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21 Problem List: Spaces

21.1 The Cauchy-Schwarz and triangle inequalities

1. (Cauchy-Schwarz and the triangle inequality) Let (V, h, i) be a positive definite inner product
space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that

(a) If x, y 2 V then |hx, yi|  kxk · kyk.
(b) If x, y 2 V then kx+ yk  kxk+ kyk.

2. (Pythagorean theorem) Let (V, h, i) be a positive definite inner product space. The length norm
on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that
if x, y 2 V and hx, yi = 0 then kxk

2 + kyk
2 = kx+ yk

2.

3. (angles and projections) Let (V, h, i) be a inner product space and let u, v 2 V .

The angle between v and u is ✓ 2 [0, 2⇡) defined by

cos(✓) =
hv, ui

kvk kuk
and proju(v) =

⌦
v,

u

kuk
↵ u

kuk
.

is the orthogonal projection of v onto u.

(a) Use the Cauchy-Schwarz inequality to show that 0  cos(✓) < 1 and show that kproju(v)k =
cos(✓) · kvk.

(b) Let W be a finite dimensional subspace of V and let {u1, . . . , uk} be an orthonormal basis
of W . The orthogonal projection of v onto the subspace W is

projW (v) = hv, u1iu1 + · · ·+ hv, ukiuk.

Show that projW (v) is independent of the choice of orthonormal basis.
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4. Let (V, h, i) be a positive definite inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

(a) (The Cauchy-Schwarz inequality) Show that if x, y 2 V then |hx, yi|  kxk · kyk.
(b) (The triangle inequality) Show that if x, y 2 V then kx+ yk  kxk+ kyk.
(c) (The Pythagorean theorem) Show that

if x, y 2 V and hx, yi = 0 then kxk
2 + kyk

2 = kx+ yk
2.

(d) (The parallelogram law) Show that

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(e) Show that if (V, k k) is a normed vector space over R such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! R given by

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2) = 1
4(kx+ yk

2
� kx� yk

2)

is a positive definite symmetric inner product space such that kvk2 = hv, vi. To prove that
hx1 + x2, yi = hx1, yi+ hx2, yi, first establish the identity

kx1+x2+ yk = kx1k
2+ kx2k

2+ kx1+ yk
2+ kx2+ yk

2
�

1
2kx1+ y�x2k

2
�

1
2kx2+ y�x1k

2
.

To prove that hcx, yi = �cx, yi, first show that this identity holds when c 2 Z, then for
c 2 Q, and finally by continuity for every c 2 R.

(f) Show that if (V, k k) is a normed vector space over C and k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! C given by

hx, yi = 1
4(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

is a positive definite Hermitian inner product space such that kvk2 = hv, vi.

21.2 Relating types of spaces

1. (positive definite inner product spaces are normed vector spaces) Let (V, h, i) be a positive definite
inner product space. The length norm on V is the function

V ! R�0

v 7! kvk
given by kvk

2 = hv, vi.

Show that (V, k k) is a normed vector space.

2. (inner product spaces from normed vector spaces: the parallelogram law)
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(a) Let (V, h, i) be a inner product space and let k k : V ! R�0 be given by kvk
2 = hv, vi. Show

that
if x, y 2 V then kx+ yk

2 + kx� yk
2 = 2kxk2 + 2kyk2

(the sum of the squared lengths of the edges is the sum of the squared lengths of the
daigonals).

(b) Show that if (V, k k) is a normed vector space over R such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! K given by

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2) = 1
4(kx+ yk

2
� kx� yk

2)

is a positive definite symmetric inner product space such that kvk2 = hv, vi. To prove that
hx1 + x2, yi = hx1, yi+ hx2, yi, first establish the identity

kx1 + x2 + yk = kx1k
2 + kx2k

2 + kx1 + yk
2 + kx2 + yk

2

�
1
2kx1 + y � x2k

2
�

1
2kx2 + y � x1k

2
.

To prove that hcx, yi = chx, yi, first show that this identity holds when c 2 Z, then for
c 2 Q, and finally by continuity for every c 2 R. (See [Bre, Ch. 5 Ex. 3].)

(c) Show that if (V, k k) is a normed vector space over C such that k k : V ! R�0 satisfies

if x, y 2 V then kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2,

then (V, h, i) with h, i : V ⇥ V ! C given by

hx, yi = 1
4(kx+ yk

2
� kx� yk

2 + ikx+ iyk
2
� ikx� iyk

2)

is a positive definite Hermitian inner product space such that kvk2 = hv, vi. (See [Ru, Ch.
4 Ex. 11].)

3. (normed vector spaces are metric spaces) Let (V, k k) be a normed vector space. The norm
metric on V is the function

d : V ⇥ V ! R�0 given by d(x, y) = kx� yk.

Show that (V, d) is a metric space.
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4. (uniformity of a pseudometric) Let X be a set. A pseudometric on X is a function f : X ⇥X !

R�0 [ {1} such that

(a) If x 2 X then d(x, x) = 0,
(b) If x, y 2 X then d(x, y) = d(y, x),
(c) If x, y, z 2 X then d(x, y)  d(x, z) + d(z, y).

Show that the sets

B✏ = {(x, y) 2 X ⇥X | d(x, y) < ✏}, for ✏ 2 R>0,

generate a uniformity Xd on X. (See [Bou, Top. Ch. IX §1 no. 2].)

5. (every uniformity comes from a family of pseudometrics) Let (X,X ) be a uniform space. Show
that there exists a set D of pseudometrics on X such that X is the least upper bound of the set
{Xd | d 2 D} of uniformities Xd defined by the pseudometrics d 2 D. (See [Bou, Top. Ch. IX §1
no. 4 Theorem 1].)

6. (The neighborhood filter of a uniform space) Let (X,X ) be a uniform space. Let x 2 X and let
N (x) be the neighborhood filter of x. Show that

N (x) = {BV (x) | V 2 X}.

7. (The uniform space topology is a topology) Let (X,X ) be a uniform space. Let

BV (x) = {y 2 X | (x, y) 2 V } for V 2 X and x 2 X, and let

N (x) = {BV (x) | V 2 X} for x 2 X.

(a) Show that T = {U ✓ X | if x 2 U then U 2 N (x)} is a topology on X.
(b) Show that if U is a topology on X and U ◆ {BV (x) | V 2 X} then U ◆ T .

8. (The metric space topology is a topology) Let (X, d) be a metric space. Let

B✏(x) = {y 2 X | d(y, x) < ✏} for ✏ 2 R>0 and x 2 X.

Let B = {B✏(x) | ✏ 2 R>0, x 2 X}.

(a) Show that T = {unions of sets in B} is a topology on X.
(b) Show that if U is a topology on X and U ◆ B then U = T .

9. (warning on relating the metric space uniformity and the metric space topology) Let (X, d) be
a metric space, X the metric space uniformity on X and T the metric space topology on X.

a) Show that if X is discrete then T = {unions of Bv(x)} and

{BV (x) | V 2 X , x 2 X} = {B✏(x) | ✏ 2 R>0, x 2 X}.
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(b) Show that if X is not discrete then

{BV (x) | V 2 X , x 2 X} is not equal to {B✏(x) | ✏ 2 R>0, x 2 X}.

(c) Give an example to show that if X is not discrete then

T is not equal to {unions of BV (x)}.

10. (Example of a topological space that is not a uniform space) Let X = {0, 1} and let T =
{;, {0}, X}. Show that T is a topology on X and that there does not exist a uniformity on X

such that T is the uniform space topology on X.

11. (Example of a topological space that is not a metric space) Let X = {0, 1} and let T =
{;, {0}, X}. Show that T is a topology on X and that there does not exist a metric d : X⇥X !

R�0 such that T is the metric space topology on X. (Show that T is not Hausdor↵.)

12. (Example of a uniform space that is not a metric space) Let X = {0, 1} and let X = {X ⇥X}.
Show that X is a uniformity on X and that there does not exist a metric d : X ⇥X ! R�0 such
that X is the metric space uniformity on X. (Show that the uniform space topology of X is not
Hausdor↵.)

13. (consistency of metric space topology, uniform space topology and metric space uniformity) Let
(X, d) be a metric space and let X be the metric space uniformity on X. Show that the uniform
space topology of (X,X ) is the same as the metric space topology on (X, d).

14. (necessary and su�cient condition for a topology to be a uniform space topology) Let (X, T )
be a topological space. Show that there exists a uniformity X on X such that T is the uniform
space topology on (X,X ) if and only if (X, T ) satisfies

if x 2 X and V is a neighborhood of x
then there exists a continuous function f : X ! [0, 1]

with f(x) = 0 and f(V c) = {1}.

(See [Bou, Top. Ch. IX §1 no. 5 Theorem 2].)

15. (necessary conditions for a topology to be a metric space topology) Let (X, T ) be a topological
space.

• (X, T ) is Hausdor↵ if X satisfies: if x, y 2 X and x 6= y then there exist open sets U and
V in X such that

x 2 U, y 2 V and U \ V = ;.

• (X, T ) is normal if X satisfies: if A and B are closed sets in X and A \ B = ; then there
exist open sets U and V in X such that

A ✓ U, B ✓ V and U \ V = ;.
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• (X, T ) is first countable if N (a) is countably generated for each a 2 X,
i.e. (X, T ) is first countable if X satisfies: if a 2 X then

there exist N1, N2, . . . 2 N (a) such that
if N 2 N (a) then there exists r 2 Z>0 such that N ◆ Nr.

Let (X, d) be a metric space and let T be the metric space topology on X. Show that

(a) (X, T ) is Hausdor↵,
(b) (X, T ) is normal,
(c) (X, T ) is first countable.

16. (su�cient condition for a topology to be a metric space topology) A topological space (X, T ) is
regular if (X, T ) is Hausdor↵ and

if x 2 X then
{C ✓ X | C is closed and x 2 C}

is a fundamental system of neighborhoods of x.

Let (X, T ) be a topological space. Show that

if (X, T ) is regular and T has a countable base

then there exists a metric d : X ⇥X ! R�0 on X such that T is the metric space topology of
(X, d). (See [Bou, Top. Ch. IX §4 Ex. 22].)

17. (necessary and su�cient condition for a topology to be a metric space topology) Let (X, T ) be
a topological space. There exists a metric d : X ⇥ X ! R�0 on X such that T is the metric
space topology of (X, d) if and only if

(a) (X, T ) is regular and
(b) there exists a sequence (B1,B2, . . .) of locally finite families of open subsets of X such that

B =
S

n2Z>0
Bn is a base of the topology T .

(See [Bou, Top. Ch. IX §4 Ex. 22].)

18. (necessary and su�cient condition for a uniformity to be a metric space uniformity) Let (X,X )
be a uniform space and let T be the uniform space topology of (X,X ).

There exists a metric d : X ⇥X ! R�0

on X such that X is the metric space uniformity of (X, d) if and only if

(a) (X, T ) is Hausdor↵ and
(b) there exists a countable subset B of X such that

X = {V ✓ X ⇥X | V contains a set in B}.

(See [Bou, Top. Ch. IX §5 no. 4 Theorem 1].)
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21.3 The poset of topologies

1. (union generating set of a topology) Let (X, T ) be a topological space.

A union generating set, or base, of T is a collection B of subsets of X such that

T = {unions of sets in B}.

Show that B is a base of the topology T if and only if B satisfies

(a) (intersection covering) If B1, B2 2 B and x 2 B1 \B2 then

there exists B 2 B such that x 2 B and B ✓ B1 \B2.

(b) (cover)
[

B2B
B = X.

2. (The metric space topology) Let (X, d) be a metric space. Show that

B = {B✏(x) | ✏ 2 R>0, x 2 X}

is a union generating set of the metric space topology on X.

3. (The discrete topology) Let X be a set. The power set of X, or the discrete topology on X, is

the set P(X) = {A ✓ X} of all subsets of X.

Show that P(X) is a topology on X.

4. (The cofinite topology) A topological space (X, T ) is Hausdor↵ if it satisfies: if x, y 2 X and
x 6= y then there exist open sets U and V in X such that

x 2 U, y 2 V and U \ V = ;.

A topological space (X, T ) is normal if it satisfies: if A and B are closed sets in X and A\B = ;

then there exist open sets U and V in X such that

A ✓ U, B ✓ V and U \ V = ;.

A topological space (X, T ) is first countable if it satisfies

if a 2 X then there exists
a countable collection of neighborhoods of a

which generates the neighborhood filter N (a) of a.

In other words, a topological space (X, T ) is first countable if it satisfies: if a 2 X then there
exists N1, N2, . . . 2 N (a) such that if N 2 N (a) then there exists i 2 Z>0 such that N ◆ Ni.

Let X be a set and let T be the topology such that the closed sets are the finite subsets of X.

(a) Show that if X is finite then T is the discrete topology on X.
(b) Show that if X is infinite then (X, T ) is not Hausdor↵ and not normal.
(c) Show that if X is uncountable then (X, T ) is not first countable.
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5. (The poset of topologies on X) Let X be a set and let P(X) = {A ✓ X} be the power set of X.
Show that ✓ is a partial order on the set P(P(X)) of all subsets of P(X). Let T (P(X) be the
set of all topologies on X. Show that T (P(X)) is a subposet of P(P(X))).

6. (topologies and uniformities on a 2 element set) Let X be a set with 2 elements. Show that there
are four possible topologies on X and two possible uniformities on X. Determine the uniform
space topology of each uniformity on X.

7. (topologies on a 3 element set) Let X be a set with 3 elements. Determine all possible topologies
on X.

8. (the order topology) Give an example of a posetX such that the collection T = {unions of open intervals}
is not a topology. (Instead one should take the topology generated by the set of open intervals
in X.) See [Bou, Top. Ch. I §1 Ex. 2 and §2 Ex. 5].

21.4 Topologically equivalent metric spaces

1. (Lipschitz equivalence implies topological equivalence) Let X be a set and let

d1 : X ⇥X ! R�0 and d2 : X ⇥X ! R�0 be metrics on X.

The metrics d1 and d2 are topologically equivalent if

the metric space topology on (X, d1) and on (X, d2) are the same.

The metrics d1 and d2 are Lipschitz equivalent if there exist c1, c2 2 R>0 such that

if x, y 2 X then c1d2(x, y)  d1(x, y)  c2d1(x, y).

Show that if d1 and d2 are Lipschitz equivalent then d1 and d2 are topologically equivalent.

2. (every metric space is topologically equivalent to a bounded metric space) A metric space (X, d)
is bounded if it satisfies

there exists M 2 R�0 such that if x1, x2 2 X then d(x1, x2) < M .

Let (X, d) be a metric space and define b : X ⇥X ! R�0 by

b(x, y) =
d(x, y)

1 + d(x, y)
.

(a) Show that b : X ⇥X ! R�0 is a metric on X.
(b) Show that the metric space topology of (X, b) and the metric space topology on (X, d) are

the same.
(c) Show that (X, b) is a bounded metric space.
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3. (boundedness is not a topological property) A metric space (X, d) is bounded if it satisfies

there exists M 2 R>0 such that if x1, x2 2 X then d(x1, x2) < M .

(a) Let X = R and let d : X ⇥X ! R�0 and b : X ⇥X ! R�0 be the metrics on R given by

d(x, y) = |x� y| and b(x, y) =
|x� y|

1 + |x� y|
.

Show that (X, d) and (X, b) have the same topology, that (X, d) is unbounded, and (X, b)
is bounded.

(b) Let X = R2 and let d : X ⇥X ! R�0 and b : X ⇥X ! R�0 be the metrics on R given by

d(x, y) = |x� y| and b(x, y) =
|x� y|

1 + |x� y|
.

Draw pictures of the open balls B 1
2
(0), B 3

4
(0), B 9

10
(0) and B 99

100
(0) for the metric b : R2

⇥

R2
! R�0.

4. Let (X, d) be a metric space. Show that the metric d
0 : X ⇥X ! R given by

d
0(x, y) =

d(x, y)

1 + d(x, y)

is topologically equivalent to d.

5. Let (X, d) be a metric space. Show that (X, d
0) is a bounded metric space, where

d
0(x, y) =

d(x, y)

1 + d(x, y)
.

6. Give an example of X and two metrics d and d
0 on X such that d is topologically equivalent to

d
0 and (X, d) is not bounded and (X, d

0) is bounded.

7. Let (X1, d1), . . . , (X`, d`) be metric spaces and let (X1⇥ · · ·⇥X`, d) be the product metric space.
Let � : (X1 ⇥ · · ·⇥X`)⇥ (X1 ⇥ · · ·⇥X`) ! R be given by

�(x, y) = max{di(xi, yi) | 1  i  `}.

Show that � is a metric on X1 ⇥ · · ·⇥X` and d is topologically equivalent to �.

8. Let (X1, d1), . . . , (X`, d`) be metric spaces and let (X1⇥ · · ·⇥X`, d) be the product metric space.
Let ⇢ : (X1 ⇥ · · ·⇥X`)⇥ (X1 ⇥ · · ·⇥X`) ! R be given by

⇢(x, y) =

 
`X

i=1

di(xi, yi)
2

! 1
2

.

Show that ⇢ is a metric on X1 ⇥ · · ·⇥X` and d is topologically equivalent to ⇢.
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9. Let X be a set and let d and d
0 be metrics on X. Show that d and d

0 are topolgically equivalent
if d and d

0 satisfy the condition

if x, y 2 X then there exist k, k0 2 R such that d(x, y)  kd
0(x, y)  k

0
d(x, y).

10. Let X be a set. Metrics d and d defined on X are Lipschitz equivalent if there exist m,M 2 R>0

such that
if x, y 2 X then md(x, y)  d(x, y)  Md(x, y)

(a) Show that if d and d are Lipschitz equivalent, then they are toplogically equivalent.
(b) Give an example ofX and two topologically equivalent metrics onX which are not Lipschitz

equivalent.
(c) For p � 1 and x, y 2 Rn, the l

p metric is defined by

dp(x, y) =
⇣ nX

i=1

|xi � yi|
p

⌘1/p
= kx� ykp.

Show that if p, q � 1, then dp and dq are Lipschitz equivalent. (Hint: compare these with
d1(x, y) = max(|x1 � y1|, . . . , |xn � yn|).)

11. (limit definition of topological equivalence) PUT THIS IN

21.5 Favourite examples of metric and normed spaces

1. (example of a nonHausdor↵ space) Let X = {(x, 1) | x 2 R} [ {(0, 2)} with

d((x1, y1), (x2, y2))| = |x1 � x2| and topology T = {unions of sets in B},

where B = {B✏(x, y) | ✏ 2 R>0, (x, y) 2 X} and

B✏(x, y) = {(a, b) 2 X | d((a, b), (x, y)) < ✏.

Show that X is a non Hausdor↵ topological space.

2. (the two point space) Let X be a set.

(a) Carefully define a “topology on X” and a “uniformity on X”.
(b) Let (X, d) be a metric space. Carefully define the “metric space topology on X” and the

“metric space uniformity on X”.
(c) Determine all the topologies on the set X = {0, 1}.
(d) Determine all the uniformities on X = {0, 1}.
(e) For each of the uniformities you gave in part (d), compute the uniform space topology.

3. Define the standard metric on C and show that C, with this metric, is a metric space.
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4. Let d be the standard metric on C. Show that R is a metric subspace of (C, d).

5. Let X be a set. Define the standard metric on X and show that X, with this metric, is a metric
space.

6. Let (X1, d1), . . . , (Xn, dn) be metric spaces. Define the product metric d on X1 ⇥X2 ⇥ · · ·⇥Xn

and show that (X1 ⇥ · · ·⇥Xn, d) is a metric space.

7. Let (X, k k) be a normed vector space. Define the standard metric on X and show that X, with
this metric, is a metric space.

8. Define the standard metric on Rn and show that Rn, with this metric, is a metric space.

9. Define the standard norm on Rn and show that Rn, with this norm, is a normed vector space.

10. Define the norm k kp on Rn and show that (Rn
, k kp) is a normed vector space.

11. Let X be a nonempty set. Define the set of bounded functions B(X,R) and the sup norm on
B(X,R). Show that B(X,R), with this norm, is a normed vector space.

12. Let a, b 2 R with a < b. Define the set of continuous functions C([a, b],R) and the L
1-norm on

C([a, b],R). Show that C([a, b],R), with this norm, is a normed vector space.

13. Let a, b 2 R with a < b. Show that the set Cbd([a, b]),R) of bounded continuous functions is a
metric subspace of C([a, b],R) with the L

1-norm.

14. Let (X, d) be a metric space. Define the metric space topology on X and show that it is a
topology on X.

15. Let X be a set and let d be the discrete metric on X. Determine which subsets of X are in the
metric space topology on X.

16. Give two metrics d and d
0 on R such that Q is open in the metric space topology on (R, d) and

Q is not open in the metric space topology on (R, d0).

17. Let X = {0, 1} and let T = {;, X, {0}}.

(a) Show that T is a topology on X.
(b) Show that there does not exist a metric d : X ⇥X ! R�0 such that T is the metric space

topology of (X, d).
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18. Check if the following functions are metrics on X.

(a) X = R and d(x, y) = |x
2
� y

2
|.

(b) X = (�1, 0] and d(x, y) = |x
2
� y

2
|.

(c) X = R and d(x, y) = | arctanx� arctan y|.

19. (The French railroad metric) Let X = R2 and let d be the usual metric. Let 0 = (0, 0) and
define

d0(x, y) =

(
0, if x = y;

d(x,0) + d(0, y), if x 6= y.

Verify that d0 is a metric on X. (Paris is at the origin 0.)

20. Let X = R2. For x = (x1, x2) and y = (y1, y2) define

d(x, y) =

8
><

>:

1/2, if x1 = y1 and x2 6= y2 or if x1 6= y1 and x2 = y2;

1, if x1 6= y1 and x2 6= y2;

0, otherwise.

Verify that d is a metric and that two congruent rectangles, one with base parallel to the x-axis
and the other at 45� to the x-axis, have di↵erent “area” if d is used to measure the length of
sides.

21. Let (X, d) be a metric space. Let f : R�0 ! R�0 be a function such that

(a) If 0  a < b then f(a)  f(b),
(b) f(x) = 0 if and only if x = 0, and
(c) f(a+ b)  f(a) + f(b).

Define df : X ⇥X ! R�0 by
df (x, y) = f(d(x, y)).

Show that df is a metric. Let k 2 R>0 and ↵ 2 R(0,1]. Show that the functions

f(t) = kt, f(t) = t
↵ and f(t) =

t

1 + t
,

have properties (a), (b) and (c).

22. (the p-adic metric) Let X be a set. An ultrametric on X is a function d : X ⇥X ! R�0 such
that

d(x, z)  max{d(x, y), d(y, z)}.

Let p be a prime number. Define the p-adic absolute value function | |p : Q ! Q�0 by

|x|p =

(
0, if x = 0,

p
�k

, if x = p
k
·
m

n
, with m,n 2 Z 6=0 not divisible by p.

(a) Show that if X is a set and d is an ultrametric on X then d is a metric on X.
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(b) Show that if x, y 2 Q then
|x+ y|p  max{|x|p, |y|p}.

(c) Show that dp : Q⇥Q ! R�0 given by

dp(x, y) = |x� y|p is an ultrametric on Q.

23. (product metrics) Let (X1, d1), . . . , (Xn, dn) be metric spaces and let X = X1⇥ · · ·⇥Xn. Define

d(x, y) = (d1(x1, y1) + · · ·+ dn(xn, yn))
1
2 ,

d(x, y) = max{d1(x1, y1), . . . , dn(xn, yn)},

where x = (x1, . . . , xn) and y = (y1, . . . , yn) 2 X. Verify that d and d are metrics on X.

24. (Polynomials of degree  n as a normed vector space) Fix a positive integer n. Denote by

Pn = {p(x) = anx
n + an�1x

n�1 + · · ·+ a1x+ a0 | a1, . . . , an 2 R}.

For p(x) = anx
n + an�1x

n�1 + · · ·+ a1x+ a0 2 Pn set

kpk = max{|a0|, |a1|, . . . , |an|}.

Verify that k k is a norm on Pn.

25. (An infinite product space) Let (X1, d2), (X2d2), . . ., be a sequence of metric spaces. Let

X =

0

@
Y

n2Z>0

Xn

1

A = { x = (x1, x2, . . .) | xn 2 Xn}.

For x, y 2 X let

d(x, y) =
1X

n=1

1

2n

✓
dn(xn, yn)

1 + dn(xn, yn)

◆
.

Show that (X, d) is a metric space.

26. (the shape of product metrics) Sketch the open ball B1(0) in each of the metric spaces (R3
, d1),

(R3
, d2), and (R3

, d1), where

d1(x, y) = |x1 � y1|+ |x2 � y2|+ |x3 � y3|

d2(x, y) =
p
(x1 � y1)2 + (x2 � y2)2 + (x3 � y3)2

d1(x, y) = max{|x1 � y1|, |x2 � y2|, |x3 � y3|}.

for x = (x1, x2, x3) and y = (y1, y2, y3) 2 R3.

27. (a metric on the positive integers) Define d : Z>0 ⇥ Z>0 ! R�0 by

d(n,m) =
�� 1
n
�

1
m

�� .

(a) Show that d is a metric.
(b) Let P ✓ Z>0 be the set of positive even numbers. Find diam(P ) and diam(Z>0 \ P ) in

(Z>0, d).
(c) Let n 2 Z>0. Find all elements of B 1

2n
(2n) and B 1

2n
(n).
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21.6 Distances and diameters

1. Let X be a non-empty set and let d : X ⇥X ! R be a function such that

(i) d(x, y) = 0 if and only if x = y,
(ii) if x, y, z 2 X then d(x, y)  d(x, z) + d(y, z).

Prove that d is a metric on X and show that d(y, z) � |d(x, y)� d(x, z)|.

2. Let A and B be bounded subsets of a metric space (X, d) such that A \B 6= ;. Show that

diam(A [B)  diam(A) + diam(B).

What can you say if A and B are disjoint?

3. (diameter of an open ball) Let (X, d) be a metric space. Let x0 2 X and let r 2 R>0.

(a) Show that diam(Br(x0))  2r.
(b) Give an example showing that the strict inequality is possible.

4. Let (X, d) be a metric space.

(a) Prove that if x, x0, y, y0 2 X then

|d(x, y)� d(x0, y0)|  d(x, x0) + d(y, y0).

(b) Let A be a non-empty compact subset of X. Prove that there exist a, b 2 A such that

d(a, b) = sup{d(x, y) | x, y 2 A}.
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