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7 Limits and continuity: Review from Calculus 2

7.1 Limits

The tolerance set is
E = {10�1

, 10�2
, . . .}.

Let (X, d) be a metric space and let f : X ! R. Let a 2 X and ` 2 R.

lim
x!a

f(x) = ` means

if " 2 E then there exists � 2 E such that if d(x, a) < � then d(f(x), `) < ".

Here is a translation into the language of “English”:

In English In Math
The client has a machine f Let f : X ! R and let ` 2 R.
that produces steel rods of length ` for sales.

The output of f gets closer and closer to ` lim
x!a

f(x) = ` means

as the input gets closer and closer to a

means

if you give me a tolerance the client needs, if " 2 E
in other words,
the number of decimal places of accuracy
the client requires

then my business will tell you then there exists

the accuracy you need on the dials of the machine � 2 E such that
so that

if the dials are set within � of a if d(x, a) < �

then the output of the machine then d(f(x), `) < ✏.
will be within " of `.

Let (X, d) be a metric space and let a1, a2, . . . be a sequence in X. Let ` 2 R.

lim
n!1

an = ` means

if " 2 E then there exists N 2 Z>0 such that if n 2 Z�N then d(an, `) < ".

7.2 Continuity

Let p 2 Rm. A function f : Rn
! Rm is continuous at p if

lim
x!p

f(x) = f(p).
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7.3 Limits and continuity results

7.3.1 x
n and e

x are continuous

Proposition 7.1.

(a) Let n 2 Z>0. The function f : C ! C given by f(x) = x
n is continuous.

(b) The function f : C ! C given by f(x) = e
x is continuous.

7.3.2 Behavior of xn as n 2 Z>0 gets large

HW: Let x 2 C. Show that

lim
n!1

x
n =

8
>>>><

>>>>:

0, if |x| < 1,

diverges in C, if |x| > 1,

1, if x = 1,

diverges in C, if |x| = 1 and x 6= 1.

7.3.3 Behavior of 1 + x+ x
2 + · · ·+ x

n as n 2 Z>0 gets large

HW: Let x 2 C. Show that

lim
n!1

(1 + x+ x
2 + · · ·+ x

n) = lim
n!1

1� x
n+1

1� x
=

8
<

:

1

1� x
, if |x| < 1,

diverges in C, if |x| � 1.

For example, if x = 1
2 then

lim
n!1

⇣
1 +

1

2
+

✓
1

2

◆2

+

✓
1

2

◆3

+ · · ·+

✓
1

2

◆
n ⌘

= lim
n!1

1�
�
1
2

�n+1

1� 1
2

=
1

1� 1
2

= 2.

7.3.4 Favorite limits

Proposition 7.2. (a) If n 2 Z>0 then, in R, lim
x!1

x
n
e
�x = 0.

(b) If ↵ 2 R>0 then lim
x!1

x
�↵ log x = 0.

(c) Let p 2 R>0. Then lim
n!1

1

np
= 0.

(d) Let p 2 R>0. Then lim
n!1

p
1/n = 0.

(e) lim
n!1

n
1/n = 1.
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7.4 Limits and continuity proofs

7.4.1 x
n and e

x are continuous

Proposition 7.3.

(a) Let n 2 Z>0. The function f : C ! C given by f(x) = x
n is continuous.

(b) The function f : C ! C given by f(x) = e
x is continuous.

Proof. Assume n 2 Z>0.
To show: If a 2 C then lim

x!a
x
n = a

n.

Assume a 2 C.
To show lim

x!a
x
n = a

n.

Using Theorem 7.6,
To show: lim

y!0
(y + a)n = a

n.

Using Theorem 7.5(a)
To show: lim

y!0
|(y + a)n � a

n
| = 0.

lim
y!0

|(y + a)n � a
n
| = lim

y!0
|y

n + ny
n�1

a+ · · ·+ na
n�1

y + a
n
� a

n
|

= lim
y!0

|y
n + ny

n�1
a+ · · ·+ na

n�1
y|

= lim
y!0

|y(yn�1 + ny
n�2

a+ · · ·+ na
n�1)|

= lim
y!0

|y| |(yn�1 + ny
n�2

a+ · · ·+ na
n�1)|

 lim
y!0

|y|
�
|y|

n�1 + n|y|
n�2

|a|+ · · ·+ n|a|
n�1

�
(triangle inequality for | |)

 lim
y!0

|y| · n|a|
n�1 (by using Theorem 7.7(b))

= 0 · n|a|n�1 = 0. (by using Theorem 7.5(b))

= 0.

So f(x) = x
n is continuous at a.

(An alternative proof (sketch) is that

(1) f(x) = x (the identity function) is continuous,

(2) the product is continuous (since C is a topological field),

and therefore, by induction, if a 2 C then lim
x!a

x
n = a

n.)

(b) To show: If a 2 C then lim
x!a

e
x = e

a.

Assume a 2 C.
To show: lim

x!a
e
x = e

a.

Case 1: a = 0. To show: lim
x!0

e
x = e

0.

Using Theorem 7.5(a), To show lim
x!0

|e
x
� 1| = 0.
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lim
x!0

|e
x
� 1| = lim

x!0

���
✓
1 + x+

x
2

2!
+

x
3

3!
+ · · ·

◆
� 1

���

= lim
x!0

���x
✓
1 + x+

x

2!
+

x
2

3!
+ · · ·

◆ ���

 lim
x!0

|x|

✓
1 + |x|+

|x|

2!
+

|x|
2

3!
+ · · ·

◆
(triangle inequality for | |)

 lim
x!0

|x|
�
1 + |x|+ |x|+ |x|

2 + · · ·
�

(by Theorem 7.7)

= lim
x!0

|x|
1

1� |x|
= 0 · 1 (by Theorem 7.5(b))

= 0.

Case 2: a 6= 0. To show lim
x!a

e
x = e

a.

lim
x!a

e
x = lim

y!0
e
y+a (by Theorem 7.6)

= lim
y!0

e
a
e
y = e

a lim
y!0

e
y (by Theorem 7.5(b))

= e
a
· e

0 (by Case 1)

= e
a+0 = e

a
.

So e
x is continuous at x = a.

7.4.2 Behavior of xn as n 2 Z>0 gets large

HW: Let x 2 C. Show that

lim
n!1

x
n =

8
>>>><

>>>>:

0, if |x| < 1,

diverges in C, if |x| > 1,

1, if x = 1,

diverges in C, if |x| = 1 and x 6= 1.

Proof. Let x 2 C.
Case |x| < 1. To show: lim

n!1
x
n = 0.

Let N 2 Z>0 such that |x| < 1� 1
N+1 . Then

lim
n!1

|x
n
� 0| = lim

n!1
|x|

n
 lim

n!1

✓
1�

1

N + 1

◆
n

= lim
n!1

✓
N + 1� 1

N + 1

◆
n

= lim
n!1

✓
N

N + 1

◆
n

= lim
n!1

1�
1 + 1

N

�n

= lim
n!1

1

1 + n
1
N

+ · · ·+
�
1
N

�n

 lim
n!1

1

1 + n

N

= lim
n!1

N

n+N
= N · lim

n!1

1

n+N
= N · 0 = 0.

Case |x| > 1. To show: lim
n!1

x
n diverges in C.
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Let N 2 Z>0 such that |x| > 1� 1
N
. Then

|x|
n
>

✓
1 +

1

N

◆
n

= 1 + n

✓
1

N

◆
+ · · ·

✓
1

N

◆
n

>

✓
1

N

◆
n.

Since
�
1
N

�
n is unbounded as n gets larger and larger then |x|

n is unbounded as n ! 1.
So limn!1 x

n diverges in C.
Case x = 1. In this case (x, x2, x3, x4, . . .) = (1, 12, 13, 14, . . .) = (1, 1, 1, 1, . . .).
So lim

n!1
x
n = lim

n!1
1n = lim

n!1
1 = 1.

Case |x| = 1 and x 6= 1. Then x = e
i✓ with ✓ 2 R(0,2⇡). FINISH THE PROOF to show that this case

diverges in C.

7.4.3 Behavior of 1 + x+ x
2 + · · ·+ x

n as n 2 Z>0 gets large

HW: Let x 2 C. Show that

lim
n!1

(1 + x+ x
2 + · · ·+ x

n) = lim
n!1

1� x
n+1

1� x
=

8
<

:

1

1� x
, if |x| < 1,

diverges in C, if |x| � 1.

For example, if x = 1
2 then

lim
n!1

⇣
1 +

1

2
+

✓
1

2

◆2

+

✓
1

2

◆3

+ · · ·+

✓
1

2

◆
n ⌘

= lim
n!1

1�
�
1
2

�n+1

1� 1
2

=
1

1� 1
2

= 2.

7.4.4 Favorite limits

Proposition 7.4. (a) If n 2 Z>0 then, in R, lim
x!1

x
n
e
�x = 0.

(b) If ↵ 2 R>0 then lim
x!1

x
�↵ log x = 0.

(c) Let p 2 R>0. Then lim
n!1

1

np
= 0.

(d) Let p 2 R>0. Then lim
n!1

p
1/n = 0.

(e) lim
n!1

n
1/n = 1.

Proof sketches. (a) Let n 2 Z>0. Then, in R,

0  lim
x!1

x
n
e
�x = lim

x!1

x
n

ex
 lim

x!1

x
n

1
(n+1)!x

n+1
= lim

x!1

(n+ 1)!

x
= (n+ 1)! lim

x!1

1

x
= 0.

(b) Let ↵ 2 R>0 and let ✏ 2 E with " < ↵. Then

0  lim
x!1

x
�↵ log x = lim

x!1

�
x
�↵

Z
x

1

1

t
dt
�

 lim
x!1

�
x
�↵

Z
x

1
t
"�1

dt
�
= lim

x!1
x
�↵

✓
x
"
� 1"

"

◆

= lim
x!1

✓
x
"�↵

� x
�↵

"

◆
 lim

x!1

x
"�↵

"
= 0.
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(c) To show: If " 2 R>0 then there exists N 2 Z>0 such that if n 2 Z>N then
�� 1
np

�� < ".
Assume " 2 R>0.

Let N be an integer greater than

✓
1

"

◆ 1
p

.

To show: If n 2 Z>N then
�� 1
np

�� < ".
Assume n 2 Z>N .
To show:

�� 1
np

�� < ". ����
1

np

���� 
����
1

Np

���� =
1

⇣�
1
"

� 1
p

⌘p =
1�
1
"

� = ".

(d)

lim
n!1

p
1/n = lim

n!1
(elog p)1/n = lim

n!1
e

1
n
log p = e

log p limn!1
1
n = e

log p·0 = e
0 = 1.

(e) To show: lim
n!1

n
1/n = 1.

To show: lim
n!1

⇣
n
1/n

� 1
⌘
= 0.

We know:

n =
�
n
1/n

�
n
=

⇣�
n
1/n

� 1
�
+ 1

⌘
n

= 1 + n
�
n
1/n

� 1
�
+

n(n� 1)

2

�
n
1/n

� 1
�2

+ · · · �
n(n� 1)

2

�
n
1/n

� 1
�2
.

So
�
n
1/n

� 1
�2


2

n� 1
.

So 0  lim
n!1

⇣
n
1/n

� 1
⌘2

 lim
n!1

2

n� 1
= 0.

So lim
n!1

⇣
n
1/n

� 1
⌘
= 0.

7.4.5 The interest sequence

7.4.6 Picard iteration
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7.5 Limits and addition, scalar multiplication, multiplication, composition and
order

The tolerance set is
E = {10�1

, 10�2
, . . .}.

Let (X, d) be a metric space and let f : X ! R. Let a 2 X and ` 2 R.

lim
x!a

f(x) = ` means

if " 2 E then there exists � 2 E such that if d(x, a) < � then d(f(x), `) < ".

Let (X, d) be a metric space and let a1, a2, . . . be a sequence in X. Let ` 2 R.

lim
n!1

an = ` means

if " 2 E then there exists N 2 Z>0 such that if n 2 Z�N then d(an, `) < ".

Theorem 7.5. Let (X, d) be a metric space. Let f : X ! R and g : X ! R be functions and let
a 2 X.

Assume that lim
x!a

f(x) and lim
x!a

g(x) exist.

Then

(a) lim
x!a

(f(x) + g(x)) = lim
x!a

f(x) + lim
x!a

g(x),

(b) If c 2 R then lim
x!a

cf(x) = c lim
x!a

f(x),

(c) lim
x!a

(f(x)g(x)) =
�
lim
x!a

f(x)
��

lim
x!a

g(x)
�
.

Theorem 7.6. Let (X, d) and (Y, ⇢) and (Z,�) be metric spaces. Let f : X ! Z and g : X ! Y be
functions and let a 2 X and ` 2 Y .

Assume that lim
x!a

g(x) and lim
x!a

f(g(x)) exist and lim
x!a

g(x) = `.

Then
lim
y!`

f(y) = lim
x!a

f(g(x)).

Theorem 7.7.

(a) Let (a1, a2, . . .) and (b1, b2, . . .) be sequences in R.
Assume that lim

n!1
an and lim

n!1
bn exist and

if n 2 Z>0 then an  bn. Then lim
n!1

an  lim
n!1

bn.

(b) Let (X, d) be a metric space and let f : X ! R and g : X ! R be functions. Let a 2 X.
Assume that lim

x!a
f(x) and lim

x!a
g(x) exist and

if x 2 X then f(x)  g(x). Then lim
x!a

f(x)  lim
x!a

g(x).
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7.6 Limits and operations proofs

Theorem 7.8. (Limits and addition, scalar multiplication and multiplication)
Let (X, d) be a metric space. Let f : X ! R and g : X ! R be functions and let a 2 X.

Assume that lim
x!a

f(x) and lim
x!a

g(x) exist.

Then

(a) lim
x!a

(f(x) + g(x)) = lim
x!a

f(x) + lim
x!a

g(x),

(b) If c 2 R then lim
x!a

cf(x) = c lim
x!a

f(x),

(c) lim
x!a

(f(x)g(x)) =
�
lim
x!a

f(x)
��

lim
x!a

g(x)
�
.

Proof.

(a) Let l1 = lim
x!a

f(x) and l2 = lim
x!a

g(x).

To show: lim
x!a

(f(x) + g(x)) = l1 + l2.

To show: If ✏ 2 E then there exists � 2 E such that if x 2 B�(a) then |(f(x)+g(x))�(l1+l2)| < ✏.

Assume ✏ 2 E.
We know: There exists �1 2 E such that if x 2 B�1(a) then |f(x)� l1| <

✏

2 .

We know: There exists �2 2 E such that if x 2 B�2(a) then |f(x)� l2| <
✏

2 .

Let � = min(�1, �2).

To show: |(f(x) + g(x))� (l1 + l2)| < ✏.

|(f(x) + g(x))� (l1 + l2)| = |(f(x)� l1) + (g(x)� l2)|

 |f(x)� l1|+ |g(x)� l2|


✏

2
+

✏

2
= ✏.

So lim
x!a

(f(x) + g(x)) = lim
x!a

f(x) + lim
x!a

g(x).

(b) Let l = lim
x!a

f(x).

To show: lim
x!a

cf(x) = cl.

To show: If ✏ 2 E then there exists � 2 E such that if x 2 X and d(x, a) < � then d(cf(x), cl) < ✏.

Assume ✏ 2 E.
We know: There exists � 2 E such that if x 2 X and d(x, a) < � then d(f(x), l) < ✏

|c| .

To show: If x 2 X and d(x, a) < � then d(cf(x), cl) < ✏.

Assume x 2 X and d(x, a) < �.

To show: d(cf(x), cl) < ✏.

d(cf(x), cl) = |cf(x)� cl| = |c| · |f(x)� l| < |c| ·
✏

|c|
= ✏.

So lim
x!a

cf(x) = cl.

(c) Let l1 = lim
x!a

f(x) and l2 = lim
x!a

g(x).
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To show: lim
x!a

(f(x)g(x)) = l1l2.

To show: If ✏ 2 E then there exists � 2 E such that if x 2 X and x 2 B�(a) then |f(x)g(x)�l1l2| <

✏.

Assume ✏ 2 E.

Let ✏1 = min

✓
✏

|`1|+ |`2|+ 1
, 1

◆
.

Since lim
x!a

f(x) = l1, there exists �1 2 E such that if x 2 X and d(x, a) < �1 then |f(x)� l1| < ✏1.

Since lim
x!a

f(x) = l2, there exists �2 2 E such that if x 2 X and d(x, a) < �2 then |f(x)� l2| < ✏1.

Let � = min(�1, �2).

Assume x 2 X and d(x, a) < �.

To show: |f(x)g(x)� l1l2| < ✏.

|f(x)g(x)� l1l2| = |(f(x)� l1)g(x) + l1(g(x)� l2)|

 |(f(x)� l1)g(x)|+ |l1(g(x)� l2)|, by the triangle inequality,

= |(f(x)� l1)(g(x)� l2) + (f(x)� l1)l2|+ |l1| |g(x)� l2|

 |f(x)� l1)(g(x)� l2)|+ |f(x)� l1)l2|+ |l1| |g(x)� l2|

 |f(x)� l1| |g(x)� l2|+ |f(x)� l1| |l2|+ |l1| |g(x)� l2|

 ✏
2
1 + ✏1|l2|+ |l1|✏1 = ✏1(|l1|+ |l2|+ ✏1)

 ✏1(|l1|+ |l2|+ 1)  ✏.

So lim
x!a

(f(x)g(x)) = l1l2.

Theorem 7.9. (Limits and composition of functions)
Let (X, d) and (Y, ⇢) and (Z,�) be metric spaces.
Let f : Y ! Z and g : X ! Y be functions and let a 2 X and ` 2 Y .

Assume that lim
x!a

g(x) and lim
x!a

f(g(x)) exist and lim
x!a

g(x) = `.

Then
lim
y!`

f(y) = lim
x!a

f(g(x)).

Proof.

Let L = lim
y!`

f(y).

To show: lim
x!a

f(g(x)) = L.

To show: If ✏ 2 R>0 then there exists � 2 R>0 such that if x 2 X and d(x, a) < � then
�(f(g(x), L) < ✏.

Assume ✏ 2 R>0.

To show: There exists � 2 R>0 such that if x 2 X and d(x, a) < � then �(f(g(x)), L) < ✏.

Since lim
y!`

f(y) = L, there exists �1 2 R>0 such that if y 2 Y and ⇢(y, `) < �1 then �(f(y), L) < ✏.

Since lim
x!a

g(x) = `, there exists � 2 R>0 such that if x 2 X and d(x, a) < � then ⇢(g(x), `) < �1.

To show: If x 2 X and d(x, a) < � then �(f(g(x)), L) < ✏.

Assume x 2 X and d(x, a) < �.
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To show: �(f(g(x)), L) < ✏.

Since d(x, a) < � then ⇢(g(x)), `) < �1 and so �(f(g(x)), L) < ✏.

So lim
x!a

f(g(x)) = L.

Theorem 7.10. (Limits and order)

(a) Let (a1, a2, . . .) and (b1, b2, . . .) be sequences in R.
Assume that lim

n!1
an and lim

n!1
bn exist and

if n 2 Z>0 then an  bn. Then lim
n!1

an  lim
n!1

bn.

(b) Let (X, d) be a metric space and let f : X ! R and g : X ! R be functions. Let a 2 X.
Assume that lim

x!a
f(x) and lim

x!a
g(x) exist and

if x 2 X then f(x)  g(x). Then lim
x!a

f(x)  lim
x!a

g(x).

Proof.

(a) Let `1 = lim
n!1

an and `2 = lim
n!1

bn.

To show: `1  `2.

Proof by contradiction.

Assume `1 > `2.

Let ✏ = `1 � `2.

Let N1 2 Z>0 be such that if n 2 Z>0 and n > N1 then |an � `1| <
✏

2 .

Let N2 2 Z>0 be such that if n 2 Z>0 and n > N2 then |bn � `2| <
✏

2 .

Let N = max(N1, N2).

Then
aN > `1 �

✏

2
= `1 � `2 + `2 �

✏

2
= ✏+ `2 �

✏

2
= `2 +

✏

2
> bN .

This is a contradiction to aN  bN .

Thus lim
n!1

an  lim
n!1

bn.

(b) Let `1 = lim
x!a

f(x) and `2 = lim
x!a

g(x).

To show: `1  `2.

Proof by contradiction.

Assume `1 > `2.

Let ✏ = `1 � `2.

Let �1 2 R>0 be such that if x 2 X and d(x, a) < �1 then |f(x)� `1| <
✏

2 .

Let �2 2 R>0 be such that if x 2 X and d(x, a) < �2 then |g(x)� `2| <
✏

2 .

Let � = min(�1, �2) and let x 2 X such that d(x, a) < �.

Then
f(x) > `1 �

✏

2
= `1 � `2 + `2 �

✏

2
= ✏+ `2 �

✏

2
= `2 +

✏

2
> g(x).

This is a contradiction to f(x)  g(x).

Thus lim
x!a

f(x)  lim
x!a

g(x).
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