10.3 Gram matrix of \langle , \rangle with respect to a basis B

Assume $n \in \mathbb{Z}_{>0}$ and $\dim(V) = n$. Let $\langle , \rangle \colon V \times V \to \mathbb{F}$ be a bilinear form and let $B = \{b_1, \dots, b_n\}$ be a basis of V. The *Gram matrix of* \langle , \rangle *with respect to the basis* B is

$$G_B \in M_n(\mathbb{F})$$
 given by $G_B(i,j) = \langle b_i, b_j \rangle$.

Let $C = \{c_1, \ldots, c_n\}$ be another basis of V and let P_{CB} be the change of basis matrix given by

$$c_i = \sum_{j=1}^{n} P_{BC}(j, i)b_j, \quad \text{for } i \in \{1, \dots, n\}.$$

Since

$$G_C(i,j) = \langle c_i, c_j \rangle = \sum_{k,l=1}^n \langle P_{BC}(k,i)b_k, P_{BC}(l,j)b_l \rangle = \sum_{k,l=1}^n P_{BC}(k,i)G_B(k,l)P_{BC}(l,j),$$

then

$$G_C = P_{BC}^t G_B P_{BC},$$

10.4 Quadratic forms

Let \mathbb{F} be a field, V an \mathbb{F} -vector space and $\langle, \rangle \colon V \times V \to \mathbb{F}$ a bilinear form. The quadratic form associated to \langle, \rangle is the function

$$\| \|^2 \colon V \to \mathbb{F}$$
 given by $\|v\|^2 = \langle v, v \rangle$.

Theorem 10.1. Let V be a vector space over a field \mathbb{F} and let $\langle, \rangle \colon V \times V \to \mathbb{F}$ be a bilinear form. Let $\| \|^2 \colon V \to \mathbb{F}$ be the quadratic form associated to \langle, \rangle .

(a) (Parallelogram property) If $x, y \in V$ then

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

(b) (Pythagorean theorem) If $x, y \in V$ and $\langle x, y \rangle = 0$ and $\langle y, x \rangle = 0$ then

$$||x||^2 + ||y||^2 = ||x + y||^2.$$

(c) (Reconstruction) Assume that \langle , \rangle is symmetric and that $2 \neq 0$ in \mathbb{F} . Let $x, y \in V$. Then

$$\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$$

Theorem 10.2. Let \mathbb{F} be a field with an involution $\overline{} : \mathbb{F} \to \mathbb{F}$ such that the fixed field

$$\mathbb{K} = \{ a \in \mathbb{F} \mid a = \bar{a} \}$$
 is an ordered field.

For $a \in \mathbb{K}$ define

$$|a|^2 = a\bar{a}.$$

Let V be an \mathbb{K} -vector space with a sesquilinear form $\langle , \rangle \colon V \times V \to \mathbb{F}$ such that

- (a) If $x, y \in V$ then $\langle y, x \rangle = \overline{\langle x, y \rangle}$.
- (b) If $x \in V$ then $\langle x, x \rangle \in \mathbb{K}_{>0}$.

Let $\| \|: V \to \mathbb{F}$ be the corresponding quadratic form and assume that if $a \in \mathbb{K}_{\geq 0}$ then there exists a unique $c \in \mathbb{K}_{\geq 0}$ such that $c^2 = a$. Then

- (c) (Cauchy-Schwarz) If $x, y \in V$ then $|\langle x, y \rangle| \leq ||x|| \cdot ||y||$.
- (d) (Triangle inequality) If $x, y \in V$ then $||x + y|| \le ||x|| + ||y||$.