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2.22 Proof of the Chinese remainder theorem

Theorem 2.28. (Chinese remainder theorem) Let A be a PID and let d 2 A.

Assume d = pq with gcd(p, q) = 1.

Then there exist r, s 2 A such that 1 = pr + qs and
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is an A-module isomorphism.

Proof. Let r, s 2 A such that pr + sq = 1. Then
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The A-module A
dA is given by generators m1,m2 with relations 1 ·m1 = 0 and dm2 = 0. Then let

b1 = rm1 � qm2, b2 = sm1 + pm2 so that m1 = pb1 + qb2, m2 = �sm1 + rm2.

Then

pb1 = prm1 � pqm2 = 0� dm2 = 0 and qb2 = �qsm1 + qpm2 = 0 + dm2 = 0

so that b1, b2 are generators of the module A
pA �
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