6 Eigenvalues, eigenvectors and diagonalization

6.1 Eigenvalues and eigenvectors

Let $A \in M_n(\mathbb{F})$.

• An eigenvalue of A is an element $\lambda \in \mathbb{F}$ such that $\ker(A - \lambda) \neq 0$.

Let $A \in M_n(\mathbb{F})$ and $\lambda \in \mathbb{F}$.

• An eigenvector of A of eigenvalue λ is a nonzero element of $\ker(A - \lambda)$.

Theorem 6.1. Let $A \in M_n(\mathbb{F})$ and let $\lambda \in \mathbb{F}$. Then

$$\ker(A - \lambda) \neq 0$$
 if and only if $\det(A - \lambda) = 0$.

Proof. Use normal form to write $A - \lambda = P1_rQ$ with $P, Q \in GL_n(\mathbb{F})$. Then use Proposition 3.4

 \Rightarrow : Assume $\ker(A - \lambda) \neq 0$.

Since $ker(A - \lambda) \neq 0$ then r < n.

Since $\det(1_r) = 0$ then $\det(A - \lambda) = \det(P1_rQ) = \det(P)\det(1_r)\det(Q) = 0$.

 \Leftarrow : Assume that $\det(A - \lambda) = 0$.

Since P and Q are invertible matrices then det(P) and det(Q) are invertible elements of \mathbb{F} .

Since $\det(1_r) = \det(P^{-1}(A - \lambda)Q^{-1}) = \det(P)^{-1}\det(A - \lambda)\det(Q)^{-1} = \det(P)^{-1}\cdot 0\cdot \det(Q)^{-1} = 0$ then r < n.

So $ker(1_r) \neq 0$.

So $\ker(A - \lambda) = \ker(P1_rQ) = Q^{-1}\ker(1_r) \neq 0.$