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26 Problem list: Vector spaces with topology

26.1 Norms and inner products

(1) (Parallelogram property) Let V be a vector space over a field F and let h, i : V ⇥ V ! F be a
bilinear form. Let k k

2 : V ! F be the quadratic form associated to h, i. Prove carefully that

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(2) (Pythagorean theorem) Let V be a vector space over a field F and let h, i : V ⇥ V ! F be a
bilinear form. Let k k

2 : V ! F be the quadratic form associated to h, i. Prove carefully that

If x, y 2 V and hx, yi = 0 and hy, xi = 0 then kxk
2 + kyk

2 = kx+ yk
2
.

(3) (Reconstruction) Let V be a vector space over a field F and let h, i : V ⇥ V ! F be a symmetric
bilinear form. Let k k

2 : V ! F be the quadratic form associated to h, i. Assume that 2 6= 0 in
F. Prove carefully that

If x, y 2 V then hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2).

(4) Assume n 2 Z>0 and V is a vector space over a field F with dim(V ) = n. Let h, i : V ⇥ V ! F
be a bilinear form. Let B = {b1, . . . , bn} and C = {c1, . . . , cn} be bases of V and let PCB be the
change of basis matrix. Let GB be the Gram matrix of h, i with respect to the basis B and let
GC be the Gram matrix of h, i with respect to C. Prove carefully that

GC = P
t

BCGBPCB,

(5) Let F be a field with an involutive automorphism : F ! F and let V be an F-vector space.
Prove carefully that a sesquilinear form h, i : V ⇥ V ! F satisfies

(no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

if and only if it satsifies

(no isotropic subspaces condition) If W is a subspace of V then W \W
? = 0.

(6) Let F be a field with an involutive automorphism : F ! F. Let V be an F-vector space with
a sesquilinear form h, i : V ⇥ V ! F. Let W ✓ V be a subspace of V . Assume W is finite
dimensional, that (w1, . . . , wk) is a basis of W and that G is the Gram matrix of h, i with respect
to the basis {w1, . . . , wk}. Prove carefully that the following are equivalent:

(a) A dual basis to (w1, . . . , wk) exists.
(b) G is invertible.
(c) W \W

? = 0.
(d) The linear transformation

 W : W ! W
⇤

v 7�! 'v

given by 'v(w) = hv, wi,

is an isomorphism.
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(7) Let F be a field with an involution : F ! F such that the fixed field K = {a 2 F | a = ā} is an
ordered field.

For a 2 F define |a|
2 = aā.

Let V be an F-vector space with a sesquilinear form such that

(a) If x, y 2 V then hy, xi = hx, yi.

(b) If x,2 V then hx, xi 2 K�0.

Prove carefully that

(c) (Cauchy-Schwarz) If x, y 2 V then |hx, yi|  kxk · kyk.

(d) (Triangle inequality) If x, y 2 V then kx+ yk  kxk+ kyk.

26.2 The Cauchy-Schwarz and triangle inequalities

1. (Cauchy-Schwarz and the triangle inequality) Let (V, h, i) be a positive definite inner product
space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that

(a) If x, y 2 V then |hx, yi|  kxk · kyk.

(b) If x, y 2 V then kx+ yk  kxk+ kyk.

2. (Pythagorean theorem) Let (V, h, i) be a positive definite inner product space. The length norm
on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that
if x, y 2 V and hx, yi = 0 then kxk

2 + kyk
2 = kx+ yk

2.

3. (angles and projections) Let (V, h, i) be a inner product space and let u, v 2 V .

The angle between v and u is ✓ 2 [0, 2⇡) defined by

cos(✓) =
hv, ui

kvk kuk
and proju(v) =

⌦
v,

u

kuk
↵ u

kuk
.

is the orthogonal projection of v onto u.
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(a) Use the Cauchy-Schwarz inequality to show that 0  cos(✓) < 1 and show that kproju(v)k =
cos(✓) · kvk.

(b) Let W be a finite dimensional subspace of V and let {u1, . . . , uk} be an orthonormal basis
of W . The orthogonal projection of v onto the subspace W is

projW (v) = hv, u1iu1 + · · ·+ hv, ukiuk.

Show that projW (v) is independent of the choice of orthonormal basis.

4. Let (V, h, i) be a positive definite inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

(a) (The Cauchy-Schwarz inequality) Show that if x, y 2 V then |hx, yi|  kxk · kyk.

(b) (The triangle inequality) Show that if x, y 2 V then kx+ yk  kxk+ kyk.

(c) (The Pythagorean theorem) Show that

if x, y 2 V and hx, yi = 0 then kxk
2 + kyk

2 = kx+ yk
2.

(d) (The parallelogram law) Show that

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(e) Show that if (V, k k) is a normed vector space over R such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! R given by

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2) = 1
4(kx+ yk

2
� kx� yk

2)

is a positive definite symmetric inner product space such that kvk2 = hv, vi. To prove that
hx1 + x2, yi = hx1, yi+ hx2, yi, first establish the identity

kx1+x2+ yk = kx1k
2+ kx2k

2+ kx1+ yk
2+ kx2+ yk

2
�

1
2kx1+ y�x2k

2
�

1
2kx2+ y�x1k

2
.

To prove that hcx, yi = �cx, yi, first show that this identity holds when c 2 Z, then for
c 2 Q, and finally by continuity for every c 2 R.

(f) Show that if (V, k k) is a normed vector space over C and k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! C given by

hx, yi = 1
4(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

is a positive definite Hermitian inner product space such that kvk2 = hv, vi.
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26.3 Relating types of spaces

A metric space is a set X with a function d : X ⇥X ! R�0 such that

(a) (diagonal condition) If x 2 X then d(x, x) = 0,

(b) (diagonal condition) If x, y 2 X and d(x, y) = 0 then x = y,

(c) (symmetry condition) If x, y 2 X then d(x, y) = d(y, x),

(d) (the triangle inequality) If x, y, z 2 X then d(x, y)  d(x, z) + d(z, y).

Distances between points in R2.

1. (positive definite inner product spaces are normed vector spaces) Let (V, h, i) be a positive definite
inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that (V, k k) is a normed vector space.

2. (inner product spaces from normed vector spaces: the parallelogram law)

(a) Let (V, h, i) be a inner product space and let k k : V ! R�0 be given by kvk
2 = hv, vi. Show

that
if x, y 2 V then kx+ yk

2 + kx� yk
2 = 2kxk2 + 2kyk2

(the sum of the squared lengths of the edges is the sum of the squared lengths of the
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daigonals).

(b) Show that if (V, k k) is a normed vector space over R such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! K given by

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2) = 1
4(kx+ yk

2
� kx� yk

2)

is a positive definite symmetric inner product space such that kvk2 = hv, vi. To prove that
hx1 + x2, yi = hx1, yi+ hx2, yi, first establish the identity

kx1 + x2 + yk = kx1k
2 + kx2k

2 + kx1 + yk
2 + kx2 + yk

2

�
1
2kx1 + y � x2k

2
�

1
2kx2 + y � x1k

2
.

To prove that hcx, yi = chx, yi, first show that this identity holds when c 2 Z, then for
c 2 Q, and finally by continuity for every c 2 R. (See [Bre, Ch. 5 Ex. 3].)

(c) Show that if (V, k k) is a normed vector space over C such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! C given by

hx, yi = 1
4(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

is a positive definite Hermitian inner product space such that kvk2 = hv, vi. (See [Ru, Ch.
4 Ex. 11].)

3. (normed vector spaces are metric spaces) Let (V, k k) be a normed vector space. The norm
metric on V is the function

d : V ⇥ V ! R�0 given by d(x, y) = kx� yk.

Show that (V, d) is a metric space.

4. Define the standard metric on C and show that C, with this metric, is a metric space.
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5. Let d be the standard metric on C. Show that R is a metric subspace of (C, d).

6. Let X be a set. Define the standard metric on X and show that X, with this metric, is a metric
space.

7. Let (X, k k) be a normed vector space. Define the standard metric on X and show that X, with
this metric, is a metric space.

8. Define the standard metric on Rn and show that Rn, with this metric, is a metric space.

9. Define the standard norm on Rn and show that Rn, with this norm, is a normed vector space.

10. Define the norm k kp on Rn and show that (Rn
, k kp) is a normed vector space.

11. Let X be a nonempty set. Define the set of bounded functions B(X,R) and the sup norm on
B(X,R). Show that B(X,R), with this norm, is a normed vector space.

12. Let a, b 2 R with a < b. Define the set of continuous functions C([a, b],R) and the L
1-norm on

C([a, b],R). Show that C([a, b],R), with this norm, is a normed vector space.

13. Let a, b 2 R with a < b. Show that the set Cbd([a, b]),R) of bounded continuous functions is a
metric subspace of C([a, b],R) with the L

1-norm.

14. (Polynomials of degree  n as a normed vector space) Fix a positive integer n. Denote by

Pn = {p(x) = anx
n + an�1x

n�1 + · · ·+ a1x+ a0 | a1, . . . , an 2 R}.

For p(x) = anx
n + an�1x

n�1 + · · ·+ a1x+ a0 2 Pn set

kpk = max{|a0|, |a1|, . . . , |an|}.

Verify that k k is a norm on Pn.

15. Let (X, d) and (Y, d0) be metric spaces and let Cb(X,Y ) be the set of bounded continuous
functions f : X ! Y with the metric ⇢ : Cb(X,Y )⇥ Cb(X,Y ) ! R�0 given by

⇢(f, g) = sup{d0(f(x), g(x)) | x 2 X}.

Show that (Cb(X,Y ), ⇢) is a metric space.

16. Let S be the set of linear combinations of step functions f : Rk
! R. Let

kfk =

Z
|f | and d(f, g) = kf � gk,

for f, g 2 S.
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(a) Show that k k : S ! R�0 is not a norm on S.

(b) Show that d : S ⇥ S ! R�0 is not a metric on S.

17. Let L
1 be the set of functions which are equal almost everywhere to limits of norm absolutely

convergent series in S, where S is the set of linear combinations of step functions f : Rk
! R.

Define

kfk =

Z
f and d(f, g) = kf � gk, for f, g 2 L

1.

(a) Show that k k : L1
! R�0 is a norm on L

1.

(b) Show that d : L1
⇥ L

1
! R�0 is a metric on L

1.

18. (metric spaces are not always separable) A metric space (or topological space) is separable if it
has a countable dense set.

(a) Show that R with the standard topology is separable.
(b) Show that R with the discrete topology is not separable.
(b) Show that Rn is separable.
(c) Show that `1 is separable.
(d) Let p 2 R>1. Show that `p is separable.
(e) Show that `1 is not separable.

26.4 Triangle inequalities

1. (Cauchy-Schwarz and triangle inequalities in Rn) Let x, y 2 Rn. Prove the following:

(a) (Lagrange’s identity) |x|2 · |y|2 � hx, yi
2 = 1

2

nX

i,j=1

(xiyj � xjyi)
2
.

(b) (Cauchy-Schwarz inequality) hx, yi  |x| · |y|.

(c) (triangle inequality) |x+ y|  |x|+ |y|.

2. (Cauchy-Schwarz and triangle inequalities in inner product spaces) Let (V, h, i) be a positive
definite inner product space.

(a) (Cauchy-Schwarz inequality) Show that if x, y 2 V then |hx, yi|  kxk · kyk.

(b) (triangle inequality) Showthat if x, y 2 V then kx+ yk  kxk+ kyk.

3. (Hölder and Minkowski inequalities) Let q 2 R�1 and let p 2 R>1 [ {1} be given by 1
p
+ 1

q
= 1.

(a) (Young’s inequality) Show that if a, b 2 R>0 then a
1
p b

1
q 

1
p
a+ 1

q
b.

(b) (Hölder inequality for Rn) Show that if x, y 2 Rn then |hx, yi|  kxkpkykq.

(c) (Minkowski inequality for Rn) Show that if x, y 2 Rn then kx+ ykp  kxkp + kykp.

(d) (Hölder inequality) Show that if x 2 `
p and y 2 `

q then |hx, yi|  kxkpkykq.

(e) (Minkowski inequality) Show that if x 2 `
p and y 2 `

q then kx+ ykp  kxkp + kykp.
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26.5 Subspaces and products

1. (A subspace of a vector space) Let X be a K-vector space. A subspace of X is a subset V ✓ X

such that

(a) If v1, v2 2 V then v1 + v2 2 V ,

(b) If v 2 V and c 2 K then cv 2 V .

Show that V with the same operations of addition and scalar multiplication as in X is a vector
space.

2. (A subspace of a normed vector space is a normed vector space) Let X be a normed vector space.
Let V ✓ X be a subspace. Show that V is a normed vector space with the same norm.

3. (A subset of a metric space is a metric space) Let (X, d) be a metric space. Let Y ✓ X be a
subset. Show that (Y, d) is a metric space.

4. (direct sums of vector spaces) Let X and Y be K-vector spaces. The direct sum of X and Y is
the K-vector space X � Y given by the set X ⇥ Y with addition and scalar multiplication given
by

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) and c(x, y) = (cx, cy),

for x, x1, x2 2 X, y, y1, y2 2 Y and c 2 K. Show that X � Y is a K-vector space.

5. (Norms that produce the product topology) Let (X, k kX) and (Y, k kY ) be normed vector spaces.
Define functions k · k1 : X � Y ! R�0, k · k2 : X � Y ! R�0 and k · k1 : X � Y ! R�0 by

k(x, y)k1 = kxkX + kykY , k(x, y)k2 =
q
kxk2

X
+ kyk2

Y
, and

k(x, y)k1 = max{kxkX , kykY }.

(a) Show that (X � Y, k · k1), (X � Y, k · k2) and (X � Y, k · k1) are normed vector spaces.

(b) Show that (X � Y, k · k1), (X � Y, k · k2) and (X � Y, k · k1) are the same as topological
spaces.

26.6 The space B(V,W ) of bounded linear operators

1. (B(V,W ) is a normed vector space) Let V and W be normed vector spaces. Show that

B(V,W ) = {linear transformations T : V ! W | kTk < 1} where

kTk = sup

⇢
kTvk

kvk

�� v 2 V and v 6= 0

�
,

is a normed vector space.
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2. (If W is complete then B(V,W ) is complete) Let V and W be normed vector spaces and let
B(V,W ) be the vector space of bounded linear operators from V to W with norm given by

kTk = sup

⇢
kTvk

kvk

�� v 2 V and v 6= 0

�
, for T 2 B(V,W ).

Show that if W is complete then B(V,W ) is complete.

3. (duals of normed vector spaces are complete) Let V with k k : V ! R�0 be a normed vector
space. Show that V ⇤, the dual of V , is complete.

4. (If Y is complete then bounded continuous functions from X to Y is complete) Let (X, dX) and
(Y, dY ) be metric spaces and let

BC(X,Y ) = {f : X ! Y | f is continuous and f(X) is bounded in Y },

with d1 : BC(X,Y )⇥ BC(X,Y ) ! R�0 given by

d1(f, g) = sup{dY (f(x), g(x)) | x 2 X}.

(a) Show that BC(X,Y ) is a metric space.

(b) Show that if Y is a complete metric space then BC(X,Y ) is a complete metric space.

5. (bounded real valued functions is a complete metric space) Let (X, d) be a metric space and let

B(X) = {f : X ! R | f(X) is bounded},

with metric d1 : B(X)⇥B(X) ! R�0 given by

d1(f, g) = sup{|f(x)� g(x)| | x 2 X}.

Show that B(X) is a complete metric space.

6. (for linear operators, finite norm and uniformly continuous and continuous are all equivalent)
Let V and W be normed vector spaces. Let T : V ! W be a linear transformation from V to
W . Show that the following are equivalent.

(a) kTk < 1.

(b) T : V ! W is uniformly continuous.

(c) T : V ! W is continuous.

7. (closed graph condition for continuity) Let X and Y be Banach spaces and let ⇤ : X ! Y be a
linear transformation.

If �⇤ = {(x,⇤(x)) | x 2 X} is closed in X ⇥ Y then ⇤ is continuous.
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8. (limits and inverses of bounded linear operators) Let X and Y be Banach space.

(a) Let (⇤1,⇤2, . . .) be a sequence of bounded linear operators from X to Y such that

if x 2 X then lim
n!1

⇤n(x) exists. Define ⇤(x) = lim
n!1

⇤n(x).

Show that ⇤ : X ! Y is a bounded linear transformation.

(b) If ⇤ : X ! Y is a bijective bounded linear transformation then

⇤�1 : Y ! X is a bounded linear transformation.

9. (Baire category theorem, open dense version) Let (X, d) be a complete metric space. Show that
if U1, U2, U3, . . . are open dense subsets of X

then
\

n2Z>0

Un is dense in X.

10. (uniform boundedness) Let X and Y be Banach spaces. Let F ✓ B(X,Y ). Then

sup{k⇤k | ⇤ 2 F} < 1 or there exists a dense set S ✓ X

such that
if x 2 S then sup{k⇤(x)k | ⇤ 2 F} = 1.

11. (open mapping) Let X and Y be Banach spaces. Let ⇤ : X ! Y be a surjective bounded linear
operator. Then ⇤ satisfies

if U is an open set in X then ⇤(U) is an open set in Y .

12. (bounded on the unit ball implies uniformly bounded) Let X and Y be Banach spaces and let
F ✓ B(X,Y ). Show that if F satisfies

if x 2 X and kxk  1 then sup{k⇤(x)k | ⇤ 2 F} < 1

then
sup

�
sup{k⇤(x)k | kxk  1}

�� ⇤ 2 F
 
< 1.
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26.7 The spaces `p

1. Let p 2 R>1 and define q 2 R>1 by 1
p
+ 1

q
= 1.

(a) Define the normed vector space `p.

(b) Show that `p is a Banach space.

(c) Prove that the dual of `p is `q.

2. Let p 2 R�1 and define

`
p = {(x1, x2, . . .) | xi 2 R and k~xkp < 1}, where k~xkp =

0

@
X

i2Z>0

|xi|
p

1

A
1/p

for a sequence ~x = (x1, x2, . . .) 2 R1.

(a) Show that if p  q then `p ✓ `
q.

(b) Show that if p 6= q then `p 6= `
q.

3. Let p 2 R>1. Let ei = (0, 0, . . . , 0, 1, 0, 0, . . .) with 1 in the ith entry. Show that {e1, e2, e3, . . .}
is a Schauder basis of `p.

4. (Containment of `p-spaces) Let p, s 2 R>1. Show that if p  s then `p ✓ `
s.

5. (`p-spaces depend on p) Let p, s 2 R>1. Show that if p 6= s then `p 6= `
s.

6. (the dual of R2 in the k kp norm) Let � : R2
! R be a linear functional, say �(x1, x2) = ax2+bx2.

Give a direct proof that

(a) If R2 is endowed with the norm kxk1 = |x1|+ |x2| then the corresponding operator norm is
k�k1 = max{|a|, |b|}.

(b) If R2 is endowed with the norm kxk1 = max{|x1|, |x2|} then the corresponding operator
norm is k�k1 = |a|+ |b|.

(b) If p 2 R>1 and R2 is endowed with the norm kxkp = (|x1|p+|x2|
p)1/p then the corresponding

operator norm is k�kp = (|a|q + |b|
q)1/q, where 1

p
+ 1

q
= 1.

7. (Dual of an `p-space) Let p 2 R>1. Show that (`p)⇤ = `
q where 1

p
+ 1

q
= 1.

8. (Dual of c0) Show that (c0)⇤ = `
1.

9. (Dual of `1) Show that (`1)⇤ = `
1.
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10. (Dual of `1) Show that (`1)⇤ 6= `
1.

11. (`p is complete) Let p 2 R>1. Show that `p is a complete metric space.

12. (`1 is complete) Show that `1 is a complete metric space.

13. (`1 is complete) Show that `1 is a complete metric space.

14. (c0 is complete) Show that c0 is the completion of

cc = {(x1, x2, . . .) 2 `
1 all but a finite number of xi are 0}

the space of sequences that are eventually 0. (IS THE esssup NORM AND THE SUP NORM
THE SAME FOR COUNTINGMEASURE? SEE Theorem 1.3 on the page http://www.ms.unimelb.edu.au/ ram/Notes/FunctionSpacesContent.html)

15. (The completion of cc with respect to k kp) Let p 2 R>1. Show that `p is the completion of

cc = {(x1, x2, . . .) 2 `
p all but a finite number of xi are 0}

the space of sequences that are eventually 0.

16. (the closure of the span of the standard basis in `p) Let

e1 = (1, 0, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . . ,

and
let p 2 R>1. Show that, in `p, span{e1, e2, . . .} = `

p
.

17. (the closure of the span of the standard basis in `1) Let

e1 = (1, 0, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . . .

Show that,
in `1, span{e1, e2, . . .} = `

1
.

18. (the closure of the span of the standard basis in `1) Let

e1 = (1, 0, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . . .

Show that,
in `1, span{e1, e2, . . .} = c0.
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19. (weak convergence of of the standard basis in `p) Let

e1 = (1, 0, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . . ,

and let p 2 R>1. Show that

in `p, the sequence (e1, e2, e3, . . .) weakly converges weakly to 0.

20. (weak convergence of of the standard basis in `p) Let

e1 = (1, 0, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), . . . ,

Show that,

in `1, (e1, e2, e3, . . .) does not have any weakly convergent subsequence.

26.8 Bilinear forms

1. (complex positive definite bilinear forms are skew symmetric) Let V be a C-vector space. Let
f : V ⇥ V ! C be a function such that

(a) If c1, c2 2 C and v1, v2, w 2 V then f(c1v1 + c2v2, w) = c1f(v1, w) + c2f(v2, w).

(b) If c1, c2 2 C and w1, w2, v 2 V then f(v, c1w1 + c2w2) = c1f(v, w1) + c2f(v, w2).

(c) If v 2 V then f(v, v) 2 R�0.

Show that

(A) If v 2 V then f(v, v) = �f(v, v),

(B) If v 2 V then f(v, v) = 0,

(C) If v, w 2 V then f(v, w) = �f(w, v).

2. (nondegenerate complex positive definite bilinear forms) Let V = C-span{e1, e2} so that V ⇠= C2.
Show that there exists f : V ⇥ V ! C such that

(a) If c1, c2 2 C and v1, v2, w 2 V then f(c1v1 + c2v2, w) = c1f(v1, w) + c2f(v2, w).

(b) If c1, c2 2 C and w1, w2, v 2 V then f(v, c1w1 + c2w2) = c1f(v, w1) + c2f(v, w2).

(c) If v 2 V then f(v, v) 2 R�0,

(d) If v 2 V and v 6= 0 then there exists w 2 V such that f(v, w) 6= 0.

3. (complex symmetric positive definite bilinear forms are zero) Let V be a C-vector space. Let
f : V ⇥ V ! C be a function such that

(a) If c1, c2 2 C and v1, v2, w 2 V then f(c1v1 + c2v2, w) = c1f(v1, w) + c2f(v2, w).

(b) If c1, c2 2 C and w1, w2, v 2 V then f(v, c1w1 + c2w2) = c1f(v, w1) + c2f(v, w2).

(c) If v 2 V then f(v, v) 2 R�0.
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(d) If v, w 2 V then f(v, w) = f(w, v).

Show that if v, w 2 V then f(v, w) = 0.

4. (nondegenerate real positive definite symmetric bilinear forms) Give an example of a nonzero
R-vector space and a function f : V ⇥ V ! R such that

(a) If c1, c2 2 R and v1, v2, w 2 V then f(c1v1 + c2v2, w) = c1f(v1, w) + c2f(v2, w).

(b) If c1, c2 2 R and w1, w2, v 2 V then f(v, c1w1 + c2w2) = c1f(v, w1) + c2f(v, w2).

(c) If v 2 V then f(v, v) 2 R�0.

(d) If v, w 2 V then f(v, w) = f(w, v).

(e) If v 2 V and v 6= 0 then there exists w 2 V such that f(v, w) 6= 0.

26.9 Cauchy-Schwarz and triangle inequalities

1. (Cauchy-Schwarz, the triangle inequality and the Pythagorean theorem) Let (V, h, i) be a positive
definite inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that

(a) If x, y 2 V then |hx, yi|  kxk · kyk.

(b) If x, y 2 V then kx+ yk  kxk+ kyk.

2. (Pythagorean theorem) Let (V, h, i) be a positive definite inner product space. The length norm
on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that
if x, y 2 V and hx, yi = 0 then kxk

2 + kyk
2 = kx+ yk

2.

3. (angles and projections) Let (V, h, i) be a inner product space and let u, v 2 V .

The angle between v and u is ✓ 2 [0, 2⇡) defined by

cos(✓) =
hv, ui

kvk kuk
and proju(v) =

⌦
v,

u

kuk
↵ u

kuk
.

is the orthogonal projection of v onto u.
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(a) Use the Cauchy-Schwarz inequality to show that 0  cos(✓) < 1 and show that kproju(v)k =
cos(✓) · kvk.

(b) Let W be a finite dimensional subspace of V and let {u1, . . . , uk} be an orthonormal basis
of W . The orthogonal projection of v onto the subspace W is

projW (v) = hv, u1iu1 + · · ·+ hv, ukiuk.

Show that projW (v) is independent of the choice of orthonormal basis.

4. (positive definite inner product spaces are normed vector spaces) Let (V, h, i) be a positive definite
inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that (V, k k) is a normed vector space.

5. (inner product spaces from normed vector spaces: the parallelogram law)

(a) Let (V, h, i) be a inner product space and let k k : V ! R�0 be given by kvk
2 = hv, vi. Show

that
if x, y 2 V then kx+ yk

2 + kx� yk
2 = 2kxk2 + 2kyk2

(the sum of the squared lengths of the edges is the sum of the squared lengths of the
daigonals).

(b) Show that if (V, k k) is a normed vector space over R such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! K given by

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2) = 1
4(kx+ yk

2
� kx� yk

2)

is a positive definite symmetric inner product space such that kvk2 = hv, vi. To prove that
hx1 + x2, yi = hx1, yi+ hx2, yi, first establish the identity

kx1 + x2 + yk = kx1k
2 + kx2k

2 + kx1 + yk
2 + kx2 + yk

2

�
1
2kx1 + y � x2k

2
�

1
2kx2 + y � x1k

2
.

To prove that hcx, yi = chx, yi, first show that this identity holds when c 2 Z, then for
c 2 Q, and finally by continuity for every c 2 R. (See [Bre, Ch. 5 Ex. 3].)
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(c) Show that if (V, k k) is a normed vector space over C such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! C given by

hx, yi = 1
4(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

is a positive definite Hermitian inner product space such that kvk2 = hv, vi. (See [Ru, Ch.
4 Ex. 11].)

6. Let (V, h, i) be an inner product space and let kxk =
p
hx, xi for x 2 V . Show that if x, y 2 V

then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

7. Let (V, k k) be a normed vector space. Define

hx, yi =
1

4
(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

for x, y 2 V . Show that if k k satisfies if x, y 2 V then kx+ yk
2+ kx� yk

2 = 2kxk2+2kyk2 then
h, i is an inner product on V .

8. (inner product spaces and the parallelogram law) Let (V, h, i) be a positive definite inner product
space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

(a) (The Cauchy-Schwarz inequality) Show that if x, y 2 V then |hx, yi|  kxk · kyk.

(b) (The triangle inequality) Show that if x, y 2 V then kx+ yk  kxk+ kyk.

(c) (The Pythagorean theorem) Show that

if x, y 2 V and hx, yi = 0 then kxk
2 + kyk

2 = kx+ yk
2.

(d) (The parallelogram law) Show that

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(e) Show that if (V, k k) is a normed vector space over R such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! R given by

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2) = 1
4(kx+ yk

2
� kx� yk

2)

is a positive definite symmetric inner product space such that kvk2 = hv, vi. To prove that
hx1 + x2, yi = hx1, yi+ hx2, yi, first establish the identity

kx1+x2+ yk = kx1k
2+ kx2k

2+ kx1+ yk
2+ kx2+ yk

2
�

1
2kx1+ y�x2k

2
�

1
2kx2+ y�x1k

2
.

To prove that hcx, yi = �cx, yi, first show that this identity holds when c 2 Z, then for
c 2 Q, and finally by continuity for every c 2 R.
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(f) Show that if (V, k k) is a normed vector space over C and k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! C given by

hx, yi = 1
4(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

is a positive definite Hermitian inner product space such that kvk2 = hv, vi.

9. (normed vector spaces are metric spaces) Let (V, k k) be a normed vector space. The norm
metric on V is the function

d : V ⇥ V ! R�0 given by d(x, y) = kx� yk.

Show that (V, d) is a metric space.

10. Let (V, h, i) be an inner product space. Show that if x 2 V and x 6= 0 then

kxk = sup

⇢
|hx, yi|

kyk

��� y 2 V and y 6= 0

�
.

26.10 Examples of Banach spaces and Hilbert spaces

1. (Rn as a Hilbert space) Let A be a n⇥m real symmetric matrix with positive eigenvalues. Show
that Rn with h, i : Rn

⇥ Rn
! R given by

hX,Y i = X
T
AY, is a real inner product space.

2. (Cn as a Hilbert space) Let B be a n⇥n Hermitian matrix with positive eigenvalues. Show that
Cn with h, i : Cn

⇥ Cn
! C given by

hX,Y i = X
T
BY, is a complex inner product space.

3. (Norms on finite dimensional spaces are equivalent) Let V be a finite dimensional vector space.
Let k k1 and k k2 be norms on V . Show that if y 2 V and (x1, x2, . . .) is a sequence in V then

lim
n!1

kxn � yk1 = 0 if and only if lim
n!1

kxn � yk2 = 0.

4. (The space (Rn
, k kp)) Let p 2 R�1. Let k kp : Rn

! R be given by

ka1, . . . , ankp =
�
|a1|

p + · · ·+ |an|
p
� 1

p .

Show that (Rn
, k kp) is a Banach space.
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5. (The space (Rn
, k k1)) Let k k1 : Rn

! R be given by

ka1, . . . , an)k1 = sup(|a1|, . . . , |an|}.

Show that (Rn
, k k1) is a Banach space.

6. (The space (`p, k kp)) Let `p be the vector space of sequences (a1, a2, . . .) in R such thatX

n2Z>0

|an|
p
< 1. Let

k(a1, a2, . . .)kp =

0

@
X

n2Z>0

|an|
p

1

A

1
p

.

Show that (`p, k kp) is a Banach space.

7. (The space (`1, k k1)) Let `1 be the vector space of bounded sequences (a1, a2, . . .) in R with

k(a1, a2, . . .)k1 = sup{|ai| | i 2 Z>0}.

Show that (`1, k k1) is a Banach space.

8. (The space (Cb(X,K), k k)) Let X be a topological space. Let K be R or C. Let Cb(X,K) be
the vector space of bounded continuous functions with

kfk = sup{|f(x)| | x 2 X}.

Show that (Cb(X,K), k k) is a Banach space.

9. (The space (Cn
, h, i)) Let h, i : Cn

⇥ Cn
! C be given by

h(x1, x2, . . . , xn), (y1, y2, . . . , yn)i =
nX

i=1

xiyi.

Show that (Cn
, h, i) is a Hilbert space.

10. (The space (`2, h, i)) Let `2 be the set of sequences (a1, a2, . . .) in C such that
X

i2Z>0

|ai|
2
< 1.

Let
h(x1, x2, . . .), (y1, y2, . . .)i =

X

i2Z>0

xiyi.

Show that (`2, h, i) is a Hilbert space.

11. (The space (L2([a, b]), h, i)) Carefully define the space L
2([a, b]) and show that if

hf, gi =

Z
b

a

f(t)g(t)dt

then (L2([a, b]), h, i) is a Hilbert space.
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12. (the spaces `p)

(a) Carefully define the spaces `p.

(b) Show that `1 ✓ `
2
✓ `

3.

(c) Show that `1 6= `
2
6= `

3.

13. (The dual of `p) Let p 2 R�1 and let q be defined by 1
p
+ 1

q
= 1. Show that the dual of the

Banach space `p is `q.

14. (`p is reflexive) Let p 2 R�1. Show that `p is a reflexive Banach space.

15. (`p and its dual) Let p 2 R>1 and define q 2 R>1 by 1
p
+ 1

q
= 1.

(a) Define the normed vector space `p.

(b) Show that `p is a Banach space.

(c) Prove that the dual of `p is `q.

16. (inclusions of `p spaces) Let p 2 R�1 and define

`
p = {(x1, x2, . . .) | xi 2 R and k~xkp < 1}, where k~xkp =

0

@
X

i2Z>0

|xi|
p

1

A
1/p

for a sequence ~x = (x1, x2, . . .) 2 R1.

(a) Show that if p  q then `p ✓ `
q.

(b) Show that if p 6= q then `p 6= `
q.

17. (absolute convergence condition for completeness) Let (V, k k) be a normed vector space. Show
that (V, k k) is a Banach space if and only if every norm absolutely convergent series is convergent.

18. (if W is complete then B(V,W ) is complete) Let V , W be normed vector spaces. Carefully
define B(V,W ), the vector space of bounded linear operators with the operator norm. Show
that if W is a Banach space then B(V,W ) is a Banach space.

26.11 Bases

1. (Separable bases have orthonormal topological bases) Let H ba Hilbert space. If H has a count-
able dense set C then there exists an orthonormal sequence (a1, a2, . . .) inH withK-span{a1, a2, . . .} =
H.

2. (Schauder bases are topological bases) Let (V, k k) be a normed vector space. Show that if
(b1, b2, . . .) is a Schauder basis of V then V ✓ K-span{b1, b2, . . .}.
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3. (Schauder bases are total sets) Let (V, k k) be a normed K-vector space. A total set is a set B
such that K-span(B) = V , where A denotes the closure of A.
Show that a Schauder basis of V is a total set.

4. (Schauder bases give separability)
A metric space (X, d) is separable if X has a countable dense set.
Let (V, k k) be a normed vector space. Show that if V has a Schauder basis then V is separable.

5. (Countable dense sets give rise to total sets) Let (V, k k) be a normed K-vector space. A total
set is a set B such that K-span(B) = V , where A denotes the closure of A. Show that there
exists a countable dense set in V is and only if there exists a countable total set in V .

6. (A basis of `p) Let p 2 R>1. Let ei = (0, 0, . . . , 0, 1, 0, 0, . . .) with 1 in the ith entry. Show that
{e1, e2, e3, . . .} is a Schauder basis of `p.

7. (Schauder bases for `1) Let ei = (0, 0, . . . , 0, 1, 0, 0, . . .) with 1 in the ith entry. Show that
{e1, e2, e3, . . .} is a Schauder basis of `1.

8. Let ei = (0, 0, . . . , 0, 1, 0, 0, . . .) with 1 in the ith entry. Show that {e1, e2, e3, . . .} is not a
Schauder basis of `1.

9. Show that `1 is not separable.

10. Show that `1 does not have a Schauder basis.

11. (Constructing a Schauder basis of Cb([0, 1)]) Let Cb([0, 1],R) be the vector space of bounded
continuous functions on [0, 1].

(a) Show that the set of polynomials is dense in the space of continuous functions on [0, 1] with
the supremum norm.

(b) Show that the polynomials with rational coe�cients form a countable dense set in Cb([0, 1],R).
(c) Show that Cb([0, 1],R) is separable.

12. (Separable Hilbert spaces have Schauder bases) Let (V, h, i) be a separable Hilbert space. Show
that V has a Schauder basis.

13. (Every separable Hilbert space is `2) Let (H, h, i) be an infinite dimensional separable Hilbert
space.

(a) Show that H ⇠= `
2. More precisely, show that there is an invertible linear transformation

� : H ! `
2 such that

if x, y 2 H then h�(x),�(y)i = hx, yi.
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(b) Show that `1 is a metric space and `1 is not separable.

14. (separable Hilbert spaces have Schauder bases) Let (V, h, i) be a separable Hilbert space. Show
that V has a Schauder basis.

15. (countable orthonormal total sets are Schauder bases) Let (V, h, i) be a Hilbert space. Assume
that V has a countable orthonormal set {a1, a2, . . .} which is a total set. Show that {a1, a2, . . .}
is a Schauder basis for V .

16. (Sums of closed subspaces) If W,V are closed subspaces of a Hilbert space H and W ? V then
show that W + V is closed.

17. (If S? = 0 then S fills H) Let S be a subset of a Hilbert space H satisfying S
? = {0}. Show

that K-span(S) = H.

26.12 Orthogonals and adjoints

1. (? is a Galois correspondence) Let S be a subset of V .

(a) Show that the diagonal condition shows that S \ S
? = ; or S \ S

? = {0}.

(b) Show that S? is a closed subspace of V .

(c) Show that (S?)? ◆ S.

(d) Show that if S ✓ T then T
?
✓ S

?.

(e) Show that ((S?)?)? = S
? (((S?)?)? ◆ S

? and since S ✓ (S?)? then ((S?)?)? ✓ S
?).

2. (Orthogonals) Let A,B be subsets of a Hilbert space H. Show that

(a) A
? is a closed subspace of H

(b) A \A
?
✓ {0}

(c) A ✓ B ) A
?
◆ B

?

(d) A ✓ A
??.

(e) If W is a subspace of H then W is closed if and only if W = W
??.

3. (Gram-Schmidt works) Let (V, h, i) be an inner product space. Show that the Gram-Schmidt
process produces an orthonormal basis of V.

4. (If S? = 0 then S fills H) Let S be a subset of a Hilbert space H satisfying S
? = {0}. Show

that K-span(S) = H.

5. (Expansions in orthonormal sequences) Let H be a Hilbert space. Let (a1, a2, . . .) be an or-
thonormal sequence in H.
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(a) Let x 2 H. Show that
1X

n=1

|hx, ani|
2
 kxk

2.

(b) Show that P (x) =
1X

n=1

hx, anian, exists in H.

(c) Let W = span{a1, a2, . . .}. With P (x) as in (b), show that P (x) 2 W .

(d) With W as in (c) and P (x) as in (b), show that x� P (x) 2 W
?
.

6. (Fourier’s orthonormal sequences)

(a) Let L2(T) be the set of (Lebesgue measurable) functions f : [�⇡,⇡] ! C such that

Z
⇡

�⇡

|f(x)|2dx < 1.

Prove that L2(T) with h, i : L2(T) ! L
2(T) given by

hf, gi =
1

2⇡

Z
⇡

�⇡

f(x)g(x)dx,

is a Hilbert space.

(b) Prove that setting an = e
inx defines an orthonormal sequence (a0, a1, a�1, a2, a�2, . . .) in

L
2(T).

(c) Expand the function f(x) = x
2 in terms of the orthonormal sequence of (b).

(d) Evaluate the expansion in (c) at x = ⇡ to prove that

⇣(2) =
1X

k=1

1

k2
= 1 +

1

4
+

1

9
+

1

16
+ · · · =

⇡
2

6
.

7. (Fourier decomposition) Show that the functions

em(t) =
1

p
2⇡

e
imt

, for m 2 Z,

form an orthonormal basis of L2([0, 2⇡]).

8. (Legendre polynomials) Let H be the Hilbert space L2[�1, 1]. Show that Gram Schmidt applied
to the total set {1, t, t2, t3, . . . } yields an orthonormal basis which is the sequence of Legendre
polynomials given by

Lk(t) = ck
d
k

dtk
(t2 � 1)k, k = 1, 2, 3, . . .

where the ck are determined by requiring the polynomials to have unit length. In particular,
show that the polynomials are orthogonal for any choice of ck. (You don’t need to compute the
ck).
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9. (Parseval’s identities) Let S = {e1, e2, . . . } be a countable orthonormal basis for a separable
Hilbert space H. Prove that

(a) x =
1X

n=1

hx, enien (Fourier series),

(b) kxk
2 =

1X

n=1

(hx, eni)
2 (Parseval’s identity for norms),

(c) hx, yi =
1X

n=1

hx, enihy, eni ( Parseval’s identity for inner products).

10. (the order of the sum doesn’t matter) Let (V, h, i) be a Hilbert space. Let (a1, a2, . . .) be an
orthonormal sequence in V . Let x 2 V . Show that

P (x) =
X

n2Z>0

hx, anian is independent of the order of the terms in the sum.

11. (Bessel’s inequality) Let (V, h, i) be a Hilbert space. Let (a1, a2, . . .) be an orthonormal sequence
in V . Let x 2 V . Show that X

n2Z>0

|hx, ani|
2
 kxk

2
.

12. (The Hilbert space `2(S)) Let S be an arbitrary set. Let `2(S) be the set of functions f : S ! C
such that f(s) 6= 0 for countably many s 2 S and such that the series ⌃{s2S}|f(s)|

2 converges.
Define h, i : `2(S)⇥ `

2(S) ! C by

hf, gi =
X

s2S
hf(s), g(s)i.

Prove that

(a) `2(S) is a Hilbert space.

(b) `2 = `
2(Z>0)

(c) Every Hilbert space with an orthonormal basis S is isometric to l
2(S).

(Hint: define functions

fe : S ! C by fe(e
0) =

(
1, if e0 = e,

0, if e0 6= e.

Show that B = {fe | e 2 S} is an orthonormal basis for l2(S) and the bijection e ! fe extends
to an isometry H ! l

2(S).)

13. (Constructing the orthogonal projection) LetW be a subspace of a Hilbert spaceH which admits
an orthogonal projection P . Show;

362



MAST30026 Resources, Arun Ram, July 24, 2022

(a) P
2 = P

(b) dist (x,W ) = kx� Pxk, ie Px is the closest point to x in W .

14. (projections as idempotents) Show that H ⇠= W �W
? if and only if there is a a linear transfor-

mation P : H ! W such that P 2 = P and ResH
W
(P ) = idW . Then

H = idH(H) = P (H) + (idH � P )(H) = W �W
?
.

15. (closed subspaces or Hilbert spaces have complements) Let (V, h, i) be a Hilbert space and let
W be a closed subspace of V . Show that V = W �W

?.

16. (Orthogonal projections are unique) Let (V, h, i) be an inner product space. Let W be a vector
subspace of V . Show that if W admits an orthogonal projection P then P is unique.

17. (If an orthogonal projection onto W exists then W is closed) Let (V, h, i) be a Hilbert space. Let
W be a vector subspace of V . Show that if there is an orthogonal projection P onto W then W

is closed.

18. (Orthogonal projection in terms of an orthonormal sequence) Let (V, h, i) be a Hilbert space.
Let (a1, a2, . . .) be an orthonormal sequence in V . Let W = span{a1, a2, . . .} and let M = W be
the closure of W . Show that P : V ! V given by

P (x) =
X

n2Z>0

hx, anian is an orthonormal projection onto W .

19. Let V be a Banach space and let V 00 be the dual of the dual of V . Define ' : V ! V
00 by

('(x))(f) = f(x), for f 2 V
0.

Show that ' is injective.

20. (surjectivity in the Riesz representation theorem) Let H be a Hilbert space and let f : H ! C
be a bounded linear functional. Show that there exists a unique a 2 H such that if x 2 H then
f(x) = hx, ai.

21. (dual of a Hilbert space) Let H be a Hilbert space and let a 2 H. Prove that the f : H ! K
given by

f(x) = hx, ai is a bounded linear functional and kfk = kak.

22. (The Riesz representation theorem)

(a) State the Riesz representation theorem for bounded linear functionals on a Hilbert space
H.
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(b) Let `2 be the Hilbert space of real sequences {(a1, a2, a3, . . . ) |
P1

i=1 a
2
i
< 1} with inner

product

h(a1, a2, a3, . . . ), (b1, b2, b3, . . . )i =
X

i = 11aibi.

Define  : `2 ! R by

 (a1, a2, a3, . . . ) =
1X

i=1

ai

2i
.

Find a vector v 2 `
2 such that

if a = (a1, a2, a3, . . . ) 2 `
2 then  (a) = ha, vi.

Use this to compute k k.

(c) Let X = C[0, 1] be the Banach space of continuous functions f : [0, 1] ! R with the
supremum norm.

Define � : X ! R by �(x) = x(0).

Prove that � is a bounded linear functional.

23. (The Riesz representation theorem) Suppose that (H,< · >) is a real Hilbert space.

(a) Prove that the functional f : H ! R given by f(x) =< x, v > is a bounded linear operator,
where v is a fixed element of H. Compute kfk for this functional.

(b) State the Riesz representation theorem.

(c) Suppose that T : V ! W is a bounded linear operator between Banach spaces V,W . Use
the Riesz representation theorem to give the construction of an adjoint operator to T . Prove
that the adjoint operator is uniquely defined by your construction and is a linear operator.
(You don’t have to prove that the adjoint operator is bounded).

24. (The Riesz representation theorem) Suppose that (H,< · >) is a real Hilbert space.

(a) Prove that the functional f : H ! R given by f(x) =< x, v > is a bounded linear operator,
where v is a fixed element of H. Compute kfk for this functional.

(b) State the Riesz representation theorem.

(c) Explain why the Riesz theorem gives an isometry between the space H
⇤ of bounded linear

functionals on a Hilbert space H and H itself, where the norm on an element f 2 H
⇤ is

the operator norm kfk.

25. (Inner product characterization of the adjoint operator) Let H1 and H2 be Hilbert spaces. Let
T : H1 ! H2 be a bounded linear operator. Then T

⇤ : H2 ! H1 is given by

hTx, yi2 = hx, T
⇤
yi1, for x 2 H1 and y 2 H2.

26. (adjoints in Hilbert spaces) Let H1 and H2 be Hilbert spaces and let T : H1 ! H2 be a bounded
linear transformation.
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(a) Show that there exists a unique function T
⇤ : H2 ! H1 such that if x 2 H1 and y 2 H2

then hTx, yi2 = hxT
⇤
yi1.

(b) Show that T ⇤ is a linear transformation.

(c) Show that T ⇤ is bounded.

(d) Show that kT ⇤
k = kTk.

27. (The Hilbert space `2) Let (`2, h, i) denote the Hilbert space of sequences (a1, a2, . . . ), satisfyingP1
n=1 |an|

2 is convergent. The inner product is defined by

h(a1, a2, . . . ), (b1, b2, . . . )i =
1X

n=1

anbn

Let T : `2 ! `
2 be a linear transformation.

(a) Define what it means for a set to be a Schauder basis for a separable Banach or Hilbert
space.

You may assume that l2 has a Schauder basis S = {e1, e2. . . . } where e1 = (1, 0, 0 . . . ), e2 =
(0, 1, 0, . . . ), . . . .

(b) Show that T is a bounded linear operator if and only if the sequence kT (e1)k, kT (e2)k, . . .
is bounded.

(c) If Tej =
P1

n=1 cjnen, give a condition on the coe�cients cjn which is necessary and su�cient
for T to be self adjoint. Give reasons for your answer.

28. (adjoint of the adjoint for Hilbert spaces) Let H1 and H2 be Hilbert spaces and let T : H1 ! H2

be a bounded linear transformation. Show that (T ⇤)⇤ = T .

29. Let T : Cm
! Cn be a linear transformation. Let A be the matrix of T and let A⇤ = A

t
.

(a) Show that the matrix of T ⇤ is A⇤.

(b) Show that kTk =
p
�, where � is the largest eigenvalue of A⇤

A.

30. Let V and W be normed vector spaces and let T : V ! W be a bounded linear operator. Show
that T ⇤

T is self adjoint and positive.

31. Let V and W be Banach spaces. Let V
0 be the dual of V and let W

0 be the dual of W . Let
T : V ! W be a bounded linear operator. Define T

⇤ : W 0
! V

0 by

T
⇤
f = f � T.

Show that T ⇤ is a well defined bounded linear operator.

32. Let V and W be reflexive Banach spaces and let T : V ! W be a bounded linear operator.

(a) Show that T is transformed to T
⇤⇤ by the isomorphisms V ⇠= V

00 and W ⇠= W
00.
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(b) Show that kT ⇤
k = kTk.

(c) Show that if V and W are Hilbert spaces then T is transformed to T
⇤ by the natural

isomorphisms V ⇠= V
0 and W ⇠= W

0.

33. Let R and L be the left and right shift operators in the normed space `p. So

R(a1, a2, a3, . . . ) = (0, a1, a2, . . . ) and L(a1, a2, a3, . . . ) = (a2, a3, . . . ).

(a) Show that R,L are bounded linear operators.

(b) Find the norms kLk, kRk.

(c) For the case p = 2 find the adjoints of the shift operators R : `2 ! `
2 and L : `2 ! `

2.

34. Prove the following facts about adjoints of bounded linear operators on Hilbert spaces.

(a) (T + S)⇤ = T
⇤ + S

⇤

(b) (TS)⇤ = S
⇤
T
⇤

(c) (�T )⇤ = �T
⇤

(d) kT
⇤
Tk = kTk

2

35. Let Sn be a sequence of self adjoint operators on a Hilbert space H which converge pointwise to
a bounded linear operator S. Show that S is self adjoint.

36. Let H be a Hilbert space and let T : H ! H be a nonzero compact self adjoint operator. Show
that there exists an orthonormal basis of eigenvectors for H.

37. Let H be a Hilbert space and let T : H ! H be a nonzero compact self adjoint operator. Let ⇤
be the set of eigenvalues of T . If µ 2 ⇤ let P (µ) be the orthogonal projection onto the subspace
Xµ of eigenvectors with eigenvalue µ. Show that if x 2 H then Tx =

P
µ2⇤ µP (µ)x.

38. If T is a positive operator on a Hilbert space H prove that Tn is positive for all n � 1.

39. Prove that if T is a positive operator then every eigenvalue of T is non-negative.

40. Let P be an orthogonal projection on a Hilbert space H. Prove that P is self adjoint, positive
and I � P is positive.
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26.13 Norms and bounded linear operators

1. (linear operators on finite dimensional spaces are bounded) Let V and W be normed vector
spaces and let T : V ! W be a linear transformation. Show that if V is finite dimensional then
T is bounded.

2. (linear operators on infinite dimensional spaces are not necessarily bounded) Let V = C([0, 1])
be the vector space of continuous functions f : [0, 1] ! R with norm given by

kfk =

Z 1

0
|f(t)| dt.

Let T : V ! R be given by T (f) = f(0).

(a) Show that V is infinite dimensional.

(b) Show that T is not bounded.

3. (continuous linear operators are bounded) Let V , W be normed vector spaces and let T : V ! W

be a linear transformation. Show that if T is continuous then T is bounded.

4. (bounded linear operators are uniformly continuous) Let V , W be normed vector spaces and
let T : V ! W be a linear transformation. Show that if T is bounded then T is uniformly
continuous.

5. (The 0 operator and the identity operator) Let V , W be normed vector spaces. Show that
the identity operator idV : T ! V has operator norm 1 and the zero operator 0: V ! W has
operator norm 0.

6. (matrix entries and the `1 norm) Let T : Cn
! Cm be a linear transformation with m ⇥ n

matrix A = (ajk) with respect to the standard basis. Suppose the norms on Cn and Cm are
both the supremum norm. Show that

kTk = max

(
nX

k=1

|ajk| | j 2 {1, . . . ,m}

)
.

7. (matrix entries and the `1 norm) Let T : Cn
! Cm be a linear transformation with m⇥n matrix

A = (ajk) with respect to the standard basis. Suppose the norms in Cn and Cm are both the `1

norms. Show that

kTk = max

8
<

:

mX

j=1

|ajk| | k 2 {1, . . . , n}

9
=

; .
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8. (diagonal operators) Let `1 be the vector space of bounded sequences (a1, a2, . . .) in R with
norm given by

k(a1, a2, . . .)k = sup{|a1|, |a2|, . . .}.

Let (�1,�2, . . .) be a bounded sequence in R. Define T : `1 ! `
1 by

T (a1, a2, . . .) = (�1a1,�2a2, . . .).

(a) Show that T is a well defined linear transformation.

(b) Show that kTk = sup{|�1|, |�2|, . . .}.

9. (evaluation operator) Let a, b 2 R with a < b. Let C([a, b]) be the Banach space of continuous
functions f : [a, b] ! R with the supremum norm. Let t0 2 [a, b]. Define A : C([a, b]) ! R by

Af = f(t0).

Show that A is a bounded linear functional with kAk = 1.

10. (integral operators) Let a, b 2 R with a < b. Let k : [a, b]⇥ [a, b] ! C be a continuous function.
Let

C([a, b]) = {f : [a, b] ! C | f is continuous} with the supremum norm.

Define T : X ! X by

(Tf)(t) =

Z
b

a

k(t, s)x(s)ds.

(a) Show that C([a, b]) is a Banach space.

(b) Show that if f 2 X then Tf 2 X.

(c) Show that T is a bounded linear transformation.

11. (norms of simple integral operators) Let a, b 2 R with a < b. Let C([a, b]) be the vector space
of continuous functions f : [a, b] ! C with the supremum norm. Define T : C([a, b]) ! C by

Tf =

Z
b

a

f(t) dt.

Show that the operator norm of T is kTk = b� a.

12. (shift operators) Let p 2 R�1. Let R and L be the left and right shift operators on the normed
vector space l

p given by

R(a1, a2, a3, . . . ) = (0, a1, a2, . . . ), and L(a1, a2, a3, . . . ) = (a2, a3, . . . )

(a) Show that R and L are bounded linear operators.

(b) Show that R is injective but not surjective and L is surjective but not injective.

(c) Show that LR = id but RL 6= id.
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(d) Show that if x 2 `
p then

lim
n!1

kL
n(x)k = 0 and lim

n!1
kL

n
k 6= 0.

(e) Find kLk and kRk.

13. (a diagonal operator) Let {a1, a2, . . . } be a bounded sequence of complex numbers. Define an
operator T : `2 ! `

2 by;
T (b1, b2, . . . ) = (0, a1b1, a2b2, . . . ).

(a) Show that T is a bounded linear operator and find kTk.

(b) Compute the adjoint operator T ⇤.

(c) Show that if T 6= 0 then T
⇤
T 6= TT

⇤.

(d) Find the eigenvalues of T ⇤.

14. (norm of the operator corresponding to an infinite matrix) Let (aij) be an infinite complex
matrix, i, j = 1, 2, . . . , such that if j 2 Z>0 then

cj =
X

i

|aij | converges, and c = sup{c1, c2, . . .} < 1.

Show that the operator T : `1 ! `
1 defined by

T (b1, b2, . . . ) =
⇣X

j

a1jbj ,
X

j

a2jbj , . . .

⌘

is a bounded linear operator and that kTk = c.

15. (shift operators) Let (`2, h, i) denote the Hilbert space of sequences (a1, a2, . . . ), with ai 2 C,
satisfying

P1
n=1 |an|

2 is convergent. The inner product is defined by

h(a1, a2, . . . ), (b1, b2, . . . )i =
1X

n=1

anbn

Define operators R : `2 ! `
2 and L : `2 ! `

2 by

R((a1, a2, . . . )) = (0, a1, a2, . . . ) and L((a1, a2, . . . )) = (a2, a3, . . . ).

(a) Explain why R,L are bounded linear operators and compute their operator norms kRk, kLk.

(b) Define the adjoint of a linear transformation from a Hilbert space to a Hilbert space.

(c) Find the adjoints of the operators R,L. Briefly explain your answer.

16. (a compact diagonal operator on `2)
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(a) Let `2 be the Hilbert space of real sequences {(a1, a2, a3, . . . ) |
P1

i=1 a
2
i
< 1} with inner

product

h(a1, a2, a3, . . . ), (b1, b2, b3, . . . )i =
1X

i=1

aibi

Let T : `2 ! `
2 be the operator

T (a1, a2, a3, . . . ) = (a1,
a2

2
,
a3

3
, . . . )

Prove that T is a bounded linear operator.

(b) Compute the operator norm of T .

(c) Prove that T is self adjoint.

(d) Prove that T is a compact operator.

17. (The derivative operator) Let X = C
1[0, 1] and Y = C[0, 1] so that functions in X are continu-

ously di↵erentiable and functions in Y are continuous:

Y = C[0, 1], with norm given by kfk = sup{|f(t)| | t 2 [0, 1]}, and
X = C

1[0, 1], with norm given by kfk0 = kfk+ kf
0
k,

where f
0 = df

dt
. Let D : X ! Y be the di↵erentiation operator Df = df

dt
.

(a) Show that D : (X, k · k0) ! (Y, k · k) is a bounded linear operator with kDk = 1.

(b) Show that D : (X, k · k) ! (Y, k · k) is an unbounded linear operator. (Hint: Consider the
sequence of elements tn in X).

18. (Alternative formula for the norm of a bounded self adjoint operator)

(a) Carefully define the norm of a linear operator T : V ! V .

(b) Carefully define bounded linear operator and self adjoint linear operator.

(c) Let T : V ! V be a bounded self adjont linear operator. Prove that

kTk = sup{|hTx, xi| | kxk = 1}.

19. (Norms of bounded self adjoint operators) Let T : V ! V be a bounded self adjont linear
operator. Then

kTk = sup{|hTx, xi| | kxk = 1}.

26.14 Eigenvectors of linear operators

1. (Linear operators have an eigenvector) Let V be a vector space. Let T : V ! V be a linear
operator. Show that T has a nonzero eigenvector.
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2. (Not all linear operators have an eigenvector) Give an example of a vector space V and a linear
transformation T : V ! V which does not have a nonzero eigenvector.

3. (When do linear operators have an eigenvector?) One of the two previous questions needs to be
corrected. Which one, and how should it be corrected?

4. (eigenvalues in terms of noninjectivity) Let V be a normed vector space and let T : V ! V be
a bounded linear operator. Show that T has an eigenvector of eigenvalue � if and only if �� T

is not injective.

5. (sometimes injective linear operators are also surjective, and invertible) Let T be a bounded self
adjoint compact operator on a Hilbert space H. Use the spectral theorem to show that if � is a
non zero complex number so that �I � T is a one-to-one mapping then �I � T is onto and has
a bounded inverse.

6. (sometimes injective linear operators are also surjective, and invertible) Let T be a bounded self
adjoint compact operator on a Hilbert space H. Assume � is a non zero complex number so
that �I � T is an onto mapping, Use the fact that

if N = ker(�I � T ) and R = im (�I � T ) then N = R
?

to prove that �I � T is one-to-one and has a bounded inverse.

7. (A converse to Fredholm’s theorem?) Let H be a Hilbert space and let T : H ! H be a bounded
linear operator. Assume that T satisfies:

if � 2 K and � 6= 0 then �� T is injective if and only if �� T is bijective

Does it follow that T is compact?

8. (When do linear operators have eigenvectors?)

(a) Let V be a finite dimensional normed C-vector space and let T : V ! V be a bounded
linear operator. Show that T has an eigenvector.

(b) Give an example of a C-vector space V and a bounded linear operator T : V ! V that does
not have an eigenvector.

(c) Give an example of a finite dimensional R-vector space W and a bounded linear operator
T : W ! W that does not have an eigenvector.

(d) Carefully define bounded compact self adjoint linear operator.

(e) Sketch the proof that if V is a Hilbert space and T : V ! V is a bounded compact self
adjoint operator then T has an eigenvector. In your sketch, point out where the compactness
of T and the fact that T is self adjoint are needed.

9. (linear operators on finite dimensional normed vector spaces) Let H be a finite dimensional
Hilbert space. Let T : H ! H be a linear operator. Show that
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(a) T is bounded.

(b) T is compact.

(c) T has a nonzero eigenvector.

10. (bounded compact self adjoint linear operators have eigenvectors) Let H be a Hilbert space.
Let T : H ! H be a bounded compact self adjoint linear operator. Show that T has a nonzero
eigenvector with eigenvalue kTk.

11. (orthonormal bases of eigenvectors) Let H be a Hilbert space and let T : H ! H be a bounded
compact self adjoint operator. Show that there exists an orthonormal basis of eigenvectors of
H.

12. (Eigenvalues of self adjoint operators are real) Let T : V ! V be a self adjoint linear operator
and let v be an eigenvector of T with eigenvalue �. Show that � 2 R.

13. (adjoints and eigenvectors) Let V = C5 with the standard Hermitian inner product. Let

T : V ! V and W : V ! V

be the linear transformations such that the matrices of T and W with respect to the standard
basis of V = C5 are given by

A =

0

BBBB@

1 2 3 4 5
6 7 8 9 10
11 12 0 14 15
16 0 2 0 20
1 0 3 4 10

1

CCCCA
and B =

0

BBBB@

1 2 3 4 5
2 6 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15

1

CCCCA

respectively.

(a) Compute kTk and kWk.

(b) Let T ⇤ be the adjoint of T and let W ⇤ be the adjoint of W . Compute the matrices of T ⇤

and W
⇤ with respect to the standard basis of C5.

(c) Show that T and W are compact operators.

(d) Find an eigenvector of W with eigenvalue kWk.

(e) Find an orthonormal basis of V which consists of eigenvectors of W .

(f) Show that T has an eigenvector.

14. (eigenvectors)

(a) Carefully define linear operator, eigenvector and eigenvalue.

(b) Let V be a complex vector space and let T : V ! V be a linear operator. Prove that there
exists v 2 V with v 6= 0 such that v is an eigenvector of T .
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(c) Use the proof of (b) to explicitly produce an eigenvector of the linear transformation
T : C3

! C3 corresponding to the matrix

A =

0

@
1 5 �2
6 0 2
⇡

p
7 0

1

A .

(d) Let V be the real vector space R2. Give an example of a linear transformation T : V ! V

that does not have a nonzero eigenvector.

15. (Existence of eigenvectors of bounded self adjoint linear operators) Let H be a Hilbert space
and let T : H ! H be a bounded self adjoint operator.

(a) Show that there exists x 2 H with kxk = 1 and |hTx, xi| = kTk.

(b) Let x 2 H be as in (a). Show that x is an eigenvector of T with eigenvalue kTk.

(c) Use the proof of (a) to explicitly produce an eigenvector of the linear transformation
T : C3

! C3 corresponding to the matrix

A =

0

@
1 5 �2
5 0 ⇡

�2 ⇡ 0

1

A .

16. (eigenspaces of compact linear operators) Let H be a Hilbert space.

(a) Carefully define compact linear operator.

(b) Give an example (with proof) of a bounded linear operator T : `2 ! `
2 which is compact

and a bounded linear operator S : `2 ! `
2 which is not compact.

(c) Let T : H ! H be a compact linear operator. Assume � 2 C and � 6= 0 and let

X� = {v 2 H | Tv = �v}.

Show that X� is a subspace of H and that dim(X�) is finite.

17. (eigenspaces of self adjoint operators) Let T : V ! V be a self adjoint linear operator.

(a) Let v be an eigenvector of T with eigenvalue �. Prove that � 2 R.
(b) Let � and � be eigenvalues of T with � 6= �. Let

X� = {v 2 V | Tv = �v} and X� = {v 2 V | Tv = �v}.

Prove that X� is orthogonal to X� .

18. (properties of eigenspaces) Prove the following:

(a) If T : H ! H is self adjoint and X� 6= 0 then � 2 R.
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(b) If T : H ! H is self adjoint and � 6= � then X� ? X� .

(c) If T : H ! H is compact operator and � 6= 0 then X� is finite dimensional.

(d) If T : H ! H is self adjoint then W
? is a T -submodule of H.

(e) If T : T ! H a compact operator then the restriction of T to W
? is a compact operator.

(e) If T : H ! H is a compact operator then W
? = 0.

19. (The sum of eigenspaces) Let

W =
M

�2�p(T )

X�.

Primary questions: If W =
M

�2�p(T )

X� then

When is W = 0? When is W dense in H?

20. (Producing an vector with |hTx, xi| = kTk) Let H be a Hilbert space and let T : H ! H be a
bounded self adjoint operator. Show that there exists x 2 H with

kxk = 1 and |hTx, xi| = kTk.

21. (Producing an eigenvector of a bounded self adjoint operator) Let H be a Hilbert space and let
T : H ! H be a bounded self adjoint operator. Let x 2 H with

kxk = 1 and |hTx, xi| = kTk.

Show that x is an eigenvector of T with eigenvalue kTk.

22. (The spectral theorem in an example) Let V = C5 with the standard Hermitian inner product.
Let T : V ! V be the linear transformation such that the matrix of T with respect to the
standard basis of V = C3 is given by

A =

0

@
1 2 3
2 6 7
3 7 10

1

A

respectively.

(a) Show that T is a compact self adjoint operator.

(b) Find an orthonormal basis of V which consists of eigenvectors of T .

(c) Give an example of Hilbert space H and a diagonal self adjoint operator T : H ! H which
is not compact.

23. (the spectral theorem)
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(a) Give the definition of a compact self adjoint linear operator T : V ! W where V,W are
Hilbert spaces.

(b) State the spectral expansion theorem for compact self adjoint linear operators.

(c) Prove that the sum of two compact self adjoint linear operators is compact and self adjoint.
(Hint: You may use the fact that if A,B are compact subsets of a normed space, then
A+B = {a+ b : a 2 A, b 2 B} is compact.)

24. (the spectral theorem)

(a) Give the definition of a compact self adjoint linear operator T : V ! W where V,W are
Hilbert spaces.

(b) State the spectral expansion theorem for compact self adjoint linear operators.

(c) Explain why the eigenspace of a compact self adjoint operator corresponding to a non-zero
eigenvalue must be finite dimensional.

26.15 Compact operators

1. (Compact operators have finite dimensional eigenspaces) Let T : H ! H be a compact linear
operator. Assume � 2 K and � 6= 0 and let

X� = {v 2 H | Tv = �v}. Show that dim(X�) is finite.

2. (finiteness) Show that if we think topologically then we realize that compactness for bounded
linear operators is a fiiteness condition. Also, if we think linear algebraically then, if H is finite
dimensional then T : H ! H is always compact.

3. (the closed unit ball is compact if and only if it is finite dimensional) Let (V, k k) be a Banach
space.

(a) Show that if V is finite dimensional then the closed unit ball in V is compact.

(b) Show that if V is infinite dimensional then the closed unit ball in V is not compact.

4. (infinite sequences of far apart unit vectors) Let (V, k k) be an infinite dimensional Banach
space. Construct a sequence (e1, e2, . . .) of unit vectors in V such that if i, j 2 Z>0 and i 6= j

then d(ei, ej) >
1
2 .

5. (alternative definition of a compact operator) Let X be a normed vector space and let B = {x 2

X | kxk  1}. Let T : X ! X be a linear operator. Show that T is compact if and only if T (B)
is compact.

6. (images of compact operators) Let X be a normed vector space and let A be a bounded subset
of X. Let T : X ! X be a compact operator. Show that T (A) is compact.
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7. (linear operators on finite dimensional spaces are compact) Let X be a finite dimensional normed
vector space and let T : X ! X be a linear transformation. Show that T is a compact operator.

8. (integral operators on closed intervals are compact) Let X = C([a, b]) be the space of continuous
functions f : [a, b] ! R with the supremum norm. Let k : [a, b] ⇥ [a, b] ! C be a continuous
function and define T : X ! X by

(Tf)(t) =

Z
b

a

k(t, s)f(s) ds.

Show that T is a compact operator.

9. (computing the norm by inner products) Let H be a Hilbert space and let T : H ! H be a
bounded self adjoint operator. Show that

kTk = sup{|hTx, xi| | x 2 H, kxk = 1}.

10. (characterising eigenvectors of the largest eigenvalue) LetH be a Hilbert space and let T : H ! H

be a nonzero compact self adjoint operator.

(a) Show that there exists an eigenvalue � of T such that |�| = kTk.

(b) Show that if v is an eigenvector of T with eigenvalue � such that |�| = kTk then v is a
solution of the extremal problem

max{hTu, ui | u 2 H, kuk = 1}.

11. (Limits of eigenvalues of compact operators) Let H be an infinite dimensional Hilbert space. Let
T : H ! H be a bounded self adjoint compact operator. Show that the eigenvalues of T form a
sequence converging to 0.

12. (eigenvectors from di↵erential operators) Let a, b 2 R with a < b. Let � 2 R and let p : [a, b] !
R>0 and q : [a, b] ! R with p 2 C

0([a, b]) and q 2 C
2([a, b]). Let a1, a2, b1, b2 2 R with (a1, a2) 6=

(0, 0) and (b1, b2) 6= (0, 0). Let L : C2([a, b]) ! C([a, b]) be given by

Ly = (�py
0)0 + qy.

Let u, v 2 C
2([a, b]) such that

Lu = 0, Lv = 0, a1u(a) + a2u
0(a) = 0, and b1v(b) + b2v

0(b) = 0.

Let G : [a, b]⇥ [a, b] ! R be given by

G(s, t) =

(
v(t)u(s), if s  t,

u(t)v(s), if t  s.

Define T : L2([a, b]) ! L
2([a, b]) by

(Tf)(t) =

Z
b

a

G(t, s)f(s)ds, for t 2 [a, b].
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(a) Show that the eigenvalues of T are nonzero and each eigenvector f satisfies a1f(a) +
a2f

0(a) = 0 and b1f(b) + b2f
0(b) = 0.

(b) Show that f is an eigenvector of T with eigenvalue µ if and only if f is an eigenvector of L
with eigenvalue 1

µ
.

(c) Show that L has a sequence of eigenvalues �! 1, each eigenspace of L is one dimensional
and there is an orthonormal basis of L2([a, b]) of eigenvectors of L.

13. (Fourier modes as eigenvectors) Let G : [0,⇡]⇥ [0,⇡] ! R be given by

G(t, s) =

(
t�

st

⇡
, if s  t,

s�
st

⇡
, if s � t,

and let T : L2([0,⇡]) ! L
2([0,⇡]) be given by

(Tf)(t) =

Z
⇡

0
G(t, s)f(s)ds, for t 2 [0,⇡].

(a) Show that T has eigenvalues �n = n
2, n 2 Zn>0, and corresponding eigenvectors sn(t) =q

2
⇡
sin(nt).

(b) Show that the functions sn(t) =
p
2⇡ sin(nt), n 2 Z>0 form an orthonormal basis of

L
2([0,⇡]).

(c) Show that the functions sn(t) are the solutions to the Sturm Liouville system in the last
example y

00 + �y = 0 on [0,⇡] with the boundary conditions y(0) = y(⇡) = 0.
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