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3 Inner products and orthogonality: Linear algebra review

3.1 Bilinear forms

Let F be a field and let V' be an F-vector space. A bilinear form on V is a function

(,): VxV — F

(0, w) — (v,w) such that

(a) If vi,v2,w € V then (vi + vo,w) = (v1,w) + (v2,w),
(b) If v,wy,wy € V then (v, w; + wa) = (v, w1) + (v, wa),
(c) If ce F and v,w € V then (cv,w) = c(v,w),

(d) If c € F and v,w € V then (v, cw) = c(v, w).

A bilinear form (,): V x V — F is symmetric if it satsfies:
(S) If v,w € V then (v, w) = (w,v).
A bilinear form (,): V x V — F is skew-symmetric if it satsfies:

(A) If v,w € V then (v,w) = —(w,v).

3.2 Sesquilinear forms

Let F be a field and let  : F — F be a function that satisfies:

if c,ci,co € Fthen ¢ fcg=¢+¢, cica=caci and 1=1 and é=c.

The favourite example of such a function is complex conjugation. The other favourite example is the

identity map idp.

Let V' be an F-vector space. A sesquilinear form on V is a function

(,): VxV = F

(0 w) — (v,w) such that

(a) If v1,v2,w € V then (v; + vo, w) = (vi,w) + (v2,w),
(b) If v, w1, wy € V then (v, w; + wa) = (v,w1) + (v, wa),
(¢) If c€ F and v,w € V then (cv,w) = c(v,w),

)

(d) If c € F and v,w € V then (v, cw) = (v, w).

A Hermitian form is a sesquilinear form (,): V' x V — F such that

(H) If v,w € V then (v,w) = (w,v).

3.3 Gram matrix of (,) with respect to a basis B

Assume n € Z~p and dim(V') = n. Let (,): V x V — F be a bilinear form and let B = {by, ...

a basis of V. The Gram matriz of (,) with respect to the basis B is

Gp € M, (F) given by Gpg(i,j) = (b, bj).
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Let C = {c1,...,cn} be another basis of V' and let Pop be the change of basis matrix given by
n
Ci:ZPBc(j,’i)bj, for ¢ € {1,...,77,}.
i=1

Since

n

Go(irg) = (cirej) = Y (Poe(k,i)br, Pec(l,j)bi) = Y Ppo(k,i)Gp(k,1)Ppc(l, ),
ki=1 ki=1

then
Go = PpeGpPpe,
3.4 Quadratic forms

Let F be a field, V' an F-vector space and (,): V x V — F a bilinear form. The quadratic form
associated to (,) is the function

I sz V SF given by HvH2 = (v,v).

Theorem 3.1. Let V be a vector space over a field F and let (,): V x V. — F be a bilinear form. Let
| [|2: V — T be the quadratic form associated to (,).

(a) (Parallelogram property) If x,y € V then
lz +ylI? + llz = ylI* = 2l|=|* + 2/ly]*.
(b) (Pythagorean theorem) If x,y € V and (x,y) =0 and (y,z) =0 then
lz[* + lyl* = Il +yl|*.
(¢) (Reconstruction) Assume that (,) is symmetric and that 2 # 0 in F. Let z,y € V. Then
(@,y) = 5(le +yl* = llzlI* = lly]*)-

Theorem 3.2. Let F be a field with an involution : F — F such that the fized field

K={a€eF|a=a} is an ordered field.

For a € K define
la|? = aa.

Let V' be an K-vector space with a sesquilinear form (,): V. x V. — F such that

(a) If z,y €V then (y,x) = (z,y).
(b) If v € V then (z,x) € K>.

Let || ||: V — F be the corresponding quadratic form and assume that if a € Ksq then there ezists a
unique ¢ € Kso such that ¢* = a. Then

(c) (Cauchy-Schwarz) If x,y € V then [(z,y)| < ||z - ||y]-
(d) (Triangle inequality) If z,y € V then ||z +y|| < ||z|| + [ly]|-
The proof of Theoremuses the following proposition.
Proposition 3.3. Let F be an ordered field and let x,y € F with x > 0 and y > 0. Then

x <y if and only if z? <y
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3.5 Nondegeneracy and dual bases

Let V be a F-vector space with a sesquilinear form (,): V' — F. The form (,) is nondegenerate if it
satisfies
if v € V and v # 0 then there exists w € V such that (v, w) # 0.

An alternative way of stating this condition is to say V NV = 0. Another alternative is to say that
the map
V = Vv . V. -+ F
given by Po
v Oy w = (v,w)

is an injective linear transformation.
Let k € Z~( and assume that W C V is a subspace of V' with dim(W) = k. Let (w1, ..., wy) be a
basis of W. A dual basis to (w1, ..., wy) with respect to {,) is a basis (w',..., w*) of W such that

ifi,j € {1,...,k} then (w', w;) = ;.

Proposition 3.4. Let V be a vector space with a sesquilinear form (,): V. xV —F. Let W CV be a
subspace of V.. Assume W is finite dimensional, that (w1, ..., wk) is a basis of W and that G is the
Gram matriz of (,) with respect to the basis {wi,...,wr}. The following are equivalent:

(a) A dual basis to (wy, ..., wy) exists.
(b) G is invertible.

(c) WNW+ =0.

(d) The linear transformation

Yy w - Ww*

v o g, e by pu(w) = (v, w),

is an isomorphism.

3.6 Isotropy and nondegeneracy
Let W C V be a subspace of V. The orthogonal to W is
Wt ={veV|ifweW then (v,w) = 0}.

The subspace W is nonisotropic if W N W+ = 0.
Proposition 3.5. A sesquilinear form (,): V x V — F satisfies

(no isotropic vectors condition) If v € V and (v,v) =0 then v = 0.
if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V' then W N Wt =o.
Remark 3.6. Let V' = C-span{ej, ez} with symmetric bilinear form (,): V x V. — C with Gram

matrix

10

This form has isotropic vectors since (e1,e;) = 0. The dual basis to {e1,es} is the basis {eg,e1}.
Letting

(0 1> in the basis {e1, e2}.

b1 = —=(e1 + e2),
by = J5(e1 — €2),

Sl

then the Gram matrix is <(1) (1)>

with respect to the basis {b1, b2} and by + iby is an isotropic vector.
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3.7 Orthogonal projections

Let IF be a field and let V' be an F-vector space. Let (,): V x V — F be a sesquilinear form.
Let k € Zo and let W be a subspace of V such that dim(W) = k and W N W+ = 0.

Let (w1, ..., wy) be a basis of W and let (w?, ..., w") be the dual basis of W (which exists by Propo-
sition . The orthogonal projection onto W is the function

k
Py:V =V given by Py (v) = Z(v,wi>wi.
=1

The following proposition shows that Py does not depend on which choice of basis of W is used to
construct Pyy.

Proposition 3.7. (Characterization of orthogonal projection) Let F be a field and let V' be an F-vector
space. Let (,): V xV — T be a sesquilinear form. Let k € Z~q and let W be a subspace of V' such that

dim(W) = k and WNW+ = 0. The orthogonal projection onto W is the unique linear transformation
P:V —V such that

(1) If v €V then P(v) € W.
(2) IfveV and w e W then (v,w) = (P(v),w).

3.8 Orthogonal projections produce orthogonal decompositions

Let F be a field and let V' be an F-vector space. Let (,): V x V — F be a sesquilinear form.
Let k € Z~¢ and let W be a subspace of V such that dim(W) =k and W N W+ = 0.

The following proposition explains how the orthogonal projection onto W produces the decomposition

V=waew.

Theorem 3.8. Letn € Z~g and let V be an inner product space with diim(V') = n. Let W be a subspace
of V such that W N W+ = 0. Let Py be the orthogonal projection onto W and let Py = 1 — Pyy.
Then

Py, =Py, P3. =Py, PwPy.=Py Py=0 1=Py+ Py,

ker(Py) =W,  im(Py)=W and V=WaoW

3.9 Orthonormal sequences and Gram-Schmidt

A Hermitian form is a sesquilinear form (,): V' x V — F such that

(H) If v,w € V then (v,w) = (w,v).

An orthonormal sequence in V' is a sequence (by, by, ...) in V such that

1, ifi=j,

ifij€Zo the b, b;) =
Bh) =80 no i by) {0, if i # j.

Proposition 3.9. Let V be an F-vector space with a Hermitian form. An orthonormal sequence
(a1,az,...) iV is linearly independent.
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3.10 Orthonormal bases

Let n € Z~¢ and let V be an inner product space with dim(V') = n. An orthonormal basis of V', or
self-dual basis of V', is a basis {u1, ..., u,} such that

0, ifi#j,

ifi,je{l,...,n} then (ui,uj>:{ o
1, ifi=j.

An orthogonal basis in V' is a basis {b1, ..., b,} such that
ifi,je{l,....,n} andi#j then (b;,b;)=0.

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.

Theorem 3.10. (Gram-Schmidt) Let V' be an F-vector space with a sesquilinear form (,): VxV — TF.
Assume that (,) is nonisotropic and that (,) is Hermitian i.e.,

(1) (Nonisotropy condition) If v € V' and (v,v) =0 then v =0, and

(2) (Hermitian condition) If vi,ve € V then (va,v1) = (v, v2).
Let p1,pa, ... be a sequence of linear independent elements of V.

(a) Define by = p1 and

<pn+la b1> b <pn+17 bn> b

bptl =Pnp1 — ~———b1 — - — by, Z>0.
11 = DPnt1 by (o b forn € Zsq

Then (b1, ba,...) is an orthogonal sequence in V.

(b) Assume that F is a field in which square roots can be made sense of and that if v € V and v # 0

then (v,v) # 0. Define
o]l = (v, v), forveV.
Let (by,...,by) be an orthogonal basis of V. Define

b1 by,
Ul = 75—, ey, Uy = .
1] " bl
Then (u1,...,uy) is an orthonormal basis of V.

3.11 Adjoints of linear transformations

Let V' be an F-vector space with a nondegenerate sesquilinear form (,): V. x V — F. Let f: V —» V
be a linear transformation.

e The adjoint of f with respect to (,) is the linear transformation f*: V' — V determined by
if 2,y € V then (f(z),y) = (=, f*(y)).

e The linear transformation f is self adjoint if f satisfies:

if 2,y €V then (f(z),y) = (z, f(y))-
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e The linear transformation f is an isometry if f satisfies:
ifz,y €V then (f(z),f(y)) = (2,y).

e The linear transformation f is normal if ff* = f*f.

Let {w1,...,w;} be a basis of W and assume that the dual basis {w',...,w*} of W exists. If
w = cw' + -+ cpwk then ¢; = (w,w;) and so

w = {w,wyw + -+ (w0, w)uk,
If w e W then
P () = (F* ), wihw! + -+ (), wphk = (w, flwn)yw + -+ (w, f(wp)yu,
and this specifies f*: W — W in terms of f. Then
f is self adjoint if f = f* and f is an isometry if ff* =1,
HW: Let V = F" with basis (eq,...,e,) and inner product given by

0

)

e = with 1 in the ith row and (e;,e;) = d;;.

0
Let f: V — V be a linear transformation of V' and let A be the matrix of f with respect to the basis
(e1,...,en). Show that, with respect to the basis (e,...,ey),

the matrix of f* is AT =A.

Since

then A*(i,7) = A(j,1).

3.12 The Spectral theorem
Let A € M, (C) and let V' = C™ with inner product given by

Ty Y1
< S >:x1y1+---xnyn. (3.1)
T, Yn

Let A € M, (C).
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The adjoint of A is the matrix A* € M, (C) given by A*(i,j) = A(j,4).
The matrix A is self adjoint if A = A*.

The matrix A is unitary if AA* = 1.

The matrix A is normal if AA* = A*A.

Write A* = A". The unitary group is
Un(C)={U € M,(C) | UU* = 1}.

Theorem 3.11. Let V = C" with inner product given by (3.1). The function

ordered orthonormal bases
{ (uiy...,uy) of C" } Un(C)
| | is a bijection.
(Uty ...y up) — U= 1{u - up

The following proposition explains the role of normal matrices.
Proposition 3.12. Let V = C" with inner product given by . Let
A e M,(C), reC and Vi = ker(\ — A).
If AA* = A*A then
V) is A-invariant, Vj‘ is A-invariant, V) is A*-invariant and VAl 1s A*-invariant.
Theorem 3.13. (Spectral theorem)

Let n € Zsqo and V = C" with inner product given by (3.1)).

(a) Let n € Z~o and A € My, (C) such that AA* = A*A. Then there exists a unitary U € M, (C) and
A, ..., A\p € C such that
ULAU = diag(\1, ..., \).

(b) Let f: V — V be a linear transformation such that ff* = f*f. Then there exists an orthonormal

basis (uy,...,u,) of V consisting of eigenvectors of f.

HW: Show that if A € M,,(C) is self adjoint then its eigenvalues are real.

HW: Show that if U € M, (C) is unitary then its eigenvalues have absolute value 1.
Theorem 3.14. (Spectral theorem)

Letn € Z=o and V = C™ with inner product given by (3.1).

(a) Let n € Z~o and A € M, (C) such that AA* = A*A. Then there exists a unitary U € M, (C) and
Aly .-y Ay € C such that
UTAU = diag(A1, ..., An).

(b) Let f: V — V be a linear transformation such that ff* = f*f. Then there ezists an orthonormal
basis (u1,...,u,) of V consisting of eigenvectors of f.
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3.13 Some proofs
3.13.1 The Pythagorean theorem and reconstruction

Theorem 3.15. Let V' be a vector space over a field F and let (,): V x V — F be a bilinear form.
Let || ||?: V — T be the quadratic form associated to ().

(a) (Parallelogram property) If x,y € V' then
lz +yl* + o = ylI* = 2[|z]* + 2]yl
(b) (Pythagorean theorem) If z,y € V and (z,y) =0 and (y,z) =0 then
]I + llyll* = lla + ylI*.
(¢) (Reconstruction) Assume that (,) is symmetric and that 2 # 0 in F. Let z,y € V. Then
(@,y) = 5z +yl” = lll* — lly]*)-

Proof.
(a) Assume z,y € V. Then

lz +yl* + o = yl* = (& +y, 2 +y) + (& —y, 2~ y)
= <$,1’> + <$,y> + <y71.> + <yay> + <(L',1'> - <xay> - <y,x) + <yay>
= 2|z + 2[ly]*.
(b) Assume z,y € V and (z,y) = 0 and (y,z) = 0. Then

|z +yl]> = (@ +y,+z+y) = (x,2) + (z,y) + (¥, 2) + (y,9)
=[z*+0+0+ |ly|* = [lz]|* + 0+ 0+ [y

(c) Assume z,y € V. Then

lz + yl* = zl® = llyl* = (z +y,2 +y) - (x,2) — {y,y)

(
(z,2) + (z,9) + (y,2) + (v, y) — (z,2) — (y,y)
2(z,y).

3.13.2 Cauchy-Schwarz
Theorem 3.16. Let F be a field with an involution : F — F such that the fized field

K={aeF|a=a} is an ordered field.

For a € K define
la|? = aa.
Let V' be an K-vector space with a sesquilinear form (,): V. x V. — F such that
(a) Ifz,y €V then (y,z) = (z,y).
(b) If x € V then (x,x) € Kso.
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Let || ||: V — F be the corresponding quadratic form and assume that if a € Kx( then there exists a
unique ¢ € Ko such that ¢* = a. Then

(¢) (Cauchy-Schwarz) If x,y € V then |(x,y)| < ||z| - |y
(d) (Triangle inequality) If x,y € V then ||z + y|| < ||z| + [Jy||-

Proof. (c) Let z,y € V. If x = 0 then both sides of the Cauchy-Schwarz inequality are 0. Assume
x # 0. The Gram-Schmidt process on the vectors (z,y) suggests the consideration of

. and uzzy—<y’$>x.
] (z,z)

U1

To avoid denominators, let u = (x,x)y — (y,x)x. Then

0< <u7u> = <<-T7x>y - <ya x>$a <I‘,J}>y - <y,$>$>
{x, ), 2)[(y, y) — (2, 2){y, 2)(y, ) — {y, @)z, 2) (2, y) + |(y, 2)[*(, )
(@, 2)((z, 2)(y,y) — [(y, 2)[*)

Since x # 0 then (z,z) € K5 and so (z,z) = (x,z) € K5¢. Thus,

0< (z,z)(y.y) — (g, z)” andso  [(y,2)]> < (z,2)(y, ).

Since the function f: K>o — Kx¢ given by f(z) = 22 is injective and monotone (Proposition | then
[z, )| < =] - [lyll-
(d) Let a € F. Using that if z € F then |2|? = 2z € K>, then

la+al® <l|a+al®*+|a—al* = (a+a)* — (a —a)* = 4aa = 4|al*.
So |a + a| < 2|al. Also
ifa+aeKcthena+a<0<|a+al and if a+a € Kso then a +a = |a + al.
Combining these with |a + a| < 2|a| gives
a+a<2|al
Assume z,y € V. Then

|z +yl* = (x,2) + (z,y) + (v, z) + (v, )
= [lzl* + ylI* + (z, ) + (z,v)
< lz)l* + [yl + 2[(z, )|
< lz|* + lyll* + 2l|=| - 1y
= ([l + [lyI)>.

Thus ||z +y| < [[=]l + [ly]- H
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3.13.3 Nondegeneracy and dual bases

Proposition 3.17. Let V be a vector space with a sesquilinear form (,): V. xV —F. Let W CV be
a subspace of V.. Assume W is finite dimensional, that (w1, ..., wy) is a basis of W and that G is the
Gram matriz of (,) with respect to the basis {wi,...,wr}. The following are equivalent:

(a) A dual basis to (wi, ..., wy) exists.
(b) G is invertible.

(c) WnWt =o0.

(d) The linear transformation

w: W= W given by pu(w) = (v, w),

v Py
is an isomorphism.
Proof.
(a) = (b): Assume that {w!, ..., w¥} exists.

To show: G is invertible.
Define H(¢,i) € F by

Then

So HG =1, H is the inverse of G, and G is invertible.

(b) = (a): Assume that G is invertible.
Fori e {1,...,k} define

k
ZGlszg, fori e {1,...,k}.

/=1
Then
' k k
(whw;) =Y G760 (we,w) =Y G, 0OG(L, ) = (GTG)(i, §) = 6.
=1 =1
So {w?,...,w*} is a dual basis to {w1,...,wy}.

(b) = (c¢): Assume that G is invertible.

To show: W NW+ = 0.

Let w e WN W,

To show: w = 0.

Write w = ciywy + - - - + cpwg.

To show: If j € {1,...,k} then ¢; = 0.

Since w € W+ then (w,w,) =0 for r € {1,...,k} and

Cj = Zcf(sﬁj = ZCZG(& r)Gil(rhj)
(=1 /=1

k
= ZCg<wg,wr>G_1(T,j) = Z(w,wT>G r,j)=0.= ZO Gt =0.
/=1
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So w = 0.

(c) = (b): Assume that W N W+ = 0.

To show: G is invertible.

To show: The rows of G are linearly independent.

To show: If ¢1,...,¢; € F and (c1,...,¢,)G =0 then ¢y =0, ¢ =0,..., ¢t =0.
Assume cp,...,c; € Fand (c1,...,c,)G = 0.

To show: ¢ =0, ¢ =0,..., ¢ =0.

Let w = cqwy + - - - 4 cpwy.

If i € {1,...,k} then, since (c1,...,c,)G =0,

k k
0= ZCgG(E,i) = ch@ug,wi) = (crwy + - - cpwg, wi) = (W, w;).
=1 =1
Sow € W+.
SoweWnNWH.
So w = 0.

So C1 :0, 02:0, ...,CkZO.
Thus the rows of G are linearly independent and G is invertible.
(c) = (d): Assume that W N W+ =0
To show: Uy : W — W™ is an isomorphism.
To show: (ca) Wy is injective.
(cb) Wy is surjective.

(ca) Since ker(¥y) = W N W+ then ker(¥y) = 0.
So Wy is injective.
(cb) If {wy,...,wy} is a basis of W then defining ¢*: W — F by

if ¢1,...,c, € F then <p"(clw1—|—~~+ckwk):cz-,

produces a basis {¢!,...,¢"} of the dual space W*.

So dim(W') = dim(W™).

Since Wy is injective W is finite dimensional then dim(im(W¥y)) = dim(W) = dim(W*).
So im(¥yy) = W* and ¢y is surjective.

So Wy is an isomorphism.

(d) = (c): Assume that Uy is an isomorphism.
So Wy is injective.
So ker(¥y) = 0.
Since ker(¥y) = W N W then W N W+ = 0.
3.13.4 Isotropy and nondegeneracy
Proposition 3.18. A sesquilinear form (,): V. x V — T satisfies
(no isotropic vectors condition) If v € V and (v,v) =0 then v = 0.
if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then W N W+ = 0.
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Proof. =: Assume that if v € V and (v,v) =0 then v = 0.
To show: If W is a subspace of V then W N W+ = 0.
Assume W is a subspace of V.

To show: If w € W N W+ then w = 0.

Assume w € W N W+,

Then (w,w) = 0.

So w = 0.

<: Assume that if W is a subspace of V then W N W+ = 0.
To show: If v € V and (v,v) = 0 then v = 0.

Assume v € V.

To show: If v # 0 then (v,v) # 0.

Assume v # 0.

Let W = Fuv, a one-dimensional subspace of V.

Since Fv N (Fv)* = 0 then v & (Fv)*.

So (v,v) # 0. O

3.13.5 Characterizing orthogonal projections

Proposition 3.19. (Characterization of orthogonal projection) Let F be a field and let V' be an F-
vector space. Let (,): V xV — F be a sesquilinear form. Let k € Z~qg and let W be a subspace of
V such that diim(W) = k and W N W+ = 0. The orthogonal projection onto W is the unique linear
transformation P: V — V such that

(1) If v €V then P(v) € W.
(2) IfveV and w e W then (v,w) = (P(v),w).

Proof. Let (w1, ...,wy) be a basis of W and let (w', ..., w¥) be the dual basis of W. The orthogonal
projection onto W is the function

k
Py:V =V given by Py (v) = Z(v,wi>wi.
i=1

To show: (a) Py is a linear transformation that satisfies conditions (1) and (2).
(b) If @ is a linear transformation that satisfies (1) and (2) then Q = Py .

(a) To show: (0) Py is a linear transformation.
(1) If v € V then P(v) € W.
(2) If v € V and w € W then (v,w) = (P(v),w).

(0) To show: If ¢ € F and v,vy,v2 € V then Py (cv) = cPw(v) and Py (v1 + v2) = Py (v1) +
Pw(vg).
Assume ¢ € F and v,v1,v0 € V.
To show: Py (cv) = c¢Py(v) and Py (v1 + v2) = Pw(v1) + Py (v2).
Since (,) Is linear in the first coordinate then

k k
Py (cv) = Z(cv,wﬁwi = Z c(v, w;)w' = c(Z(v, wi>wi) = cPy(v), and
i=1 i=1 i=1
Py (ev) = Z(vl + v, wi)w' = Zc(vl,wiﬂtﬂ + Z c(vr, wi)w' = PW (v1) + P (v2).
i=1 i=1 i=1

43



MAST30026 Resources, Arun Ram, July 14, 2022

So Py is a linear transformation.
(1) Assume v € V.
k
Since w!,...,wk € W and Py (v) = Z(v,wi)wi then Py (v) € W.
=1
(2) Assume v € V and w € W. '

Since {wi, ..., wy} is a basis of W then there exist cj,...,¢c; € F such that w = cyw; +
e+ g
Then

(P (v), w) = (

k
1=

k k
(v, w)w', chwj> = Zcﬁ(v,wi) = (v, w).
j=1

1 i=1

Thus Py (v) is a linear transformation that satisfies (1) and (2).

(b) Assume Q: V — V is a linear transformation that satisfies (1) and (2).
To show: @ = Py .

To show: If v € V' then Q(v) = Py (v).

Assume v € V.

Since @ satisfies property (2), if w € W then (Q(v), w) = (v, w).
So (Q(0), w) = (v, w) = (P (1), w).

So, if w € W then (Pw(v) — Q(v),w) = 0.

So Py (v) — Q(v) € W.

By Property (1), Py (v) — Q(v) € W.

So Py (v) — Q(v) € WN W+,

Since W N W+ = 0 then Py (v) — Q(v) = 0.

So PW :Q

3.13.6 Orthogonal decomposition

Theorem 3.20. Let n € Zso and let V be an inner product space with dim(V) = n. Let W be
a subspace of V such that W N WL = 0. Let Py be the orthogonal projection onto W and let
Py, =1—Py. Then

PI?V = Py, PI?VL =Py, PywPy.=Py . Pwv=0 1=Py+ Py,
ker(Py) =W,  im(Py)=W and V=WaoWw
Proof.  (a) Assume v € V. Then, by properties (1) and (2) of Proposition

k k
Pi(v) = Z<Pw<'l)), w'yw; = Z(v, w'yw; = Py (v). So P%, = Py.
i=1 i=1

(b) Since P3, = Py then

PL.=(1-Py)P=1-2Py+Pj=1-2Py+Py=1—Py="Py..

44



MAST30026 Resources, Arun Ram, July 14, 2022

(c) Since P2, = Py and Py =1 — Py then

PyPy. =Py(l—Py)=Py— P2 =Py —Py=0 and
Py 1Py = (1 - Py)Pw = Py — P3 = Py — Py = 0.

(d) Since Py. =1 — Py then Py + Py = P+ (1 — Py) = 1.
(e) To show ker(Py) = W+.
To show: (ea) ker(Py) C W+.
(eb) W+ C ker(Py).

(ea) Assume v € ker(Py).
By property (2) in Proposition|3.7} (v,w) = (Py (v),w) = (0,w) =
Sove Wt
So ker(Py) C W+.
(eb) Assume v € W,
If w e W then (Pw (v
By property (1), Py (
So v € ker(Py).
So W+ C ker(Py).

So ker(Py) = W+.
(f) To show: im(Py ) =W.
To show: (fa) im(Py) C W.
(fb) W Cim(Pw).

),w) = (v,w) = 0 and so Py (v) € W.
v) € W and so Py (v) € WN W+ =0.

(fa) By property (1) of Proposition im(Py) CW.
(fb) Assume w € W.
Let c1,..., ¢, € F such that w = c;w! + - - - + ¢cpw”.
Since (w',w;) = d;; then

k k
Py (w) = Z(w,wﬁwi = Z Z(cjwj,wﬁwi = chwi = w.

So W C im(Py).

So im(Py) = W.

(g) Ifv € V then v = Py (v) + (1 — Py)(v) € W+ W
SoV=W-+WHt.
By assumption WNW+ =0, andso V=W & W+,

3.13.7 Orthonormal sequences are linearly independent

Proposition 3.21. Let V' be an F-vector space with a Hermitian form. An orthonormal sequence
(a1,a2,...) iV is linearly independent.
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Proof. Let (a1,as,...) be an orthonormal sequence in V.

To show: {aj,as,...} is linearly independent.

To show: If ¢ € Z~o and pia1 + poas + - - + peag = 0 then p; =0 for j € {1,2,...,¢}.

Assume ¢ € Z~q and piai + peas + -+ - + ppap = 0.

To show: If j € {1,...,¢} then p; = 0.

Assume j € {1,...,¢}.

Then 0 = (p1a1 + poas + -+ + peag, az) = pjlag, az) = p;.

So {ay,as,...} is linearly independent. O

3.13.8 Gram-Schmidt

Theorem 3.22. (Gram-Schmidt) Let V' be an F-vector space with a sesquilinear form (,): VxV — F.
Assume that (,) is nonisotropic and that (,) is Hermitian i.e.,

(1) (Nonisotropy condition) If v € V' and (v,v) =0 then v =0, and
(2) (Hermitian condition) If vi,v2 € V then (ve,v1) = (v1,v2).

Let p1,po, . .. be a sequence of linear independent elements of V.

(a) Define by = p1 and

(Pn+1,01) (Prt1,bn)
byl = ppaq — b Ay o Ml Tn/
+1 = Dn+1 (b1, b1) 1 (b b
Then (b, ba,...) is an orthogonal sequence in V.

(b) Assume that F is a field in which square roots can be made sense of and that if v € V and v # 0
then (v,v) # 0. Define

by, forn € Z~y.

|lvl| = v/ (v, v), forveV.
Let (by,...,by) be an orthogonal basis of V. Define
_ b _ by
ul—m, e un—anH
Then (u1,...,uy) is an orthonormal basis of V.

Proof. (Sketch) The proof is by induction on n.
For the base case, there is only one vector b; and so there is nothing to show.

Induction step: Assume (by,...,b,) are orthogonal.
Let j € {1,...,n}. Then

(Pn+1,b1) (Pri1,bn)
bpi1,b5) = (Pny1 — ———-b1 — - — by, b;
( +1 ]> <P +1 (51,b1> 1 <bn,bn> g>
Dnt1,b Dn+1,bn
~ ity = L gy BB
DPn 7b‘
= (b)) = (i b) — (o b) =0 and
Jr¥]
) _ . <pn+17 bl) <p’fl+17 b'ﬂ>
<ijbn+1> - <bjapn+1 (bl,b1> bl <bn;bn> bn>
<pn+17 b1> <pn+17 bn>
= (bjs 1) — CmEL O g gy - LI
(Pnt1,bj)

= <bj,pn+1> - W(bjabj> - <bj7pn+1> - <pn+lvbj> - 07
RIS}
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where the identity (bg,br) = (bg,br) and the last equality follow from the assumption that (,) is
Hermitian. So (b1, ...,b,4+1) are orthogonal. O

3.13.9 The role of normal matrices

Proposition 3.23. Let V = C" with inner product given by . Let
A e M,(C), reC and V) = ker(\ — A).
If AA* = A*A then
Vy\ is A-invariant, V/\L is A-invariant, V) is A*-invariant and VAl is A*-invariant.
Proof.

(a) Let p € V)\. Then Ap = Ap € V). So V), is A invariant.
(b) Let p € V). Since A(A*p) = A*Ap = AA*p then A*p € V). So V), is A* invariant.
(c) Let z € Vi-.

To show Az € V/\L.

To show: If w € V) then (Az,u) = 0.

Assume u € V).

To show: (Az,u) = 0.

By (b), A*u € V), and so (Az,u) = (z, A*u) = 0.

So Az € V)\J—.

So Vit is A-invariant.
(d) Let z € Vi-.

To show: If u € V) then (A*z,u) = 0.

(A*z,u) = (z, Au) = 0, since Au € V).

So A*z € VAL. So VAL is A*-invariant.

3.13.10 The Spectral theorem

Theorem 3.24. (Spectral theorem)
Let n € Zso and V = C™ with inner product given by (3.1)).

(a) Let n € Z~o and A € M, (C) such that AA* = A*A. Then there exists a unitary U € M, (C) and
Aly .-y Ay € C such that
UTAU = diag(A1, ..., An).

(b) Let f: V — V be a linear transformation such that ff* = f*f. Then there exists an orthonormal
basis (u1,...,u,) of V consisting of eigenvectors of f.

Proof. The two statements are equivalent via the relation between A and f given by

f: vV — VvV
v —  Av.
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The proof is by induction on n.

The base case is when dim(V) = 1. In this case A € M;(C) is diagonal.

The induction step:

For y1 € C let V,, = ker(u — f), the p-eigenspace of f.

Since C is algebraically closed, there exists A € C which is a root of the characteristic polynomial
det(z — A).

So there exists A € C such that det(A — A) = 0.

So there exists A € C such that V) = ker(A — A) # 0.

Let k = dim(Vy) and let (p1,...,pxr) be a basis of V.

Use Gram-Schmidt to convert (p,...,px) to an orthogonal basis (u1, ..., ug) of Vj.

By definition of V), the basis vectors (ui, ..., u) are all eigenvectors of f (of eigenvalue .

By Theorem (orthogonal decomposition) and Proposition

V=Va® Vi)t and Vi! is A-invariant and A*-invariant.

Let

fir vii = v and g: Vi = Vit

v — Av v = A%

Then g1 = f7 and f1/7 = fif1.
Thus, by induction, there exists an orthonormal basis (ug41,...,u,) of VAL consisting of eigenvectors
of fl-
By definition of f;, eigenvectors of f; are eigenvectors of f.
So (U1, ..., Uk, Ukt1,---,Up) is an orthonormal basis of eigenvectors of f. O
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