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path [separable space| [triangle ineq. (metric)|
[path connected| [triangle inequality (norm)|
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rational numbers Q subsequence unitary operator

real numbers R unit circle
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[self adjoint operator| [topological space]

adherent point (deprecated)
Let (X,7T) be a topological space and let E C X. A close point, or adherent point, to F is an
element x € X such that if NV is a neighborhood of x then N N E # ().

adjoint
Let K be R or C and let V and W be normed K-vector spaces. Let T: V' — W be a bounded
linear operator. The adjoint of T is the function

T*: W* - V*  givenby (T*)(v) = () o T)(v). v—Ls

AN

K

adjoint with respect to (,)
Let V' be an F-vector space with a nondegenerate sesquilinear form (,): VxV — F. Let f: V —

V be a linear transformation. The adjoint of f with respect to (,) is the linear transformation
f*:V = V determined by

if z,y € Vthen (f(2),y) = (z,["(v))

basis (vector space)
Let F be a field and let V' be an F-vector space. A basis of V is a subset B C V such that

(a) F-span(B) =V,
(b) B is linearly independent,

where
F-span(B) = {a1by + - -+ agby | £ € Z~g, b1,...,by € B, a1,...,ap € F},

and B is linearly independent if B satisfies

if £ € Z~og and by,...,bp € Band ay,...,a; € F, and
arby +---+agby =0 then a3 =0, az=0, ..., ag=0.
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basis (normed vector space)
Let F be a field and let V' be an normed F-vector space with norm || ||: V' — R>¢. A basis of V'
(as a normed vector space), or a topological basis of V', is a subset B C V such that

(a) F-span(B) =V,
(b) B is linearly independent,

where F-span(B) is the closure of F-span(B) in V.

bijective function
A bijective function is a function f: X — Y such that f is injective and surjective.

B.
Let (X, d) be a metric space. Let € € E, where E is the tolerance set. The diagonal of width e,
or e-diagonal, is

B€ = {(yw%') €eX xX ‘ d(mvy) < 6}'

Be(x)
Let (X,d) be a metric space. Let x € X and € € E, where E is the tolerance set. The e-ball at
x, or open ball of radius € at x, is

Be(z) ={y € X | d(z,y) <€}

B(V,W)
Let V and W be normed vector spaces. The space of bounded operators from V to W is

B(V,W) = {linear transformations 7: V. — W | ||T'|| exists in R>o} where

T
|| :sup{””” | UEV}.

o]

Banach space
A Banach space is a normed vector space (V,|| ||) which is complete as a metric space with
metric

d: V xV = Rxg given by d(z,y) = ||l — y||

Bessel’s inequality
Let H be a Hilbert space and let (aj,as,...) be an orthonormal sequence in H. Bessell’s
inequality says that

If x € H then Z (x, a,) > < ||z|?
n=1
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bounded function
Let X be a set and let (Y, d) be a metric space. A bounded function from X to Y is a function
f: X — Y such that

f(X) is a bounded subset of Y.

bounded linear operator
Let V and W be normed vector spaces. A bounded linear operator from V to W is a linear
transformation 7': V' — W such that ||T'|| exists in R>g, where

T
I :sup{””” |ve v}.
[[v]l

bounded set
The tolerance set is E = {1071,1072,...}. Let (X, d) be a metric space. A bounded set in X is
a subset A C X such that

there exists z € X and e € E  such that A C B.(z).

C(X)
Cantor set

Cauchy-Schwarz inequality
Let V be a vector space over R or C with a positive definite Hermitian form (,): V' x V — Rxg
and let || ||: V — R> be defined by |[v||> = (v,v). The Cauchy-Schwarz inequality is

lfz,yeV  then [{z,y) <|lz[- [yl

Cauchy sequence
Let (X, d) be a metric space. A Cauchy sequence in X is a sequence (x1,x2,...) in X such that

if e € Ry then there exists N € Zs¢ such that if m,n € Z>y then (z,,z,) € B..

close point
Let (X, T) be a topological space and let A C X. A close point to A is

an element x € X such that if N € N(z) then NN A # (.

101



MAST30026 Resources, Arun Ram, July 24, 2022

cluster point
Let (X, d) be a metric space and let (z1, x9,...) be asequence in X. A cluster point of (x1,x2,...)
is z € X such that

if e € E and ¢ € Z>¢ then there exists n € Z>, such that =, € Bc(z).
or, alternatively,

there exists a subsequence (Zp,, Zn,,...) of (x1,x2,...) such that 2z = klim Ty -
— 00

limit point
Let (X, d) be a metric space and let (z1,z2,...) be a sequence in X. A limit point of (x1,z2,...)
is z € X such that

if € € E then there exists ¢ € Z>g such that if n € Z>, then z,, € Bc(z).

or, alternatively, z = lim .
n—oo

closed set (metric space) o
Let (X,d) be a metric space. A closed set in X is a subset W C X such that W = W (where
W is the closure of W in X).

closed set (topological space)
Let (X,T) be a topological space. A closed set in X is a subset A C X such that A° is open.

closure (metric space)
Let (X, d) be a metric space and let W be a subset of X. The closure of W in X is

W= {:1: eX | there exists a sequence (wq,ws,...) in W with lim w, = :1:}
n—o0

closure (topological space)
Let (X,T) be a topological space and let A be a subset of X. The closure of A in X is the
subset A of X such that

(a) Ais closed in X and A D A, -
(b) If C'is closed in X and C D A then C D A.

compact operator
Let (V] [)V) and (W, || |lw) be Banach spaces. A compact operator T: V — W is a bounded
linear operator 7: V. — W

if (z1,22,23,...) is a bounded sequence in V
then (T'(x1),T(x2),T(x3),...) has a cluster point in W.

Equivalently, T': V' — W is a compact operator if
T'(S) is compact, where S={veH||v||=1}

and T'(S) is the closure of T'(5).
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compact (sequentially compact)
Let (X, d) be a metric space. Let A C X. The set A is sequentially compact if A satisfies

if (a1,aq9,...) is a sequence in A then
there exists z € A such that z is a cluster point of (a1, aq,...).

(In English: Every infinite sequence in A has a cluster point in A.)

compact (Cauchy compact)
Let (X,d) be a metric space. Let A C X. The set A is Cauchy compact, or complete, if A

satisfies
if (a1, aq,...) is a Cauchy sequence in A then

there exists z € A such that lim a, = 2.
n—oo

(In English: Every Cauchy sequence in A has a limit point in A.)

compact (cover compact)
Let (X, T) be a topological space. Let A C X. The set A is compact, or cover compact, if A
satisfies

ifSC7T and AC UU then

ves
there exists £ € Z~g and Uy,...,Up € S suchthat ACU; UUsU---UU,.

(In English: Every open cover of A has a finite subcover.)

compact (ball compact)
Let (X,d) be a metric space and let A C X. The set A is ball compact, or totally bounded, or
precompact if A satisfies

if e € Ry then there exists ¢ € Z~¢ and z1,x2,...,zy € X such that

A C Be(x1) U Be(xa) U+ -+ Be(xy).
(In English: A can be covered by a finite number of balls of radius e.)
complement
Let X be a set and let A C X. The complement of A in X is the set

A={zeX|xgA

complete (Cauchy compact)
Let (X,d) be a metric space. Let A C X. The set A is Cauchy compact, or complete, if every
Cauchy sequence in A has a limit point in A.

complete space
A complete space or Cauchy compact space is a metric space X such that every Cauchy sequence
in X has a limit point in X.
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completion
Let (X, d) be a metric space. The completion of (X, d) is a metric space (X, d) with an isometry

t: X > X such that (X,d) is complete and U(X) =X,

where (X)) is the closure of the image of ¢.

complexnumbers
The complex numbers is the R-algebra C = R + Ri with > = —1 and with complex conjugation
¢ = (9 given by a+bi=a—b,
c
and absolute value
C — Rzo . 2
c o | given by le| = ce.

continuous at a point (metric spaces)
Let (X,dx) and (Y, dy) be metric spaces and let a € X. A function f: X — Y is continuous at
a if f satisfies the condition

lim f(x) = f(a).

T—a

continuous at a point (topological spaces)
Let (X,7) and (Y,U) be topological spaces and let @ € X. A function f: X — Y is continuous
at a if f satisfies the condition

if V is a neighborhood of f(a) in Y then f~1(V) is a neighborhood of a in X.

continuous function (topological spaces)
Let (X,7) and (Y,U) be topological spaces. A continuous function from X to Y is a function
f+ X — Y such that

if V is an open set of Y then f~!(V) is an open set of X,

continuous function (metric spaces)
Let (X,dx) and (Y, dy) be metric spaces. A function f: X — Y is continuous if f satisfies

if a € X then ilg}lf(a:) = f(a).

contraction
Let (X, d) be a metric space. A contraction of X is a function f: X — X such that there exists
a € Ry such that a < 1 and

if x,y € X then d(f(x),f(y)) < ad(z,y).
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convergent series

connected space
A connected space is a topological space (X, T) such that there do not exist open sets U and V/
of X such that

U#0, V#0O, X=UUV, and UNV =0.

connected set
Let (X, T) be a topological space. A connected set in X is a subset A of X such that there does
not exist open sets U and V of X such that

ANU#0, ANV #0D, ACUUV, and (ANU)NANV)=0.

connected component
Let (X, T) be a topological space. Define a relation on X by

T~y if there exists a connected set £ C X such that x € EF and y € E.

Show that ~ is an equivalence relation on X. The connected components of X are the equivalence
classes with respect to the relation ~.

converges pointwise
Let (X, d) and (C, p) be metric spaces. Let

F = {functions f: X — C} and define dy: F x F = R>qU{oco} by

doo(f,9) = sup{p(f(2), 9(x)) | © € X}.

Let (f1, f2,...) be a sequence in F' and let f: X — C be a function. The sequence (f1, fo,...)
in F' converges pointwise to f if the sequence (fi, fo,...) satisfies

if x € X and € € Ry then there exists n € Z~( such that
if n € Z>py then d(fn(x), f(x)) <.

converges uniformly
Let (X,d) and (C, p) be metric spaces. Let

F = {functions f: X — C} and define d: F x F = R>oU{oco} by

doo(f,9) = sup{p(f(z),g(z)) | x € X}.

Let (f1, fo,...) be a sequence in F' and let f: X — C be a function. The sequence (f1, fo,...)
in F' converges uniformly to f if the sequence (fi, fo,...) satisfies

if € € Ry then there exists n € Z~q such that
if z € X and n € Z>y then d(f,(z), f(z)) <e.
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dense set
Let (X,T) be a topological space and let A C X. The set A is dense in X if A = X.

diameter
Let X be a set and let A be a nonempty subset of X. The diameter of A is

diam(A) = sup{d(z,y) | =,y € A}.

discrete metric
Let X be a set. The discrete metric on X is the function

0, ifz=y,

d: X x X - Rxq given by  d(z,y) = .
= 1, ifx#uy.

discrete space
A discrete space is a set X with the topology T equal to the set of all subsets of X.

distance between sets
Let X be a set and let A and B be nonempty subsets of X. The distance between A and B is

d(A, B) = inf{d(z,y) | v € A, y € B}.

distance between a point and a set
Let (X,d) be a metric space, let A be a non-empty subset of X and let € X. The distance
between x and A is

d(xz,A) = inf{d(z,a) : a € A}.

direct sum

disconnected space
A disconnected space is a topological space (X, T) such that there exists a pair of open sets U
and V such that

U#0, V#O, UUV =X, and UNV =0.

dual space (vector space)
Let IF be a field and let W be an F-vector space. The dual space to W is the vector space

W* =Hom(W,F) = {¢p: W — F | ¢ is a linear transformation}
with addition and scalar multiplication given by

(14 p2)(w) = pr(w) + p2(w)  and  (cp)(w) = c- p(w).
for ¢, 1,00 € W*, we W and ¢ € F.
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dual space (normed vector space)
Let K be R or C and let (V, ]| ||) be a normed K-vector space.

The dual space to 'V is V* = B(V,K),

where B(V,K) is the space of bounded linear operators from V to K.

eigenspace
Let F be a field and let V' be an F-vector space, let T: V — V be a linear transformation and
let A € F. The A-eigenspace of T:V — V is

W={veV |Tv= v}

eigenspectrum
Let I be a field and let V' be an F-vector space, let T: V' — V be a linear transformation. The
etgenspectrum of T is the set

o(T) = {A € F | V3 # 0},

where V) is the A-eigenspace of T'.

eigenvector
Let F be a field, let V' be a F-vector space and let T: V' — V be a linear transformation. An

etgenvector of T is
v €V suchthat v£0and Twv € Fo,

where Fv = {cv | ¢ € F}.

emptyset
The emptyset () is the set with no elements.

equivalence class
Let ~ be an equivalence relation on a set S and let s € S. The equivalence class of s is the set

[s] ={te S |t~s}

equivalence relation
An equivalence relation on S is a relation ~ on .S such that

(a) if s € S then s ~ s,

(b) if s1,52 € S and s; ~ sy then sg ~ sq,
(c) if s1,82,83 € S and s1 ~ sg and sy ~ s3 then s; ~ s3.

Euclidean metric
The FEuclidean metric is the metric on R", d: R” x R" — R>¢, given by

d((@1,- - zn), Y1, 0)) = V(21— 1)+ (20— ya)2.
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Euclidean space R"
Euclidean space is the R-vector space R™ with the positive definite Hermitian form (,): R™ x

R™ — R given by
<(l’17 s 7xn)7 (y17 o 73/n)> = T1Y1 + - *TnlYn-

field
A field is a set F with functions
FxF — F nd FxF — F
(a,b) — a+bd O (a,b) +—> ab
such that

(Fa) If a,b,c € F then (a+b)+c=a+ (b+¢),
(Fb) If a,b € F then a+b = b+ a,
(Fc) There exists 0 € F such that

ifaelF then O+a=aanda+0=a,

(Fd) If a € F then there exists —a € F such that a + (—a) = 0 and (—a) + a = 0,
(Fe) If a,b,c € F then (ab)c = a(be),
(Ff) If a,b,c € F then

(a+b)c = ac+ bc and c(a+b) = ca+ cb,
(Fg) There exists 1 € F such that
ifa€elF then l-a=aanda-1=a,

(Fh) If @ € F and a # 0 then there exists a~! € F such that aa™! =1 and a~'a =1,
(Fi) If a,b € F then ab = ba.

fixed point
A fized point of a function f: X — X is

reX such that f(z) = z.

Fourier coefficients

Fourier series

Gram-Schmidt process

Let (V, (, )) be a positive definite Hermitian inner product space. Let v;, v2, ... be a sequence of
linearly independent vectors in V. The Gram-Schmidt process is the use of the vectors vy, v, . ..
to construct the vectors ap, ag, ... in V given by

Un+1 — (Un+1, a1>a1 — <'Un+17 an>an
HUn+1 - <Un+1>a1>a1 — <Un+1,an>an\"

U1

e

a1 and Unt1 =
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Hausdorff space
A Hausdorff space is a topological space (X, 7) which satisfies

ifx,y € and x #y then there exist open sets U and V in X such that
reU, yeV, and UNV =0.

Hilbert space
A Hilbert space is a positive definite Hermitian inner product space (V, (,)) which is a complete
metric space with the metric d: V x V' — R>¢ given by

d(z,y) = ||z —yll, where ||z -yl = (z —y,z —y).

Holder inequality
Let ¢ € R>; and let p € Ry; U {oo} be given by %—1—% = 1. Let x = (z1,22,...) € (P,
y=(y1,y2,...) € L7 and (x,y) = x1y1 + x2y2 + - - - . The Holder inequality is

[{z, 9)| < llzllpllylg-

homeomeorphism, or isomorphism of topological spaces
An homeomorphism, or isomorphism of topological spaces, is a continuous function f: X — Y
such that the inverse function f~': Y — X exists and is continuous.

inf, or infimum, or greatest lower bound
Let S be a poset and let E be a subset of S. A infimum of E in S, or greatest lower bound of
E in S, is an element inf(FE) € S such that

(a) inf(F) is a lower bound of F in S, and
(b) If I € S is a lower bound of E in S then [ < inf(E).

injective function
Let X and Y be sets. A injective function from X to Y is a function f: X — Y such that

if 21,29 € X and f(x1) = f(z2) then x; = x9.

inner product
Whenever anyone uses this word you should respond, “Do you mean Hermitian or symmetric,
or positive definite, or nonisotropic, nondegenerate, or sesquilinear, or just bilinear?”

integers 7Z
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interval

interior point
Let (X,7T) be a topological space and let £ C X. An interior point of E is a element z € X
such that there exists a neighborhood N of x such that N C E.

interior
Let (X, T) be a topological space and let E C X. The interior of E is the subset E° of X such
that

(a) E°isopen and E° C F,
(b) If U is open and U C E then U C E°.

inverse function
Let X and Y be sets and let f: X — Y be a function from X to Y. The inverse function to f
is the function f~': Y — X such that

flof=idy and  fof!=idy.

isometry
Let (X,dx) and (Y,dy) be metric spaces. An isometry from X to Y is a function f: X — Y
such that

ifz,ye X then dy(f(z),f(y)) =dx(z,y).

The Hilbert space />

52:{($1,$2,...)\x¢€Rand (x%+$%+-‘~)<oo},

with inner product (, ): £2 x £2 — Rx( given by

(z1,22,...), (y1,Y2,...)) =101 + Tay2 + - -

The normed vector spaces /?
Let p € Rzl.
P ={(z1,29,...) | z; € R and ||Z]|, < oo},

where
1/p

ey, 22, Mp= | D |l

1€Z>0
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L*(X)
Let (X, p) be a measure space.

L*(X) ={f: X = C ||| f|]2 exists in Rxq},

with inner product (,): L?(X) x L?(X) — C given by

(f.9) = /X H@)g @,

LP(X)
Let p € R>;. Let (X, p) be a measure space.

IP(X)={f: X = C |||/, exists in Rso},

with norm || ||,: LP(X) — R>¢ given by

181 = [ 1r@pan) "

length norm
Let K be R or C and let V be a vector space over K with a positive definite Hermitian form
(,): VxV — K. The length norm on V is the function

V—>RZQ

determined by v||? = (v,v).
o ol = (v.v)

linear functional
Let Kbe R or C and let V be a K-vector space. A linear functional on V is a linear transformation
T:V - K.

limit of a sequence

Let (X,d) be a metric space and let (z1,z9,...) be a sequence in X. A limit of the sequence
(x1,x2,...) is an element z € X which satisfies

if € € R then there exists N € Z~q such that if n € Z>y then d(z,,z) <e.

cluster point
Let (X, d) be a metric space and let (z7, z9,...) be asequence in X. A cluster point of (x1,xa,...)
is z € X such that

if e € E and ¢ € Z>¢ then there exists n € Z>, such that =, € Bc(z).
or, alternatively,

there exists a subsequence (zy,, Tp,,...) of (x1,22,...) such that 2z = klim T, -
— 00
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limit point
Let (X, d) be a metric space and let (z1, z2,...) be a sequence in X. A limit point of (x1,x2,...)
is z € X such that

if € € E then there exists ¢ € Z>g such that if n € Z>, then z,, € B(z).

or, alternatively, z = lim .
n—oo

locally compact
Let (X,7) be a topological space. The space X is locally compact if X is Hausdorff and

if x € X then there exists a neighborhood N of x such that N is cover compact.

metric
Let X be a set. A metric on X is a function d: X x X — R>( such that

(a) If x € X then d(z,z) =0,

(b) If z,y € X and d(x,y) =0 then z =y,

(¢) If z,y € X then d(z,y) = d(y, z),

(d) If z,y,z € X then d(z,y) < d(z,z) + d(z,y).

metric space
A metric space is a set X with a function d: X x X — R>( such that

) If x € X then d(z,z) =0,
) If z,y € X and d(z,y) = 0 then z =y,
(c¢) If z,y € X then d(z,y) = d(y, z),
)

metric space topology
The metric space topology on X is

T ={U C X | if z € U then there exists € € E such that B.(z) C U}.

metric space uniformity
The metric space uniformity on X is

& = {subsets of X x X which contain an e-diagonal}.

metric subspace
Let (X, d) be a metric space. A metric subspace of X is a subset Y of X with metric dy: Y xY —

R>¢ given by dy (y1,y2) = d(y1,¥2)-

112



MAST30026 Resources, Arun Ram, July 24, 2022

Minkowski inequality
Let z,y € R™ or let x,y € ¢P. The Minkowski inequality is

[z +yllp < llzllp + lyllp-

neighbourhood of =
Let (X, T) be a topological space. Let € X. A neighborhood of x is a subset N of X such that

there exists U € T such that x € U and U C N.

N (z)
Let (X, T) be a topological space. Let x € X. The neighborhood filter of x is

N (z) = {neighborhoods N of z}.

norm
Let K be R or C and let V be a K-vector space. A norm on V is a function || ||: V' — R>( such
that

(a) If 2,y € V then ||z +y|| < [lzf| + [|lyl,
(b) If ce K and v € V then ||cv|| = || ||v]],
(¢c) If v € V and ||v]| = 0 then v = 0.

normed vector space
Let K be R or C. A normed vector space is a K-vector space V with a function || ||: V — Rxq
such that

(a) If 2,y € V then |z +y|| < [lzf| + [|yl,
(b) If ce K and v € V then ||cv|| = || ||v]],
(¢c) If v € V and ||v]| = 0 then v = 0.

norm metric
Let (V.|| ||) be a normed vector space. The norm metric on V is the function

d: V xV = Rxg given by  d(x,y) = ||z — y||.

normal space
A normal space is a topological space (X, 7T) which satisfies

if A and B are closed sets in X and ANB =(
then there exist open sets U and V' in X such that
ACU, BCV, and UNV =0.
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norm-absolutely convergent
Let (V|| ||) be a normed vector space. A norm-absolutely convergent series in V is

a series Z ap in V' such that Z ||an|| converges.

n€Z>0 n€Z>0

nowhere dense set -
Let (X,T) be a topological space and let A C X. The set A is nowhere dense in X if (A)° = ().

open ball
Let (X, d) be a metric space. Let E = {1071,1072,...}. An open ball is a set

B(z)={ye X | d(y,z) < €}, with z € X and € € E.

open cover
Let (X,7T) be a topological space. An open cover of X is a collection S of open subsets of X

such that X C <UU€$ U).

open set (metric space)
Let (X,d) be a metric space. An open set is a subset U C X such that U¢, the complement of
U in X, is closed.

open set (topological space)
Let (X, T) be a topological space. An open set is a set U € T.

operator norm
Let (V, || |lv) and (W, || ||[w be normed vector spaces and let T': V' — W be a linear transforma-
tion. The operator norm of T is

T
|T|| = sup { ITllw ’ T € V} .
[l llv

ordered field
An ordered field is a field F with a total order < such that

(OFa) If a,b,c€ Fand a <bthena+c<b+ec,
(OFb) If a,b € F and a > 0 and b > 0 then ab > 0.

orthogonal complement
Let (V,(,)) be an inner product space and let W C V be a subspace of V. The orthogonal
complement of W in V is

Wt ={veV |ifweW then (v,w) = 0}.
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orthonormal sequence
Let F be a field and let (V, (, )) be an F-vector space with a sequilinear form. An orthonormal
sequence in V' is a sequence (by, b, ...) in V such that
1, ifi=j,
iti,j€Z then bi, b;) =
JE i) {o, ifi .

orthonormal basis
Let H be a separable Hilbert space. An orthonormal basis of H is a subset A C H such that A
is countable, A is orthonormal, and span(A) = H.

partition of a set
A partition of a set S is a collection P of subsets of S such that

(a) If s € S then there exists P € P such that s € P, and
(b) If P,Po € Pand PLN P 75 0 then P = PBs.

path
Let (X,7) be a topological space and let p € X and ¢ € X. A path from p to q in X is

a continuous function f: [0,1] - X such that f(0) =p and f(1) = gq.

path connected
A path connected space is a topological space (X, 7T ) which satisfies

if p,g € X then there exists a path from p to ¢ in X.

pointwise convergent
Let (X,dx) and (R,Dpg) be metric spaces and let F' = {functions f: X — R} A sequence
(f1, f2,...) in F is pointwise convergent if there exists a function f: X — R which satisfies

ifze X then nh_)rgo dr(fn(z), f(z)) = 0.

uniformly convergent
Let (X,dx) and (R,dr) be metric spaces. Let F' = {functions f: X — R} and define

doo: F' x F' = Rx>oU{oco} by d(f,9)=sup{dr(f(z),g(z)) |z e X}.

A sequence (f1, f2,...) in F' is uniformly convergent if there exists a function f: X — R such
that the sequence (fi, fa2,...) satisfies

nlLIrolodm(fn,f) =0.
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poset
A poset, or partially ordered set, is a set S with a relation < on S such that

(a) If v € A then = < z,
(b) If z,y,z € S and x <y and y < 2z then z < z, and
(¢c) fz,ye Sand z <y and y <z then x = y.

product metric space
Let (X,0) and (Y, p) be metric spaces. The product of X and Y is the set X x Y with metric
d: (X xY) x (X xY)— Rxg given by

d((x1,91), (22, 42)) = o (21, 22) + p(Y1, Y2)-

rational numbers Q
real numbers R

relation
A relation ~ on S is a subset R. of S x S. Write s1 ~ so if the pair (s1,s2) is in the subset R~
so that

R.={(s1,52) € S x 5| 51~ s2}.

self adjoint operator
Let H be a Hilbert space. A self adjoint operator on H is

a bounded linear operator T: H — H such that T =T%,
where T* is the adjoint of T
separable space

A separable space is a metric space (X, d) such that there exists a subset A C X such that A is
countable and A = X.

subcover
Let X be a set and let S be a cover of X. A subcover of S is a

subset { C S such that X C (UUeu U).

subset
Let X be a set. A subset of X is a set A such that

ifae A then ac X.
Write A C X if A is a subset of X.
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sup
Let S be a poset and let E be a subset of S. A supremum, orleast upper bound of ¥ in S is an
element sup(F) € S such that

(a) sup(FE) is a upper bound of E in S, and

(b) If b € S is a upper bound of E in S then sup(E) < b.

surjective function
Let X and Y be sets. A surjective function from X to Y is a function f: X — Y such that

ifyeY then there exists x € X such that f(z) =y.

standard metric
The standard metric is the metric

d: CxC — R given by d(z,w) = |z —w|.

subsequence
Let X be a set and let (z1,x9,...) be a sequence in X. A subsequence of (x1,x9,...) is a

sequence (i, Tiy,...) with i1 <ig <iz<....

tolerance set
The tolerance set, or set of tolerances, is

E={10"1072%...}.

topology
Let X be a set. A topology on X is a collection 7T of subsets of X such that

(a) 0eT and X €T,
(b) If S C T then (UyesU) €T,
(¢c) If £ €Zsp and Uy, Us,...,Up €T then UyNUsN---NU €T.

topological space
A topological space is a set X with a collection T of subsets of X such that

(a) 0eTand X €T,
(b) If S C T then (UyesU) €T,
(C) Ifée€Zvgand Uy,Us,..., U €T then UyNUsN---NU, €T.
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triangle inequality for a function d: X x X — R>q
Let X be a set and let d: X x X — R>¢ be a function. The function d satisfies the triangle
inequality if d satisfies

ifx,y,z€ X then d(z,y) <d(z,z)+d(zvy).

triangle inequality for || |[: X — R>g
Let X be a vector space over a field K and let || ||: X — R>¢ be a function. The function
| I: X = R>q satisfies the triangle inequality if || ||: X — R>q satisfies

if z,y € X then [lz +yl| < |l=[| + [lyll.

uniform space

A uniform space is a set X with a collection &£ of subsets of X x X such that

(a) (diagonal condition) If E € £ then A(X) C E,

(b) (upper ideal) If E € £ and D C X x X and D DO E then D € &,

(c) (finite intersection) If ¢ € Z~o and E1, Ea,...,Ep € £ then Ey N EsN---NEy € &,
(d) (symmetry condition) If E' € £ then o(F) € €,

(e) (triangle condition) If E' € £ then there exists D € £ such that D xx D C E.

)
) (
) (
) (
) (

uniformly continuous function
Let (X, dx) and (Y, dy) be metric spaces. A uniformly continuous function is a function f: X —

Y such that
if € € E then there exists § € E such that

if 2,y € X and (z,y) € By then (f(x), f(y)) € Be.

pointwise convergent
Let (X,dx) and (R, Dpg) be metric spaces and let F' = {functions f: X — R} A sequence
(f1, f2,...) in F' is pointwise convergent if there exists a function f: X — R which satisfies

ifx € X then nh_)rgo dr(fn(z), f(z)) = 0.

uniformly convergent
Let (X,dx) and (R,dr) be metric spaces. Let F' = {functions f: X — R} and define

doo: F X F — RsgU{oo} by duo(f,g)=sup{dr(f(z),g(z))|rec X}.

A sequence (f1, f2,...) in F' is uniformly convergent if there exists a function f: X — R such
that the sequence (fi, fa,...) satisfies

m deo(fn, f) = 0.

n—oo
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unitary operator
Let H be a Hilbert space. A unitary operator on H is

a bounded linear operator T': H — H such that T7T* =T*T =1,

where T™ is the adjoint of T" and I is the identity operator on H.

unit circle
The unit circle is the set

Sl={zeC||z|=1}
= {7 |9 eR,0<0 <2} ={z+iy|z,ycRandz?+y?>=1}.

unit sphere
Let (V|| ||) be a normed vector space. The unit sphere in V is

S={veV ||| =1}

vector space
Let F be a field. A F-vector space is a set V with functions

VxV — V and FxV — V
(vi,v2) = v1+v (c,v) = cv

(addition and scalar multiplication) such that

(a) If v1,v9,v3 € V then (v1 + va) + v3 = v1 + (v2 + v3),

(b) There exists 0 € V' such that if v € V then 0+ v =v and v + 0 = v,
(c) If v € V then there exists —v € V such that v + (—v) = 0 and (—v) +v =0,
(d) If v1,v9 € V then vy + vo = vy + vy,

(e) If ¢ € F and vy, ve € V then c(vy + v2) = cv1 + cvg,

(f) If c1,c2 € F and v € V then (¢1 + ¢2)v = c1v + ¢av,

(g) If c1,c2 € Fand v € V then ¢1(cav) = (c1e2)v,
(h) If v € V then 1lv =v.
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