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10.12 Some proofs
10.12.1 Lengths and reconstruction

Theorem 10.13. Let V' be a vector space over a field F and let (,): V x V — T be a bilinear form.
Let || ||*: V — F be the quadratic form associated to (,).

(a) (Parallelogram property) If x,y € V then
lz +ylI* + |z — yl* = 2]|z]|* + 2[ly||*.
(b) (Pythagorean theorem) If x,y € V and (x,y) =0 and (y,x) = 0 then
lz[1* + lyl* = Il +yl|*.
(¢) (Reconstruction) Assume that (,) is symmetric and that 2 #0 in F. Let z,y € V. Then
(@,y) = 5(llx +yl” = lll* = lly]*)-
Proof.
(a) Assume z,y € V. Then
lz +yl* +llz = y* = (e +y, 2 +y) +(z —y,z —y)
= 2|z + 2[ly]>.
(b) Assume z,y € V and (z,y) = 0 and (y,x) = 0. Then

|z +yl* = (x+y, +z +y) = (z,2) + (2,9) + (y,2) + (y,9)
=[z*+ 040+ |ly|I> = lz]|* + 0+ 0+ [y

(c) Assume z,y € V. Then

lz +yl* = 2> = yllI* = (= +y.2 +y) — (z,2) - (y,9)

(
(z,2) +(z,y) + (v, ) + (v, y) — (@, 2) — (Y, y)
2(z,y).

10.12.2 Cauchy-Schwarz
Theorem 10.14. Let F be a field with an involution : F — F such that the fized field

K={aeF|a=a} is an ordered field.

For a € K define
la|? = aa.
Let V' be an K-vector space with a sesquilinear form (,): V x V — F such that
(a) If x,y € V then (y,z) = (z,y).
(b) If v € V then (z,x) € K>¢.
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Let || ||: V — F be the corresponding quadratic form and assume that if a € Ks( then there exists a
unique ¢ € Ko such that ¢* = a. Then

(c) (Cauchy-Schwarz) If x,y € V then [(z,y)| < |z| - ||y].
(d) (Triangle inequality) If z,y € V then ||z + y|| < ||z| + [ly]|-

Proof. (c) Let z,y € V. If x = 0 then both sides of the Cauchy-Schwarz inequality are 0. Assume
x # 0. The Gram-Schmidt process on the vectors (x,y) suggests the consideration of

- T and uQ:y—<y’m>az
[Ed| (2, )

U1

To avoid denominators, let u = (z,z)y — (y,x)x. Then

0< <u,u) = <<$,l‘>y - <y7 1‘>x7 <.73,2U>y - <y,$>$>
= (z, 2)(z,2)[(y, y) — (@, 2){y, 2)(y, x) = (y, 2)(z, 2)(x,y) + [{y, 2)|*(z, )
= (z,2)((z,2)(y,y) — l{y, 2)[*)

Since x # 0 then (z,z) € Ky and so (x,z) = (x,z) € Ksg. Thus,

0< (z,2)(y,y) = [y, 2)*  andso  [(y,2)]* < (w,2)(y,y).

Thus, BY SQUARES PROPOSITION, [{(z,y)| < [|z|| - |ly]|-
(d) Let a € F. Using that if 2 € F then |z|? = 2z € K>, then

la+a®<la+al®+|a—a*=(a+a)?— (a—a)’ = 4aa = 4|al*.
So |a + a| < 2|a|. Also
ifa+aeKcthena+a<0<|a+al and if a+a € Kso then a +a = |a + al.
Combining these with |a + a| < 2|a| gives
a+a < 2al
Assume z,y € V. Then

|z + yl? = (z,2) + (z,9) + (v, z) + (v, )
= [lzl* + ylI* + (z, ) + (z,y)
<l )l* + [yl + 2[(z, )|
< lz)l® + ylI? + 2)|z] - [yl
= ([l + [lyI)>.

Thus ||z +yl| < [l=[| + [lyll- 0
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10.12.3 Dual basies
Proposition 10.15. Let V' be a vector space with a sesquilinear form (,}: V. xV — F. Let W CV

be a subspace of V.. Assume W is finite dimensional, that (w1,...,wx) is a basis of W and that G is
the Gram matriz of (,) with respect to the basis {w1,...,wx}. The following are equivalent:
(a) A dual basis to (wy,...,wy) exists.

(b) G is invertible.
(c) WNW+ =0.
(d) The linear transformation

Twe W= W aen by u(w) = (v,w),

v Py
is an isomorphism.
Proof.
(a) = (b): Assume that {w!, ..., w*} exists.

To show: @ is invertible.
Define H(¢,1) € F by

Then

So HG =1, H is the inverse of G, and G is invertible.

(b) = (a): Assume that G is invertible.
For i € {1,...,k} define

k
w' = ZGil(z’,ﬁ)wg, for i € {1,...,k}.

/=1
Then
‘ k k
(i wy) = S G760 (e, wy) = 3G OGEL ) = (G716, 5) = by
/=1 /=1
So {w?,...,w*} is a dual basis to {w1,...,w}.

(b) = (c): Assume that G is invertible.

To show: W NW+ = 0.

Let w e W N W+,

To show: w = 0.

Write w = cqwy + -+ - 4 cxw.

To show: If j € {1,...,k} then ¢; = 0.

Since w € W+ then (w,w,) =0 for r € {1,... k} and

cj = Z cedyj = Z GG (r, §)
(=1 (=1
k k k
= ZC@<W€,wr>G_1(T,j) = Z<w>wT>G_1(T7j) =0.= ZO : G_l(
(=1 r=1 r=1
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So w = 0.

(c) = (b): Assume that W NW+ = 0.

To show: G is invertible.

To show: The rows of G are linearly independent.

To show: If ¢1,...,c, € Fand (c1,...,¢x)G=0thenc; =0, cg=0,..., ¢t =0.
Assume cq,...,¢x € Fand (c1,...,c)G = 0.

To show: ¢; =0, c2=0,..., ¢ =0.

Let w = cqwy + - - - 4+ cpwg.

If i € {1,...,k} then, since (¢1,...,c,)G =0,

k k
0= ZCgG(&i) = ch<w5,wi) = (crwy + -+ cpwg, w;) = (W, w;).
=1 =1
So w € W+,
SoweWnNnW+,
So w = 0.

Soci =0, ca=0, ...,¢c; =0.
Thus the rows of G are linearly independent and G is invertible.
(c) = (d): Assume that WN WL =0
To show: Uy : W — W* is an isomorphism.
To show: (ca) Wy is injective.
(cb) Wy is surjective.

(ca) Since ker(Uy) = W N W+ then ker(¥yy) = 0.
So Wy is injective.
(cb) If {wy,...,wi} is a basis of W then defining ¢': W — F by

if ¢1,...,¢cp € F then O (crwy + - - - + cpwy) = ¢,

produces a basis {¢?!,...,¢"} of the dual space W*.

So dim(W) = dim(W™).

Since Wy is injective W is finite dimensional then dim(im(¥y)) = dim(W) = dim(W™).
So im(¥y) = W* and ¢y is surjective.

So Wy is an isomorphism.

(d) = (c¢): Assume that Uy is an isomorphism.
So Wy is injective.
So ker(¥y) = 0.
Since ker(Vy) = W N WL then W N W+ = 0.
10.12.4 Nonisotropy
Proposition 10.16. A sesquilinear form (,): V x V — F satisfies
(no isotropic vectors condition) If v € V' and (v,v) =0 then v =0.
if and only if it satisfies

no isotropic subspaces condition) If W is a subspace of V then W N W+ = 0.
(: P 74 D
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Proof. =: Assume that if v € V and (v,v) = 0 then v = 0.
To show: If W is a subspace of V then W N W+ = 0.
Assume W is a subspace of V.

To show: If w € W N W+ then w = 0.

Assume w € W N W+,

Then (w,w) = 0.

So w = 0.

«: Assume that if W is a subspace of V then W N W+ = 0.
To show: If v € V and (v,v) = 0 then v = 0.

Assume v € V.

To show: If v # 0 then (v,v) # 0.

Assume v # 0.

Let W = Fu, a one-dimensional subspace of V.

Since Fv N (Fv)* = 0 then v & (Fv)*.

So (v, v) # 0. O

10.12.5 Orthogonal projections

Proposition 10.17. (Characterization of orthogonal projection) Let F be a field and let V' be an
F-vector space. Let (,): V x V — T be a sesquilinear form. Let k € Z~qy and let W be a subspace of
V such that diim(W) = k and W N W+ = 0. The orthogonal projection onto W is the unique linear
transformation P: V — V such that

(1) If v €V then P(v) € W.
(2) IfveV and w e W then (v,w) = (P(v),w).

Proof. Let (w1, ..., wy) be a basis of W and let (w', ..., w¥) be the dual basis of W. The orthogonal
projection onto W is the function

k
Py:V =V given by Py (v) = Z(v,wi>wi.
=1
To show: (a) Py is a linear transformation that satisfies conditions (1) and (2).
(b) If @ is a linear transformation that satisfies (1) and (2) then @ = Py .

(a) To show: (0) Py is a linear transformation.
(1) If v € V then P(v) € W.
(2) If v € V and w € W then (v,w) = (P(v),w).

(0) To show: If ¢ € F and v,v;,vs € V then Py (cv) = cPw(v) and Py (v1 + v2) = Pw(v1) +

Pw(UQ).

Assume ¢ € F and v,vq,v2 € V.

To show: Py (cv) = c¢Py(v) and Py (v1 + v2) = Pw(v1) + Pw (v2).
Since (,) Is linear in the first coordinate then

k k

Py (cv) = Z(cv,wl}wi = Z c(v, w)w' = c(Z(v, wi>wi) = cPy(v), and
= i=1 i=1
k

i=1
k‘ . . .
Py (cv) = Z(Ul + v, wi)w' = Zc(vl,wi>wz + Z c(vr, wi)w' = PW (v1) + Py (v2).
i=1 i=1 i=1
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So Py is a linear transformation.

(1) Assume v € V.
k

Since w', ..., wk € W and Py (v) = Z(v,wﬁwi then Py (v) € W.
i=1
(2) Assume v € V and w € W. '
Since {wi,...,wg} is a basis of W then there exist ci,...,c; € F such that w = c;w; +

e Wy,
Then

k k k
(Py(v),w) = <Z<v,wi>wi, chwj> = ZG‘(%W) = (v, w).

Thus Py (v) is a linear transformation that satisfies (1) and (2).

(b) Assume Q: V — V is a linear transformation that satisfies (1) and (2).
To show: Q = Pyy.

To show: If v € V then Q(v) = Py (v).

Assume v € V.

Since @ satisfies property (2), if w € W then (Q(v),w) = (v, w).
So (Q(0), w) = (v, w) = (P (v), w).

So, if w € W then (P (v) — Q(v),w) = 0.

So Py (v) — Q(v) € W+,

By Property (1), Py (v) — Q(v) € W.

So Py (v) — Q(v) € WN W+,

Since W N W+ = 0 then Py (v) — Q(v) = 0.

So PW :Q.

10.12.6 Orthogonal decompositions

Theorem 10.18. Let n € Zso and let V' be an inner product space with dim(V) = n. Let W
be a subspace of V' such that W N W=+ = 0. Let Py be the orthogonal projection onto W and let
Py =1—Py. Then

Py =Py, Pj.=Py., PyPy.=Py.Py=0 1=Py+Py,
ker(Py) =W,  im(Py)=W and V=WaoW

Proof. (a) Assume v € V. Then, by properties (1) and (2) of Proposition [16.6}

k k
Pi(v) =Y (Pw(v), whw; =Y (v,w')w; = Py (v). So P%, = Py.
=1 =1

(b) Since P%, = Py then

PL. =(1-Py)P=1-2Py+P3=1-2Py+Py=1-Py=Py..

177



Linear algebra notes, Arun Ram October 1, 2023

(c) Since P3, = Py and Py =1 — Py then

PywPy.=Py(l—Py)=Py—P3 =Py —Py=0 and
Py 1Py = (1 — Pyw)Py = Py — P, = Py — Py = 0.

(d) Since Py, =1— Py then Py + Pyr = Py + (1-Py)=1.
(e) To show ker(Py ) = W+,
To show: (ea) ker(Py) C W+.
(eb) W+ C ker(Py).

(ea) Assume v € ker(Py).
By property (2) in Proposition [16.6] (v, w) = (Py (v),w) = (0,w) = 0.
Sowv e W+,
So ker(Py) C W+.
(eb) Assume v € W+.
If w € W then (Py(v),w) = (v,w) = 0 and so Py (v) € W+,
By property (1), Py (v) € W and so Py (v) € W N W+ = 0.
So v € ker(Pyy).
So W+ C ker(Py).
So ker(Py) = W+.
(f) To show: im(Py ) =W.
To show: (fa) im(Py) C W.
(fb) W Cim(Pw).

(fa) By property (1) of Proposition [16.6} im(Py) € W.
(fb) Assume w € W.
Let c1,..., ¢, € F such that w = c;w! + - - - + cpw”.
Since (w',w;) = d;; then

k k& k
Py (w) = g {(w, wi)w E g c]w w;)w g cw' = w.
i=1 j=1

=1 j=1
So W - lm(Pw)

So im(Py) = W.

(g) If v € V then v = Py (v) + (1 — Py)(v) € W+ W+,
SoV =W+ W,
By assumption WN W+ =0, andso V=W @& W=

10.12.7 Orthonormal sequences are linearly independent

Proposition 10.19. Let V be an F-vector space with a Hermitian form. An orthonormal sequence
(a1,a2,...) iV is linearly independent.
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Proof. Let (a1, as,...) be an orthonormal sequence in V.

To show: {a1,as, ...} is linearly independent.

To show: If ¢ € Z~o and pra1 + poas + - - + peag = 0 then p; =0 for j € {1,2,...,¢}.

Assume ¢ € Z~g and pyia1 + pgag + -+ ppag = 0.

To show: If j € {1,...,¢} then pu; = 0.

Assume j € {1,...,/}.

Then 0 = (ui1a1 + poag + - - - + pear, aj) = pjas, a;) = pj.

So {aj,as,...} is linearly independent. O

10.12.8 Gram-Schmidt

Theorem 10.20. (Gram-Schmidt) Let V' be an F-vector space with a sesquilinear form (,): VxV —
F. Assume that (,) is nonisotropic and that {,) is Hermitian i.e.,

(1) (Nonisotropy condition) If v € V and (v,v) =0 then v =0, and
(2) (Hermitian condition) If vi,va € V then (va,v1) = (v1,va).

Let p1,pa, ... be a sequence of linear independent elements of V.

(a) Define by = p1 and

<pn+17b1> <pn+1>bn>
Dot = Prg1 — nt LUy L Wl On/ g
TP T T Ty (b b

Then (b1, ba,...) is an orthogonal sequence in V.

(b) Assume that F is a field in which square roots can be made sense of and that if v € V and v # 0

then (v,v) # 0. Define

|lv]| = v/ (v, v), forveV.
Let (b1, ...,by) be an orthogonal basis of V. Define
b by
Tl T bl

Then (u1,...,uy) is an orthonormal basis of V.

forn € Zso.

Uy

Proof. (Sketch) The proof is by induction on n.

For the base case, there is only one vector by and so there is nothing to show.
Induction step: Assume (b1, ...,by,) are orthogonal.

Let j € {1,...,n}. Then

<pn+17 b1> <pn+17 bn>
bstsbj) = (puoy — Loty L Pl Only
(but1,05) <p T ) (b, ) J>
<p7’l+17b1> <pn+1vbn>
= (g1, by) — LnL O gy gy LI g
<p +1 .]> <b17bl> <1 ]> <bn7bn> < .7>
(Pn+1,05)

= (Pn+1,b5) — W@jabﬁ = (Pn+1,05) = (Pn+1,b5) =0 and
7077

(Pnt1,01) (Pn+1,bn)
bibpgt) = (by ppyg — oty o AndD Ty
< Jo +1> < J p +1 <b1,b1> 1 <bn,bn> >
<pn 17b1> <pn lub’n>
= (b pns) = s () = s = SRS b

(b, bn)
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where the identity (bg,br) = (bx,br) and the last equality follow from the assumption that (,) is
Hermitian. So (by,...,b,+1) are orthogonal. O

10.12.9 Normal matrices give invariance

Proposition 10.21. Let V = C" with inner product given by (17.1). Let
A e M,(C), reC and Vi =ker(A — A).
If AA* = A*A then
V) is A-invariant, V)\J— is A-invariant, V) is A*-invariant and VAl 1s A*-invariant.
Proof.
(a) Let p € V)\. Then Ap = Ap € V). So V), is A invariant.
(b) Let p € V). Since A(A*p) = A*Ap = AA*p then A*p € V). So V) is A* invariant.
(c) Let z € Vit
To show Az € V)\J—.
To show: If uw € V) then (Az, u) = 0.
Assume u € V).
To show: (Az,u) = 0.
By (b), A*u € V), and so (Az,u) = (z, A*u) =0
So Az € V)\J—.
So Vj is A-invariant.
(d) Let z € Vit
To show: If u € V) then (A*z,u) = 0.

(A*z,u) = (z, Au) = 0, since Au € V).

So A*z € V/\J-. So VAJ- is A*-invariant.

10.12.10 The spectral theorem

Theorem 10.22. (Spectral theorem,)
Let n € Zo and V = C™ with inner product given by (17.1).

(a) Let n € Z~o and A € My (C) such that AA* = A*A. Then there exists a unitary U € M, (C) and
A, ..., Ay € C such that
UL AU = diag(\, ..., \n).

(b) Let f: V =V be a linear transformation such that ff* = f*f. Then there exists an orthonormal
basis (u1,...,u,) of V consisting of eigenvectors of f.

Proof. The two statements are equivalent via the relation between A and f given by

f: VvV — VvV
v —  Av.
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The proof is by induction on n.

The base case is when dim(V') = 1. In this case A € M;(C) is diagonal.

The induction step:

For 1 € Clet V,, = ker(u — f), the p-eigenspace of f.

Since C is algebraically closed, there exists A € C which is a root of the characteristic polynomial
det(z — A).

So there exists A € C such that det(A — A) = 0.

So there exists A € C such that V) = ker(A — A) # 0.

Let k = dim(V)) and let (p1,...,px) be a basis of V).

Use Gram-Schmidt to convert (pi,...,px) to an orthogonal basis (uy, ..., u) of V).

By definition of V), the basis vectors (ui,...,u) are all eigenvectors of f (of eigenvalue .

By Theorem |10.18| (orthogonal decomposition) and Proposition |10.21

V=V® (V) and Vil is A-invariant and A*-invariant.

Let

f1: VAJ‘ — V;‘ g1: VAJ‘ — VAJ‘

and $
v = Av v = A%

Then g1 = f{ and f1f7 = fi f1-
Thus, by induction, there exists an orthonormal basis (ug41,. .., u,) of V/\J- consisting of eigenvectors
of fl.
By definition of fi, eigenvectors of f; are eigenvectors of f.
So (U1, ..., Uk, Ukt1,---,Up) is an orthonormal basis of eigenvectors of f. O
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