a prime integer,
or f(x) is a primitive polynomial and f(x) is irreducible in Q[x].

108. Carefully define field, field morphism, subfield, field automorphism, and field extension.

109. Show that Q, R and C are fields.

110. Show that C(x) and C((x)) are fields.

111. Show that Z and C[x] and C[x, x�1] and C[[x] are not fields.

112. Let E/F be a field extension. Show that E is an F-vector space.

113. Give an example of fields F ✓ E such that dimF(E) finite.

114. Give an example of fields F ✓ E such that dimF(E) is infinite.

115. Show that if ' : E ! F is a field morphism then ' is injective.

116. Give an example of a field morphism ' : F ! F that is not surjective.

117. Carefully define F-module and F-algebra.

118. Let E/F be a field extension. Show that E is an F-algebra.
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119. Let E ◆ K ◆ F be inclusions of fields. Show that [E : K][K : F] = [E : F].

120. Let F be a field. Show that Aut(F) is a group.

121. Let F be a finite field of characteristic 2. Show that the map

F ! F
x 7! x

2 is a bijection.

122. Let F be a field of characteristic 2. Show that the map

F ! F
x 7! x

2 is a bijection.

123. Give an example of a field of characteristic p such that the Frobenius map is not an automor-
phism.

124. Determine Aut(Q), Aut(R) and Aut(C) and Aut(C/R) and Aut(C/Q).

125. Carefully define Gal(E/F) and Fix(H).

126. Show that if F ✓ E is an inclusion of fields then Gal(E/F) is a subgroup of Aut(E).

127. Show that if F ✓ E is an inclusion of fields and dimF(E) is finite then Gal(E/F) is a finite
subgroup of Aut(E).

128. Show that if H is a subgroup of Aut(E) then Fix(H) is a subfield of E.

129. Show that if H is a finite subgroup of Aut(E) then F = Fix(H) is a subfield of E and dimF(E)
is finite.

130. Show that if F is a subfield of E then Fix(Gal(E/F)) ◆ F.

131. Show that if H is a subgroup of Aut(E) then Gal(E/Fix(H)) ◆ H,

132. Show that if K ✓ F ✓ E are inclusions of fields then Gal(E/K) ◆ Gal(E/F),

133. Show that if H ✓ G ✓ Aut(E) are inclusions of groups then Fix(H) ◆ Fix(G).

134. Show that if E is a field and H is a subgroup of Aut(E) then Fix(Gal(E/Fix(H))) = Fix(H).

135. Show that if F ✓ E is an inclusion of fields then Gal(E/Fix(Gal(E/F))) = Gal(E/F).

136. Show that if � 2 Aut(E) and F ✓ E is an inclusion of fields then �F is a subfield of E.

137. Show that if � 2 Aut(E) and F ✓ E is an inclusion of fields then Gal(�F) = �Gal(F)��1.

138. Show that if � 2 Aut(E) and H is a subgroup of Aut(E) then Fix(�H�
�1) = �Fix(H).

139. Show that if H is a finite subgroup of Aut(E) then [E : Fix(H)] = |H|.

140. Show that if H is a finite subgroup of Aut(E) then [Gal(Fix(H)) = H.

141. Draw the subgroup lattice of S2 and determine which subgroups are normal.

142. Draw the subgroup lattice of Z/3Z and determine which subgroups are normal.
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143. Draw the subgroup lattice of Z/4Z and determine which subgroups are normal.

144. Draw the subgroup lattice of Z/2Z⇥ Z/2Z and determine which subgroups are normal.

145. Draw the subgroup lattice of Z/5Z and determine which subgroups are normal.

146. Draw the subgroup lattice of S3 and determine which subgroups are normal.

147. Carefully define F(↵) and F[↵].

148. Define F[x] and ev↵ : F[x] ! F and show that ev↵ is a ring homomorphism.

149. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that there exists a unique monic
polynomial m(x) 2 F[x] such that ker(ev↵) = m(x)F[x].

150. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Let m↵,F(x) 2 F[x] be the minimal poylnomial
of ↵ over F. Show that m↵,F(x) 2 F[x] is irreducible.

151. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if ↵ is algebraic over F then
F(↵) = F[↵].

152. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if n 2 Z>0 and deg(m↵,F(x)) = n

then [F(↵) : F] = n.

153. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if n 2 Z>0 and deg(m↵,F(x)) = n

then the F-vector space F(↵) has basis {1,↵,↵2
, . . . ,↵

n
}.

154. Let E ◆ F be an inclusion of fields and let ↵ 2 E.

(a) Carefully define what it means for ↵ to be algebraic over F.
(b) Carefully define what it means for ↵ to be transcendental over F.
(c) Carefully define what it means for ↵ to be separable over F.
(d) Carefully define what it means for ↵ to be normal over F.
(e) Carefully define what it means for ↵ to be Galois over F.

155. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if ↵ is algebraic over F then F(↵)
is a finite extension of F.

156. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if ↵ is transcendental over F then
F(↵) is not a finite extension of F.

157. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if ↵ is transcendental over F then
F(↵) ⇠= F(x), where F(x) is the fraction field of the polynomial ring F[x].

158. Show that ↵ = 2⇡i is algebraic over R and transcendental over Q.

159. Let E ◆ F be an inclusion of fields. Let ↵ 2 E and let m↵(x) 2 F[x] be the minimal polynomial
of ↵ over F. Show that all roots of m↵(x) have the same multiplicity.

160. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if char(F) = 0 then all elements of
E are separable.

161. Let E ◆ F be an inclusion of fields and let ↵ 2 E. Show that if F is finite then all elements of E
are separable.
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162. Show that if E/F is a finite separable extension of F then there exists ✓ 2 E such that E = F(✓).

163. Let E ◆ F be a finite extension. Show that there exists ✓ 2 E such that E = F(✓) if and only if
there are only a finite number of fields K with E ◆ K ◆ F.

164. Carefully define the finite field Fpk .

165. Provide the addition and multiplication tables for F2 and F4 and F3 and F9.

166. Prove that there does not exist a field with 6 elements.

167. Show that the function

{finite fields} �! {p
k
| p 2 Z>0 is prime, k 2 Z>0}

F 7�! Card(F) is a bijection.

168. Show that the finite field Fpk with p
k elements is given by

Fpk is the extension of Fp of degree k, Fpk = {↵ 2 Fp | ↵
p
k
� ↵ = 0}, Fpk = (Fp)

F
k
,

where
F : Fp ! Fp

↵ 7! ↵
p

is the Frobenius map.

169. Show that
Fp =

[

r2Z>0

Fpr .

170. Determine Gal(Fpr/Fp).

171. Determine Gal(Fp/Fp).

172. Show that Fpr = Fp. Determine Gal(Fpr/Fpr).

173. Determine Gal(C/C).

174. Determine Gal(R/R).

175. Determine Gal(Q/Q).

176. Carefully define the cyclotomic field Q(!).

177. Carefully define primitive nth root of unity, nth cyclotomic polynomial and the Euler � function.

178. Let �n(x) be the nth cyclotomic polynomial. Show that �n(x) 2 Z[x].

179. Let �n(x) be the nth cyclotomic polynomial. Show that �n(x) is irreducible in Z[x].

180. Let �n(x) be the nth cyclotomic polynomial. Show that

�(n) = deg(�n(x)) = Card((Z/nZ)⇥) = (the number of primitive nth roots of unity).

181. Let ! be a primitive nth root of unity. Show that Q(!) is the splitting field of xn � 1 2 Q[x].

182. Let ! be a primitive nth root of unity. Show that Q(!) is the splitting field of �n(x) 2 Q[x].
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183. Let ! be a primitive nth root of unity. Show that xn � 1 6= m!,Q(x) and �n(x) = m!,Q(x).

184. Let ! be a primitive nth root of unity. Show that Q(!))/Q is a Galois extension.

185. Let ! be a primitive nth root of unity. Show that Gal(Q(!))/Q) ⇠= (Z/nZ)⇥.

186. Let ! be a primitive nth root of unity. Show that

[Q(!) : Q] = |Gal(Q(!))/Q) = |�(n).

187. Let p 2 Z>0 be prime. Give a formula for �p(x).

188. Let p 2 Z>0 be prime and let r 2 Z>0. Give a formula for �pr(x).

189. Let n 2 Z>0. Show that
Y

d|n

�d(x) = x
n
� 1.

190. Let n 2 Z>0. Show that �n(x) 2 Q[x].

191. Let n 2 Z>0. Show that �n(x) 2 Z[x].

192. Factor �12(x) into irreducibles in R[x].

193. Prove that �12(x) is irreducible in Q[x].

194. Let n 2 Z>0. Show that �n(x) is irreducible in Q[x].

195. Let n 2 Z>0. Let p 2 Z>0 such that p is prime and p = 1 mod n. Show that �n(x) factors into
linear factors in Fp[x].

196. Let F be the splitting fiield of �12(x) over Q. Show that the Galois group Gal(F/Q) is isomorphic
to Z/2Z⇥ Z/2Z.

197. Let p 2 Z>0. Show that

p is prime if and only if Z
pZ is a field.

198. Let p 2 Z>0. Show that

p is prime if and only if Z
pZ is an integral domain.

199. Let F be a field and let m(x) 2 F[x]. Show that

m(x) is irreducible in F[x] if and only if F[x]
(m(x)) is a field.

200. Let F be a field and let m(x) 2 F[x]. Show that

m(x) is irreducible in F[x] if and only if F[x]
(m(x)) is an integral domain.

201. Show that x2 � 12 is irreducible in Q[x].

202. Show that 8x3 + 4399x2 � 9x+ 2 is irreducible in Q[x].

203. Show that 2x10 � 25x3 + 10x2 � 30 is irreducible in Q[x].
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204. Determine all irreducible polynomials of degree  4 in F2[x].

205. List all monic polynomials of degree  2 in F3[x]. Determine which of these are irreducible.

206. What is the di↵erence between Q[5
1
3 ] and Q(5

1
3 )?

207. Show that x3 � 5 does not factor into linear polynomials with coe�cients in Q[5
1
3 ]. Show that

Q(5
1
3 ) = Q[5

1
3 ] and has Q-basis {1, 5

1
3 , 5

2
3 }. Let ⇣ be a primitve cube root of 1 and show that

the splitting field of x3 � 5 is Q(5
1
3 , ⇣) and is dimension 9 as a Q-vector space.

208. Let ↵ =
p
2 +

p
3 in R�0.

(a) Find f(x) 2 Q[x] such that deg(f(x)) = 4 and f(↵) = 0.

(b) Factor f(x) in C[x].
(c) Find [Q(↵) : Q].

209. Let f(x) = x
3
� x + 4 and let ↵ 2 C be such that f(↵) = 0. Find the inverse of ↵2 + ↵ + 1 in

Q(↵). More precisely, find a, b, c 2 Q such that

(↵2 + ↵+ 1)�1 = a+ b↵+ c↵
2
.

210. Let F ✓ R be a inclusion of rings and assume that F is a field and R is an integral domain and
dimF(R) is finite. Show that R is a field.

211. Let F be a field and let ↵ 2 F such that [F(↵) : F] = 5. Show that F(↵2) = F(↵).

212. Let ↵ 2 C be a root of x3 � x+ 1. Determine the minimal polynomial of � = ↵
2 + 1 over Q.

213. Let F = C(u). Let f(x) = x
4
� 4x2 + 2� u 2 F[x].

(a) Carefully state Gauss’ lemma.

(b) Prove that f(x) is irreducible in F[x].
(c) Show that the C-algebra homomorphism given by

C(v)[x] ! C(t)[x]
v 7! t

4 + t
�4

x 7! x

has kernel (f(x)).

(c) Let

K =
F[x]
(f(x))

.

Prove that K is not a splitting field of f(x).

214. Show that if F is a finite field then there exists p 2 Z>0 prime and r 2 Z>0 such that

Card(F) = p
r
.

215. Let n 2 Z>0. Show that the set

{p(x) 2 Q[x] | deg(p(x)) = n and p(x) is irreducible} is infinite.
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216. Let p 2 Z>0 and let F be a field with char(F) = p. Let r 2 Z>0. Show that

K = {x 2 F | x
p
r
= x} is a subfield of F.

217. Let E be a field and let H be a subgroup of Aut(E). Show that

EH = {x 2 E | if h 2 H then h(↵) = ↵} is a subfield of E.

218. Let K be a field. Let G be a subgroup of Aut(K and let N be a normal subgroup of G. Then

N ✓ G ✓ Aut(K) so that KG
✓ KN

.

Define an injective homomorphism

G/N ! AutKG(KN )

Is this an isomorphism?

219. Let E ◆ F be an inclusion of fields and let ↵ 2 E.

(a) Carefully define what it means for ↵ to be algebraic over F.
(b) Carefully define what it means for ↵ to be transcendental over F.
(c) Carefully define what it means for ↵ to be separable over F.
(d) Carefully define what it means for ↵ to be normal over F.
(e) Carefully define what it means for ↵ to be Galois over F.

220. Let E ◆ F be an inclusion of fields.

(a) Carefully define what it means for E to be a finite extension of F.
(b) Carefully define what it means for E to be an algebraic extension of F.
(c) Carefully define what it means for E to be a separable extension of F.
(d) Carefully define what it means for E to be a normal extension of F.
(e) Carefully define what it means for E to be a Galois extension of F.

221. Determine which properties R/Q and C/Q and R/Q have (finite, algebraic, separable, normal,
Galois).

222. Show that E/F is a Galois extension if and only if [E;F] is finite and Gal(E/F) = [E : F].

223. Show that if E is a Galois extension of F then Fix(Gal(E/F)) = F.

224. Show that if E is a Galois extension of F then [E : F] = |Gal(E/F)|.

225. Show that if E/K is Galois and E ◆ F ◆ K are field inclusions then E/F is Galois.

226. Show that if E/K is Galois and E ◆ F ◆ K are field inclusions then F/K is Galois if and only if
F satisfies

if � 2 Gal(E/K) then �F = F.

227. Show that if E/K is Galois and E ◆ F ◆ K are field inclusions then F/K is Galois if and only if
Gal(E/F) is a normal subgroup of Gal(E/K).
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228. Show that if E/K is Galois and E ◆ F ◆ K are field inclusions then

Gal(E/K) ! Gal(F/K)
� 7! �|H

is a group homomorphism with kernel Gal(E/F).

229. Show that F ◆ K is a finite separable extension then there exists a finite extension E ◆ F ◆ K
such that E/K is Galois.

230. Show that the monic polynomials in F[x] index the ideals of F[x].

231. Let B be an F-algebra. Show that HomF(F[x], B) ⇠= B.

232. Show that the R-algebra morphisms given by

R[x]
(x2+1) ! C
x 7! i

anc
R[x]

(x2+1) ! C
x 7! �i

are both isormorphisms.

233. Show that C and R2 are not isomorphic are R-algebras.

234. Give an R-algebra isomorphism from R[x]/(x2 + x+ 1) and C.

235. Give an R-algebra isomorphism from R[x]/(x(x+ 1)) and R2.

236. Show that [C : R] = 2.

237. Show that [R : Q] = 1.

238. Let f 2 F[x]. Show that if [F[x]/(f) : F] = deg(f).

239. Let A ✓ B be an inclusion of k-algebras. Assume that B has a A-basis {b1, . . . , bm}. Let
{a1, . . . , an} be a k-basis of A. Show that B has k-basis {aibj | i 2 {1, . . . , n}, j 2 {1, . . . ,m}}.

240. Show that Card(Q) = Card(Q) = Card(Z) = Card(Z>0).

241. Prove that X

n2Z>�0

10�n! is transcendental over Q.

242. Prove that e is transcendental over Q.

243. Prove that ⇡ is transcendental over Q.

244. Let K ◆ F be an extension. Show that the set of elements of K that are algebraic over F is a
subfield of K.

245. Let F be a field. Show that if ↵ is algebraic over F then F[↵] is a field.

246. Let K ◆ F be a field extension and let ↵ 2 K. Let f 2 F[x] be the minimal polynomial of ↵.
Show that f is irreducible, that F(↵) = F[↵] and that F(↵) has F-basis {1,↵, · · · ,↵n�1

}, where
n = deg(f).

247. The “Theorem of Louiville” states that if f : C ! C is holomorphic and bounded then f is
constant. Use Louiville’s theorem to prove that C is algebraically closed. (Be sure to give a
careful definition of C.)
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248. Let F be a field. Carefully define algebraically closed and the algebraic closure of F. Show that
the algebraic closure of F exists, is unique, is algebraic over F and is algebraically closed.

249. Show that Q 6= C.

250. Let F be a field and let J ✓ F[x]. Carefully define the splitting field of J over F. Show that the
splitting field of J over F exists, is unique, and is algebraic over F.

251. Let F be a field. Show that a finite dimensional F-vector space is the same as a finitely generated
F-module.

252. Let F be a field and let V be a finite dimensional F-vector space. Explain why a linear transfor-
mation T : V ! V is the same data as an F[x]-module structure on V .

253. Let R be a ring and let n 2 Z>0. Show that an element of GLn(R) is the same data as an
R-module isomorphism ' : Rn

! R
n.

254. Let R be a Euclidean domain. For i 2 {1, . . . , n� 1}, j 2 {1, . . . , n}, c 2 R and d 2 R
⇥ let

xi,i+1(c) = 1 + cEij , xi+1,i(c) = 1 + cEi+1,i, hj(d) = 1 + (d� 1)Ejj .

Show that GLn(R) is generated by the matrices

xi,i+1(c), xi+1,i(c), hj(d), with c 2 R, d 2 R
⇥

and i 2 {1, . . . , n� 1} and j 2 {1, . . . , n}.

255. Let R be a PID. For i 2 {1, . . . , n�1}, j 2 {1, . . . , n}, d 2 R
⇥ and r, s, p, q 2 R with rq�ps = 1,

let

yi

✓
r s

p q

◆
= 1 + (r � 1)Eii + sEi,i+1 + pEi+1,i + (q � 1)Ei+1,i+1, hj(d) = 1 + (d� 1)Ejj .

Show that GLn(R) is generated by the matrices

yi

✓
r s

p q

◆
and hj(d), with d 2 R

⇥ and r, s, p, q 2 R such that rq � ps = 1,

and i 2 {1, . . . , n� 1{ and j 2 {1, . . . , n}.

256. Show that a Euclidean domain is a PID.

257. Show that a PID is a UFD.

258. Let s, t 2 Z>0 and let A 2 Mt⇥s(Z). Show that there exist P 2 GLt(Z) and Q 2 GLs(Z) such
that PAQ is diagonal.

259. Let F be a field. Let s, t 2 Z>0 and let A 2 Mt⇥s(F[x]). Show that there exist P 2 GLt(F[x])
and Q 2 GLs(F[x]) such that PAQ is diagonal.

260. Let R be a Euclidean domain. Let s, t 2 Z>0 and let A 2 Mt⇥s(R). Show that there exist
P 2 GLt(R) and Q 2 GLs(R) such that PAQ is diagonal.

261. Let R be a PID. Let s, t 2 Z>0 and let A 2 Mt⇥s(R). Show that there exist P 2 GLt(R) and
Q 2 GLs(R) such that PAQ is diagonal.
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262. Let p1, p2 2 Z>0 be prime. Show that

Z
p1p2Z

⇠=
Z
p1Z

�
Z
p2Z

.

263. Let m,n 2 Z>0 with gcd(m,n) = 1. Show that

Z
mnZ

⇠=
Z
mZ �

Z
nZ .

264. Let F be a field and let a1, a2 2 F with a1 6= a2. Let r, s 2 Z>0. Show that

F[x]
(x� a1)r(x� a2)sF[x]

⇠=
F[x]

(x� a1)rF[x]
�

F[x]
(x� a2)sF[x]

.

265. Let F be a field and let p(x), q(x) 2 F[x] with gcd(p(x), q(x)) = 1. Show that

F[x]
p(x)q(x)F[x]

⇠=
F[x]

p(x)F[x] �
F[x]

q(x)F[x] .

266. Let R be a.PID and let p, q 2 R with gcd(p, q) = 1. Show that

R

pqR

⇠=
R

pR
�

R

qR
.

267. Compute the matrix of the action of x on

F[x]
(xr + ar�1x

r�1 + · · ·+ a1x+ a0)F[x]
with respect to the F-basis {1, x, . . . , xr�1

}.

268. Let � 2 F. Compute the matrix of the action of x on

F[x]
(x� �)dF[x] with respect to the F-basis {1, x� �, . . . , (x� �)d�1

}.

269. Let p(x) = x
r + ar�1x

r�1 + · · ·+ a1x+ a0 2 F[x]. Compute the matrix of the action of x on

F[x]
p(x)dF[x]

with respect to the F-basis

{1, x, . . . , xr�1
} [ {p(x), xp(x), . . . , xr�1

p(x)} [ · · · [ {p(x)d�1
, xp(x)d�1

, . . . , x
r�1

p(x)d�1
}.

270. Let n 2 Z>0. Let F be a field and let A 2 Mn(F). Prove that there exists P 2 GLn(F) such that
PAP

�1 is in Jordan normal form.
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