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19.6.4 Free, torsion-free, annihilators, torsion

Let M be an R-module and let m € M. Show that ann(m) is an ideal in R.

Let I be an ideal in R. Show that ann(R/I) = I.

Let My and M, be R-modules. Show that ann(M; & Ms) = ann(M7) N ann(My).

Give the definition of the torsion submodule of an R-module.

Give the definition of the torsion submodule of an R-module.

Let M be an R-module. Show that Tor(M) is a submodule of M.

Define what it means to say that a module is torsion free.

Let R be a commutative ring with identity. What does it mean to say that an R-module is free?
What does it mean to say that an R-module is free?

Let R be a commutative ring with identity. What does it mean to say that an R-module is free?
Let M be a module. Define carefully what it means to say that M is free.

What does it mean to say that an R-module is free?

Let M be an R-module. Give the definitions of what it means to say that M is torsion free and
what it means to say that M is free.

Show that R-span(S) = {rivi + - -rxvg | k € Z>o, r1,...,7x € Rand vy,...,v € S }.

Let M be an R-module. Prove that a subset S of M is a basis of M if and only if every element
of M can be written uniquely as a linear combination of elements from S.

Let F' and G be two free R-modules of rank m and n respectively. Show that the R-module
F @ G is free of rank m + n.

Let R be a ring and let V' be a free module of finite rank over R.

(a) Show that every set of generators of V' contains a basis of V.

(b) Show that every linearly independent set in V' can be extended to a basis of V.
Show that every finitely generated R-module is isomorphic to a quotient of a free R-module.
Show that every finitely generated R-module is isomorphic to a quotient of a free R-module.

(a) Give the definitions of a module and a free module.
(b) Give an example of a free module having a proper submodule of the same rank.

(¢) Show that, as a Z-module, Q is torsion free but not free.
Show that Q, considered as a Z-module, is not free.
Show that Q considered as a Z-module, is torsion free but not free.
Let R =R[X,Y] and let I = (X,Y) be the ideal generated by X and Y. Show that I considered

as an R-module is not free.
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Let R =R[X,Y] and let I = (X,Y") be the ideal generated by X and Y. Show that I considered
as an R-module is not free.

Let R = 7Z/6Z and let F = R®2. Write down a basis of F. Let N = {(0,0),(3,0)}. Show that
N is a submodule of the free module ' and N is not free.

Give an example of a submodule of a free module that is not free.
Give an example of a finitely generated R-module that is torsion-free but not free.

Give an example of a free module M and a generating set S C M such that M does not contain
a basis.

Let R be a commutative unital ring, let F' be a free R-module and let ¢: M — F be a surjective
module homomorphism. Show that M = F @ ker(yp).

Suppose that R is an integral domain and M is an R-module. Let T" be the torsion submodule
of M. Show that the R-module M /T is torsion free.

Suppose that R is an integral domain and M is an R-module. Let T" be the torsion submodule
of M. Show that the R-module M/T is torsion free.

Let R be an integral domain. Show that a free R-module is torsion free.
Show that if R is an integral domain and M is free then M is torsion free.
Let R be a integral domain and let M be a free R-module. Show that M is torsion free.

Give an example of an integral domain R and an R-module M such that M is torsion free and
M is not free.

Show that R is a torsion free R-module if and only if R is an integral domain.
Show that Q as a Z-module is torsion free but not free.

Let R be an integral domain. Let I be an ideal in R. Show that I is a free R-module if and only
if it is principal.

Let R be an integral domain. Let V be a free R-module of rank d. Define Endg(V'), explain
(with proof) how it is a ring, and show that Endg(V) = Myxq(R).

Let R be an integral domain. Let V' be a free R-module with basis {v1,...,v4}. Let p: V=V
be an R-module morphism. Prove that {¢(v1),...,¢(vq)} is a basis of V' if and only if ¢ is an
isomorphism.

State the structure theorem for finitely generated modules over a principal ideal domain.
State the structure theorem for finitely generated modules over a PID.
State the structure theorem for finitely generated modules over a PID.
State the structure theorem for finitely generated modules over a principal ideal domain.
State the structure theorem for finitely generated modules over a PID.

State the structure theorem for finitely generated modules over a PID.
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State the structure theorem for finitely generated modules over a PID.

State carefully the invariant factor theorem which describes the structure of finitely generated
modules over a principal ideal domain.

Describe the primary decomposition of a finitely generated torsion module over a PID.

Let M be a finitely generated torsion module over a PID R. Show that M is indecomposable if
and only if M = Rx where anng(z) = (p¢) and p is a prime of R.

Use the structure theorem for modules to show that a torsion free finitely generated module over
a PID is free.

Show that if R is a PID then any finitely generated and torsion free R module is free.
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