Algebra notes, Arun Ram April 14, 2024

2.22 Proof of the Chinese remainder theorem
Theorem 2.28. (Chinese remainder theorem) Let A be a PID and let d € A.
Assume d = pq with ged(p, q) = 1.

Then there exist r,s € A such that 1 = pr + ¢s and

A ~ A A

dh 7 AT gh
pr+pgA = (0+pA1+qA) s an A-module isomorphism.
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Proof. Let r,s € A such that pr + s¢ = 1. Then
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The A-module % is given by generators mj, mo with relations 1-mj; = 0 and dmgy = 0. Then let
b1 = rmq — qgms, bo = smq1 4+ pmy so that m1 = pb1 + gba, mg = —Smq + rmas.
Then
pb1 = prmy1 —pgme =0 —dmg =0 and qbo = —gsm1 + qgpmo =0+ dme =0
so that by, by are generators of the module Z% ® %. Thus
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