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4.5 Matrix groups: Some proofs

4.5.1 The presentation theorem for Sn

Proposition 4.5. The symmetric group Sn is presented by generators s1, s2, . . . , sn�1 and relations

s2i = 1 and sjsj+1sj = sj+1sjsj+1 and sks` = s`sk, (4.8)

for i, j, k, ` 2 {1, . . . , n� 1} with j 6= n� 1 and k 6= `± 1.

Proof.
Generators A: the set of permutation matrices.
Relations A: all products of permutations w1w2 given by matrix multiplication.
Generators B: s1, . . . , sn�1.
Relations B: As given in (4.8).

The proof is accomplished in four steps:

(1) Write generators B in terms of generators A.

(2) Deduce relations B from relations A.

(3) Write generators A in terms of generators B.

(4) Deduce relations A from relations B.

Step 1: Generators B in terms of generators A. This is provided by (4.1).

Step 2: Relations B from relations A. This step is given the following matrix computations:

s21 =

✓
0 1
1 0

◆✓
0 1
1 0

◆
=

✓
1 0
0 1

◆

s1s2s1 =

0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
1 0 0
0 0 1
0 1 0

1

A

0

@
0 1 0
1 0 0
0 0 1

1

A =

0

@
0 0 1
0 1 0
1 0 0

1

A

and

s2s1s2 =

0

@
1 0 0
0 0 1
0 1 0

1

A

0

@
0 1 0
1 0 0
0 0 1

1

A

0

@
1 0 0
0 0 1
0 1 0

1

A =

0

@
0 0 1
0 1 0
1 0 0

1

A

so that s1s2s1 = s2s1s2 and

s1s3 =

0

BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA =

0

BB@

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1

CCA

and

s3s1 =

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA

0

BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1

CCA =

0

BB@

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

1

CCA

so that s1s3 = s3s1.

Step 3: Generators A in terms of generators B.
Let w 2 Sn.
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Let j1 2 {1, . . . , n} be such that w(j1, 1) = 1 and let w(1) = s1s2 · · · sj1�1w.
Let j2 2 {2, . . . , n} be such that w(1)(j2, 2) = 1 and let w(2) = s2s3 · · · sj2�1.
Continue this process to obtain

· · · (s2s3 · · · sj2�1)(s1s2 · · · sj1�1)w = 1.

Thus
w = (sj1�1 · · · s2s1)(sj2�1 · · · s3s2) · · · .

The expression for w is a reduced word for w and a subword of the reduced word of the longest element
given by

(sn�1 · · · s2s1)(sn�1 · · · s3s2) · · · (sn�1sn�2)sn�1 = w0.

Step 4: Relations A from relations B.

si(sj�1 · · · s2s1) = sj�1 · · · si+2sisi+1sisi�1 · · · s2s1, by the third set of relations in (4.8),

= sj�1 · · · si+2si+1sisi+1si�1 · · · s2s1, by the second set of relations in (4.8),

= (sj�1 · · · si+2si+1sisi�1 · · · s2s1)si, by the third set of relations in (4.8),

So siw can be written in normal form. By Step 3, w1 can be written as a product of simple transpo-
sitions, so one simple transposition at a time, w1w can be written in normal form.

If

w =

0

BB@

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

1

CCA then s3(s2s3)(s1s2w) = s3(s2s3)

0

BB@

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

1

CCA = s3

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA = 1,

so that w = (s2s1)(s3s2)s3.

4.5.2 The presentation theorem for GLn(F)

Theorem 4.6. The group GLn(F) is presented by generators

yi(c), hj(d), xk`(c), for
c 2 F, d1, . . . , dn 2 F

⇥,
i 2 {1, . . . , n� 1}, j 2 {1, . . . , n}
k, ` 2 {1, . . . , n} with k < `.

with the following relations:

• The reflection relation is

yi(c1)yi(c2) =

(
yi(c1 + c�1

2 )hi(c2)hi+1(�c�1
2 )xi,i+1(c

�1
2 ), if c2 6= 0,

xi,i+1(c1), if c2 = 0.
(4.9)

• The building relation is

yi(c1)yi+1(c2)yi(c3) = yi+1(c3)yi(c1c3 + c2)yi+1(c1). (4.10)
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• The x-interchange relations are

xij(c1)xij(c2) = xij(c1 + c2),

xij(c1)xik(c2) = xik(c2)xij(c1), xik(c1)xjk(c2) = xjk(c2)xik(c1),

xij(c1)xjk(c2) = xjk(c2)xij(c1)xik(c1c2), xjk(c1)xij(c2) = xij(c2)xjk(c1)xik(�c1c2),

where i < j < k.

• Letting h(d1, . . . , dn) = h1(d1) · · ·hn(dn), the h-past-y relation is

h(d1, . . . dn)yi(c) = yi(cdid
�1
i+1)h(d1, . . . , di�1, di+1, di, di+2, . . . , dn). (4.11)

• Letting h(d1, . . . , dn) = h1(d1) · · ·hn(dn), the h-past-x relation is

h(d1, . . . , dn)xij(c) = xij(cdid
�1
j )h(d1, . . . , dn). (4.12)

• The x-past-y relations are

xi,i+1(c1)yi(c2) = yi(c1 + c2)xi,i+1(0),

xik(c1)yk(c2) = yk(c2)xik(c1c2)xi,k+1(c1), xi,k+1(c1)yk(c2) = yk(c2)xik(c1), (4.13)

xij(c1)yi(c2) = yi(c2)xi+1,j(c1), xi+1,j(c1)yi(c2) = yi(c2)xij(c1)xi+1,j(�c1c2),

where i < k and i+ 1 < j.

Proof. The proof of this result provides a way of writing an invertible matrix g in a “normal form” as
a product of elementary matrices by the following “row reduction” algorithm.

Let g 2 GLn(F).
Let j1 2 {1, 2, . . . , n} be maximal such that g(j1, 1) 6= 0. If j1 = 1 then let g(1) = g. If j1 6= 1 then let

g(1) = y1
⇣

g(1,1)
g(j1,1)

⌘�1
y2

⇣
g(1,2)
g(j1,1)

⌘�1
· · · yj1�1

⇣
g(j1�1,1)
g(j1,1)

⌘�1
g.

Now let j2 2 {2, . . . , n} be maximal such that g(1)(j2, 2) 6= 0. If j2 = 2 then let g(2) = g(1). If j2 6= 2
then let

g(2) = y2
⇣

g(1)(2,2)
g(1)(j2,2)

⌘�1
y3

⇣
g(1)(3,2)
g(1)(j2,2)

⌘�1
· · · yj2�1

⇣
g(1)(j2�1,2)
g(1)(j2,2)

⌘�1
g(1).

Continuing this process will produce g(n) which has the property that

the first nonzero entry in row j + 1 is to the right of the first nonzero entry in row j.

In particular, if g is invertible then g(n) will be upper triangular.
Let b = g(n). Then

g = · · · (yj2�1

⇣
g(1)(j2�1,2)
g(1)(j2,2)

⌘
· · · y3

⇣
g(1)(3,2)
g(1)(j1,2)

⌘
y2

⇣
g(1)(2,2)
g(1)(j2,2)

⌘
)

· (yj1�1

⇣
g(j1�1,1)
g(j1,1)

⌘
· · · y2

⇣
g(2,1)
g(j1,1)

⌘
y1

⇣
g(1,1)
g(j1,1)

⌘
) · b

Checking the relations: Recall that

yi(c) = xi,i+1(c)si,i+1 =

✓
1 c
0 1

◆✓
0 1
1 0

◆
=

✓
c 1
1 0

◆
.

The reflection relations and the building relations are the relations for rearranging ys.

Proof of the reflection equation:
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If c1 6= 0 and c2 6= 0 then

y1(c1)y1(c2) =

✓
c1 1
1 0

◆✓
c2 1
1 0

◆
=

✓
c1c2 + 1 c1

c2 1

◆

=

✓
c1 + c�1

2 1
1 0

◆✓
c2 1
0 �c�1

2

◆
=

✓
c1 + c�1

2 1
1 0

◆✓
c2 0
0 �c�1

2

◆✓
1 c�1

2
0 1

◆

= y1(c1 + c�1
2 )h1(c2)h2(�c�1

2 )x12(c
�1
2 ).

If c2 = 0 then

y1(c1)y1(0) =

✓
c1 1
1 0

◆✓
0 1
1 0

◆
=

✓
1 c1
0 1

◆
= x12(c1).

Proof of the building relation:
0

@
c1 1 0
1 0 0
0 0 1

1

A

0

@
1 0 0
0 c2 1
0 1 0

1

A

0

@
c3 1 0
1 0 0
0 0 1

1

A =

0

@
c1c3 + c2 1 0

c3 1 0
1 0 0

1

A

=

0

@
1 0 0
0 c3 1
0 1 0

1

A

0

@
c1c3 + c2 1 0

1 0 0
0 0 1

1

A

0

@
1 0 0
0 c1 1
0 1 0

1

A

The computation for the proof of the first x-interchange relation is:
✓
1 c1
0 1

◆✓
1 c2
0 1

◆
=

✓
1 c1 + c2
0 1

◆

The key computation for the proof of the h-past-y relation is:
✓
d1 0
0 d2

◆✓
c 1
1 0

◆
=

✓
cd1 d1
d2 0

◆
=

✓
cd1d

�1
2 1

1 0

◆✓
d2 0
0 d1

◆

Key computations for the proof of the x-past-y relations are:
✓
1 c1
0 1

◆✓
c2 1
1 0

◆
=

✓
c1 + c2 1

1 0

◆
,

0

@
1 c1 0
0 1 0
0 0 1

1

A

0

@
1 0 0
0 c2 1
0 1 0

1

A =

0

@
1 c1c2 c1
0 1 0
0 0 1

1

A =

0

@
1 0 0
0 c2 1
0 1 0

1

A

0

@
1 c1c2 0
0 1 0
0 0 1

1

A

0

@
1 0 c1
0 1 0
0 0 1

1

A ,

0

@
1 0 c1
0 1 0
0 0 1

1

A

0

@
1 0 0
0 c2 1
0 1 0

1

A =

0

@
1 c1 0
0 c2 1
0 1 0

1

A =

0

@
1 0 0
0 c2 1
0 1 0

1

A

0

@
1 c1 0
0 1 0
0 0 1

1

A ,

0

@
1 0 c1
0 1 0
0 0 1

1

A

0

@
c2 1 0
1 0 1
0 0 1

1

A =

0

@
c2 1 c1
1 0 0
0 0 1

1

A =

0

@
c2 1 0
1 0 1
0 0 1

1

A

0

@
1 0 0
0 1 c1
0 0 1

1

A ,

0

@
1 0 0
0 1 c1
0 0 1

1

A

0

@
c2 1 0
1 0 1
0 0 1

1

A =

0

@
c2 1 0
1 0 c1
0 0 1

1

A =

0

@
c2 1 0
1 0 1
0 0 1

1

A

0

@
1 0 c1
0 1 0
0 0 1

1

A

0

@
1 0 0
0 1 �c1c2
0 0 1

1

A .
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