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9 Spaces

The point of this section is to introduce the following types of spaces and establish the following
relations between these classes.
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9.1 Topological spaces

A topological space is a set X with a specification of the open subsets of X where it is required that

(a) ; is open in X and X is open in X,

(b) Unions of open sets in X are open in X,

(c) Finite intersections of open sets in X are open in X.

In other words, a topology on X is a set T of subsets of X such that

(a) ; 2 T and X 2 T ,

(b) If S ✓ T then
�S

U2S U
�
2 T ,

(c) If ` 2 Z>0 and U1, U2, . . . , U` 2 T then U1 \ U2 \ · · · \ U` 2 T .

A topological space is a set X with a topology T on X. An open set in X is a set in T .

The four possible topologies on X = {0, 1}.

9.2 Uniform spaces

Let X be a set. The set of (ordered) pairs of elements of X is

X ⇥X = {(x1, x2) | x1, x2 2 X}. The diagonal is �(X) = {(x, x) | x 2 X},

a subset of X ⇥X. For E ✓ X ⇥X let

�(E) = {(y, x) 2 X ⇥X | (x, y) 2 D}, and

E ⇥X E = {(x, y) 2 X ⇥X | there exists z 2 X such that (x, z) 2 E and (z, y) 2 E}.

A uniformity on X is a collection E of subsets of X ⇥X such that
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(a) (diagonal condition) If E 2 E then �(X) ✓ E,

(b) (upper ideal) If E 2 E and D ✓ X ⇥X and D ◆ E then D 2 E ,

(c) (finite intersection) If ` 2 Z>0 and E1, E2, . . . , E` 2 E then E1 \ E2 \ · · · \ E` 2 E ,

(d) (symmetry condition) If E 2 E then �(E) 2 E ,

(e) (triangle condition) If E 2 E then there exists D 2 E such that D ⇥X D ✓ E.

A uniform space is a set X with a uniformity E on X. An fatdiagonal, or entourage, is a set in E .

9.3 Metric spaces

A metric space is a set X with a function d : X ⇥X ! R�0 such that

(a) (diagonal condition) If x 2 X then d(x, x) = 0,

(b) (diagonal condition) If x, y 2 X and d(x, y) = 0 then x = y,

(c) (symmetry condition) If x, y 2 X then d(x, y) = d(y, x),

(d) (the triangle inequality) If x, y, z 2 X then d(x, y)  d(x, z) + d(z, y).

Distances between points in R2.

9.4 Normed vector spaces

Let C = R+ Ri with i
2 = �1 be the field of complex numbers with complex conjugation

C ! C
c 7! c

given by a+ bi = a� bi,

and absolute value
C ! R�0

c 7! |c|
given by |c|

2 = c c.
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Let K be either R or C. A K-vector space is a set V with functions

V ⇥ V ! V

(v1, v2) 7! v1 + v2
and

K⇥ V ! V

(c, v) 7! cv

(addition and scalar multiplication) such that

(a) If v1, v2, v3 2 V then (v1 + v2) + v3 = v1 + (v2 + v3),

(b) There exists 0 2 V such that if v 2 V then 0 + v = v and v + 0 = v,

(c) If v 2 V then there exists �v 2 V such that v + (�v) = 0 and (�v) + v = 0,

(d) If v1, v2 2 V then v1 + v2 = v2 + v1,

(e) If c 2 K and v1, v2 2 V then c(v1 + v2) = cv1 + cv2,

(f) If c1, c2 2 K and v 2 V then (c1 + c2)v = c1v + c2v,

(g) If c1, c2 2 K and v 2 V then c1(c2v) = (c1c2)v,

(h) If v 2 V then 1v = v.

A normed vector space is a K-vector space V with a function k k : V ! R�0 such that

(a) If x, y 2 V then kx+ yk  kxk+ kyk,

(b) If c 2 K and v 2 V then kcvk = |c| kvk,

(c) If v 2 V and kvk = 0 then v = 0.

9.5 Inner product spaces

Let K be either R or C.

A positive definite symmetric inner product space is a K-vector space V with a function

V ⇥ V ! K
(v1, v2) 7! hv1, v2i

such that

(a) (symmetry condition) If v1, v2 2 V then hv1, v2i = hv2, v1i,

(b) (linearity in the first coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hc1v1 + c2v2, v3i =
c1hv1, v3i+ c2hv2, v3i,

(c) (linearity in the second coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hv3, c1v1 + c2v2i =
c1hv3, v1i+ c2hv3, v2i,

(d) (no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

(e) (positive definite condition) If v 2 V then hv, vi 2 R�0.

A positive definite Hermitian inner product space is a K-vector space V with a function

V ⇥ V ! K
(v1, v2) 7! hv1, v2i

such that
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(a) (symmetry condition) If v1, v2 2 V then hv1, v2i = hv2, v1i,

(b) (linearity in the first coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hc1v1 + c2v2, v3i =
c1hv1, v3i+ c2hv2, v3i,

(c) (conjugate linearity in the second coordinate) If c1, c2 2 K and v1, v2, v3 2 V then hv3, c1v1 +
c2v2i = c1hv3, v1i+ c2hv3, v2i,

(d) (no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

(e) (positive definite condition) If v 2 V then hv, vi 2 R�0.

An inner product space is a positive definite symmetric inner product space or a positive definite
Hermitian inner product space.

9.6 Uniform spaces can be made into topological spaces

Let (X, E) be a uniform space.

Let E 2 E and x 2 X. The E-neighborhood of x is

BE(x) = {y 2 X | (x, y) 2 E}.

Let x 2 X. The neighborhood filter of x is

N (x) = {N ✓ X | there exists E 2 X such that N ◆ BE(x)}.

The uniform space topology on X is the topology

T = {U ✓ X | if x 2 U then there exists E 2 E such that BE(x) ✓ U}.

9.7 Metric spaces can be made into topological spaces, and into uniform spaces

A tolerance is a number of decimal places of accuracy to achieve in a measurement. The set of
tolerances is

E = {10�1
, 10�2

, . . .}.

Let (X, d) be a metric space.

• Let x 2 X and ✏ 2 E. The open ball of radius ✏ at x is

B✏(x) = {y 2 X | d(x, y) < ✏}.

• Let ✏ 2 E. The diagonal of width ✏, or ✏-diagonal, is

B✏ = {(y, x) 2 X ⇥X | d(x, y) < ✏}.

Let x 2 X. The neighborhood filter of x is

N (x) = {N ✓ X | there exists ✏ 2 E such that N ◆ B✏(x)}.

The metric space topology on X is

T = {U ✓ X | if x 2 U then there exists ✏ 2 E such that B✏(x) ✓ U}.
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The metric space uniformity on X is

E = {subsets of X ⇥X which contain an ✏-diagonal}.

More precisely, E ✓ X ⇥X is a fatdiagonal in X if and only if

there exists ✏ 2 E such that E ◆ B✏.

Proposition 9.1. Let (X, d) be a metric space. Let

B = {B✏(x) | ✏ 2 R>0 and x 2 X},

the set of open balls in X. Let T be the metric space topology on X. Then U is an open set in X if
and only if

there exists S ✓ B such that U =
[

B2S
B,

9.8 {normed vector spaces} ✓ {metric spaces}

Let (V, k k) be a normed vector space. The norm metric on V is the function

d : V ⇥ V ! R�0 given by d(x, y) = kx� yk.

9.9 {inner product spaces} ✓ {normed vector spaces}

Let (V, h, i) be a positive definite symmetric inner product space or a positive definite Hermitian inner
product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

9.10 Notes and references

On the face of it, it might look like there are no proofs or Propositions in this chapter, but this is not
the case at all. It is necessary and important to prove carefully that

(a) the uniform space topology is a topology,

(b) the metric space topology is a topology,

(c) the metric space uniformity is a uniformity,

(d) the norm metric is a metric, and

(e) the length norm is a norm.

Fortunately, for a practiced “proof machine” user these proofs are straightforward. For beginners at
“proof machine”, these are excellent homework assignment (and exam) questions.

The definition of uniform spaces in Section 9.2 follows [Bou, Top. Ch. II]. It is structured to model
and highlight the analogies to topological spaces, and to provide a bridge between topological spaces
and metric spaces. It is helpful to remember that the elements of a uniformity are called “entourages”,
in the same way that the elements of a topology are called “open sets”. The category of uniform
spaces is the natural home for uniformly continuous functions, Cauchy sequences and
completion. Uniformly continuous functions are introduced in Chapter 11.2 and Cauchy sequences
and completion are discussed in Chapter ??.
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To relate the definitions of a uniform space and a metric space it is helful to note that conditions
(a) and (b) in the definition of a metric space are equivalent to d

�1(0) = �X . A uniform space is
almost a metric space since every uniformity can be obtained as the supremum of uniformities coming
from pseudometrics. By [Bou, Top. Ch. IX §2 no. 4 Theorem 1] the separable Hausdor↵ uniform
spaces are exactly the separable metric spaces. The condition for a topological space to be a uniform
space is given in [Bou, Top. Ch. IX §1 no. 5 Theorem 2] (see also the discussion at the beginning of
[Bou, Top. Ch. II §4 no. 1]). By [Bou, Top. Ch. II §1 no. 2 Cor. 3 to Prop. 2], a topological space that
does not satisfy axiom (OIII) of [Bou, Top. Ch. I §8 no. 4] is not uniformizable.

In practice, it is often more convenient to work with a good set of generators of a topology rather
than with all the sets in a topology. Let (X, T ) be a topological space. A union generating set for T ,
or a basis of T , is a collection B of subsets of X such that

T = {unions of sets in B}.

The collection of open balls of radius ✏ centered at x is a union generating set for the metric space
topology of a metric space (X, d).

In exact analogy to the case of topological spaces, it is often more convenient to work with a good
set of generators of a uniformity rather than with all the sets in a uniformity. Let (X,X ) be a uniform
space. An inclusion generating set for X is a collection D of subsets of X⇥ such that

X = {subsets of X ⇥X that contain a set in D}.

The collection of ✏-diagonals is an inclusion generating set for the metric space uniformity of a metric
space (X, d).

In history of the development of theory of topological spaces, the question of when a topolog-
ical space X is a metric space was an important and motivating problem. Some initial insight
into this question is provided by the exercises in Section ??. A complete answer is given in Exer-
cises (15-17) in Section 18.2. These results sometimes go under the name “The Urysohn metriza-
tion theorem” (see https://terrytao.wordpress.com/2009/03/18/245b-notes-13-compactification-and-
metrisation-optional/#more-1901).

In the definition of inner products the diagonal conditions are anisotropy conditions. The norm
condition is necessary for kvk =

p
hv, vi to be a norm.
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