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3 Inner products and orthogonality: Linear algebra review

3.1 Bilinear forms

Let F be a field and let V be an F-vector space. A bilinear form on V is a function

h, i : V ⇥ V ! F
(v, w) 7�! hv, wi

such that

(a) If v1, v2, w 2 V then hv1 + v2, wi = hv1, wi+ hv2, wi,

(b) If v, w1, w2 2 V then hv, w1 + w2i = hv, w1i+ hv, w2i,

(c) If c 2 F and v, w 2 V then hcv, wi = chv, wi,

(d) If c 2 F and v, w 2 V then hv, cwi = chv, wi.

A bilinear form h, i : V ⇥ V ! F is symmetric if it satsfies:

(S) If v, w 2 V then hv, wi = hw, vi.

A bilinear form h, i : V ⇥ V ! F is skew-symmetric if it satsfies:

(A) If v, w 2 V then hv, wi = �hw, vi.

3.2 Sesquilinear forms

Let F be a field and let : F ! F be a function that satisfies:

if c, c1, c2 2 F then c1 + c2 = c1 + c2, c1c2 = c2 c1 and 1 = 1 and c̄ = c.

The favourite example of such a function is complex conjugation. The other favourite example is the
identity map idF.

Let V be an F-vector space. A sesquilinear form on V is a function

h, i : V ⇥ V ! F
(v, w) 7�! hv, wi

such that

(a) If v1, v2, w 2 V then hv1 + v2, wi = hv1, wi+ hv2, wi,

(b) If v, w1, w2 2 V then hv, w1 + w2i = hv, w1i+ hv, w2i,

(c) If c 2 F and v, w 2 V then hcv, wi = chv, wi,

(d) If c 2 F and v, w 2 V then hv, cwi = chv, wi.

A Hermitian form is a sesquilinear form h, i : V ⇥ V ! F such that

(H) If v, w 2 V then hv, wi = hw, vi.

3.3 Gram matrix of h, i with respect to a basis B

Assume n 2 Z>0 and dim(V ) = n. Let h, i : V ⇥V ! F be a bilinear form and let B = {b1, . . . , bn} be
a basis of V . The Gram matrix of h, i with respect to the basis B is

GB 2 Mn(F) given by GB(i, j) = hbi, bji.
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Let C = {c1, . . . , cn} be another basis of V and let PCB be the change of basis matrix given by

ci =
nX

i=1

PBC(j, i)bj , for i 2 {1, . . . , n}.

Since

GC(i, j) = hci, cji =
nX

k,l=1

hPBC(k, i)bk, PBC(l, j)bli =
nX

k,l=1

PBC(k, i)GB(k, l)PBC(l, j),

then
GC = P

t

BCGBPBC ,

3.4 Quadratic forms

Let F be a field, V an F-vector space and h, i : V ⇥ V ! F a bilinear form. The quadratic form
associated to h, i is the function

k k
2 : V ! F given by kvk

2 = hv, vi.

Theorem 3.1. Let V be a vector space over a field F and let h, i : V ⇥ V ! F be a bilinear form. Let
k k

2 : V ! F be the quadratic form associated to h, i.

(a) (Parallelogram property) If x, y 2 V then

kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(b) (Pythagorean theorem) If x, y 2 V and hx, yi = 0 and hy, xi = 0 then

kxk
2 + kyk

2 = kx+ yk
2
.

(c) (Reconstruction) Assume that h, i is symmetric and that 2 6= 0 in F. Let x, y 2 V . Then

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2).

Theorem 3.2. Let F be a field with an involution : F ! F such that the fixed field

K = {a 2 F | a = ā} is an ordered field.

For a 2 K define
|a|

2 = aā.

Let V be an K-vector space with a sesquilinear form h, i : V ⇥ V ! F such that

(a) If x, y 2 V then hy, xi = hx, yi.

(b) If x 2 V then hx, xi 2 K�0.

Let k k : V ! F be the corresponding quadratic form and assume that if a 2 K�0 then there exists a
unique c 2 K�0 such that c2 = a. Then

(c) (Cauchy-Schwarz) If x, y 2 V then |hx, yi|  kxk · kyk.

(d) (Triangle inequality) If x, y 2 V then kx+ yk  kxk+ kyk.

The proof of Theorem 3.16 uses the following proposition.

Proposition 3.3. Let F be an ordered field and let x, y 2 F with x � 0 and y � 0. Then

x  y if and only if x
2
 y

2
.
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3.5 Nondegeneracy and dual bases

Let V be a F-vector space with a sesquilinear form h, i : V ! F. The form h, i is nondegenerate if it
satisfies

if v 2 V and v 6= 0 then there exists w 2 V such that hv, wi 6= 0.

An alternative way of stating this condition is to say V \ V
? = 0. Another alternative is to say that

the map
V ! V

⇤

v 7! 'v

given by
'v : V ! F

w 7! hv, wi

is an injective linear transformation.
Let k 2 Z>0 and assume that W ✓ V is a subspace of V with dim(W ) = k. Let (w1, . . . , wk) be a

basis of W . A dual basis to (w1, . . . , wk) with respect to h, i is a basis (w1
, . . . , w

k) of W such that

if i, j 2 {1, . . . , k} then hw
i
, wji = �ij .

Proposition 3.4. Let V be a vector space with a sesquilinear form h, i : V ⇥V ! F. Let W ✓ V be a
subspace of V . Assume W is finite dimensional, that (w1, . . . , wk) is a basis of W and that G is the
Gram matrix of h, i with respect to the basis {w1, . . . , wk}. The following are equivalent:

(a) A dual basis to (w1, . . . , wk) exists.

(b) G is invertible.

(c) W \W
? = 0.

(d) The linear transformation

 W : W ! W
⇤

v 7�! 'v

given by 'v(w) = hv, wi,

is an isomorphism.

3.6 Isotropy and nondegeneracy

Let W ✓ V be a subspace of V . The orthogonal to W is

W
? = {v 2 V | if w 2 W then hv, wi = 0}.

The subspace W is nonisotropic if W \W
? = 0.

Proposition 3.5. A sesquilinear form h, i : V ⇥ V ! F satisfies

(no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then W \W
? = 0.

Remark 3.6. Let V = C-span{e1, e2} with symmetric bilinear form h, i : V ⇥ V ! C with Gram
matrix ✓

0 1
1 0

◆
in the basis {e1, e2}.

This form has isotropic vectors since he1, e1i = 0. The dual basis to {e1, e2} is the basis {e2, e1}.
Letting

b1 =
1p
2
(e1 + e2),

b2 =
ip
2
(e1 � e2),

then the Gram matrix is

✓
1 0
0 1

◆

with respect to the basis {b1, b2} and b1 + ib2 is an isotropic vector.
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3.7 Orthogonal projections

Let F be a field and let V be an F-vector space. Let h, i : V ⇥ V ! F be a sesquilinear form.

Let k 2 Z>0 and let W be a subspace of V such that dim(W ) = k and W \W
? = 0.

Let (w1, . . . , wk) be a basis of W and let (w1
, . . . , w

k) be the dual basis of W (which exists by Propo-
sition 3.4). The orthogonal projection onto W is the function

PW : V ! V given by PW (v) =
kX

i=1

hv, wiiw
i
.

The following proposition shows that PW does not depend on which choice of basis of W is used to
construct PW .

Proposition 3.7. (Characterization of orthogonal projection) Let F be a field and let V be an F-vector
space. Let h, i : V ⇥V ! F be a sesquilinear form. Let k 2 Z>0 and let W be a subspace of V such that
dim(W ) = k and W \W

? = 0. The orthogonal projection onto W is the unique linear transformation
P : V ! V such that

(1) If v 2 V then P (v) 2 W .

(2) If v 2 V and w 2 W then hv, wi = hP (v), wi.

3.8 Orthogonal projections produce orthogonal decompositions

Let F be a field and let V be an F-vector space. Let h, i : V ⇥ V ! F be a sesquilinear form.

Let k 2 Z>0 and let W be a subspace of V such that dim(W ) = k and W \W
? = 0.

The following proposition explains how the orthogonal projection onto W produces the decomposition
V = W �W

?.

Theorem 3.8. Let n 2 Z>0 and let V be an inner product space with dim(V ) = n. Let W be a subspace
of V such that W \W

? = 0. Let PW be the orthogonal projection onto W and let PW? = 1 � PW .
Then

P
2
W = PW , P

2
W? = PW? , PWPW? = PW?PW = 0, 1 = PW + PW? ,

ker(PW ) = W
?
, im(PW ) = W and V = W �W

?
.

3.9 Orthonormal sequences and Gram-Schmidt

A Hermitian form is a sesquilinear form h, i : V ⇥ V ! F such that

(H) If v, w 2 V then hv, wi = hw, vi.

An orthonormal sequence in V is a sequence (b1, b2, . . .) in V such that

if i, j 2 Z>0 then hbi, bji =

(
1, if i = j,

0, if i 6= j.

Proposition 3.9. Let V be an F-vector space with a Hermitian form. An orthonormal sequence
(a1, a2, . . .) in V is linearly independent.
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3.10 Orthonormal bases

Let n 2 Z>0 and let V be an inner product space with dim(V ) = n. An orthonormal basis of V , or
self-dual basis of V , is a basis {u1, . . . , un} such that

if i, j 2 {1, . . . , n} then hui, uji =

(
0, if i 6= j,

1, if i = j.

An orthogonal basis in V is a basis {b1, . . . , bn} such that

if i, j 2 {1, . . . , n} and i 6= j then hbi, bji = 0.

The following theorem guarantees that, in some favourite examples, orthonormal bases exist.

Theorem 3.10. (Gram-Schmidt) Let V be an F-vector space with a sesquilinear form h, i : V ⇥V ! F.
Assume that h, i is nonisotropic and that h, i is Hermitian i.e.,

(1) (Nonisotropy condition) If v 2 V and hv, vi = 0 then v = 0, and

(2) (Hermitian condition) If v1, v2 2 V then hv2, v1i = hv1, v2i.

Let p1, p2, . . . be a sequence of linear independent elements of V .

(a) Define b1 = p1 and

bn+1 = pn+1 �
hpn+1, b1i

hb1, b1i
b1 � · · ·�

hpn+1, bni

hbn, bni
bn, for n 2 Z>0.

Then (b1, b2, . . .) is an orthogonal sequence in V .

(b) Assume that F is a field in which square roots can be made sense of and that if v 2 V and v 6= 0
then hv, vi 6= 0. Define

kvk =
p
hv, vi, for v 2 V .

Let (b1, . . . , bn) be an orthogonal basis of V . Define

u1 =
b1

kb1k
, . . . , un =

bn

kbnk
.

Then (u1, . . . , un) is an orthonormal basis of V .

3.11 Adjoints of linear transformations

Let V be an F-vector space with a nondegenerate sesquilinear form h, i : V ⇥ V ! F. Let f : V ! V

be a linear transformation.

• The adjoint of f with respect to h, i is the linear transformation f
⇤ : V ! V determined by

if x, y 2 V then hf(x), yi = hx, f
⇤(y)i.

• The linear transformation f is self adjoint if f satisfies:

if x, y 2 V then hf(x), yi = hx, f(y)i.
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• The linear transformation f is an isometry if f satisfies:

if x, y 2 V then hf(x), f(y)i = hx, yi.

• The linear transformation f is normal if ff⇤ = f
⇤
f .

Let {w1, . . . , wk} be a basis of W and assume that the dual basis {w
1
, . . . , w

k
} of W exists. If

w = c1w
1 + · · · ckw

k then cj = hw,wji and so

w = hw,w1iw
1 + · · ·+ hw,wkiw

k
.

If w 2 W then

f
⇤(w) = hf

⇤(w), w1iw
1 + · · ·+ hf

⇤(w), wkiw
k = hw, f(w1)iw

1 + · · ·+ hw, f(wk)iw
k
,

and this specifies f⇤ : W ! W in terms of f . Then

f is self adjoint if f = f
⇤ and f is an isometry if ff⇤ = 1,

HW: Let V = Fn with basis (e1, . . . , en) and inner product given by

ei =

0

BBBBBBBBBB@

0
.
.
.

0
1
0
.
.
.

0

1

CCCCCCCCCCA

with 1 in the ith row and hei, eji = �ij .

Let f : V ! V be a linear transformation of V and let A be the matrix of f with respect to the basis
(e1, . . . , en). Show that, with respect to the basis (e1, . . . , en),

the matrix of f⇤ is A
⇤ = A

t
.

Since

nX

i=1

A
⇤(i, j)ei = f

⇤(ej) =
nX

i=1

hej , f(ei)iei =
nX

i=1

nX

k=1

hej , A(k, i)ekiei =
nX

i=1

A(j, i)ei,

then A
⇤(i, j) = A(j, i).

3.12 The Spectral theorem

Let A 2 Mn(C) and let V = Cn with inner product given by

*0

B@
x1
.
.
.

xn

1

CA ,

0

B@
y1
.
.
.

yn

1

CA

+
= x1y1 + · · ·xnyn. (3.1)

Let A 2 Mn(C).
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• The adjoint of A is the matrix A
⇤
2 Mn(C) given by A

⇤(i, j) = A(j, i).

• The matrix A is self adjoint if A = A
⇤.

• The matrix A is unitary if AA⇤ = 1.

• The matrix A is normal if AA⇤ = A
⇤
A.

Write A
⇤ = A

t
. The unitary group is

Un(C) = {U 2 Mn(C) | UU
⇤ = 1}.

Theorem 3.11. Let V = Cn with inner product given by (3.1). The function

n ordered orthonormal bases
(u1, . . . , un) of Cn

o
�! Un(C)

(u1, . . . , un) 7�! U =

0

@
| |

u1 · · · un

| |

1

A
is a bijection.

The following proposition explains the role of normal matrices.

Proposition 3.12. Let V = Cn with inner product given by (3.1). Let

A 2 Mn(C), � 2 C and V� = ker(��A).

If AA⇤ = A
⇤
A then

V� is A-invariant, V
?
�

is A-invariant, V� is A
⇤-invariant and V

?
�

is A
⇤-invariant.

Theorem 3.13. (Spectral theorem)
Let n 2 Z>0 and V = Cn with inner product given by (3.1).

(a) Let n 2 Z>0 and A 2 Mn(C) such that AA⇤ = A
⇤
A. Then there exists a unitary U 2 Mn(C) and

�1, . . . ,�n 2 C such that
U

�1
AU = diag(�1, . . . ,�n).

(b) Let f : V ! V be a linear transformation such that ff⇤ = f
⇤
f . Then there exists an orthonormal

basis (u1, . . . , un) of V consisting of eigenvectors of f .

HW: Show that if A 2 Mn(C) is self adjoint then its eigenvalues are real.

HW: Show that if U 2 Mn(C) is unitary then its eigenvalues have absolute value 1.

Theorem 3.14. (Spectral theorem)
Let n 2 Z>0 and V = Cn with inner product given by (3.1).

(a) Let n 2 Z>0 and A 2 Mn(C) such that AA⇤ = A
⇤
A. Then there exists a unitary U 2 Mn(C) and

�1, . . . ,�n 2 C such that
U

�1
AU = diag(�1, . . . ,�n).

(b) Let f : V ! V be a linear transformation such that ff⇤ = f
⇤
f . Then there exists an orthonormal

basis (u1, . . . , un) of V consisting of eigenvectors of f .
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3.13 Some proofs

3.13.1 The Pythagorean theorem and reconstruction

Theorem 3.15. Let V be a vector space over a field F and let h, i : V ⇥ V ! F be a bilinear form.
Let k k

2 : V ! F be the quadratic form associated to h, i.

(a) (Parallelogram property) If x, y 2 V then

kx+ yk
2 + kx� yk

2 = 2kxk2 + 2kyk2.

(b) (Pythagorean theorem) If x, y 2 V and hx, yi = 0 and hy, xi = 0 then

kxk
2 + kyk

2 = kx+ yk
2
.

(c) (Reconstruction) Assume that h, i is symmetric and that 2 6= 0 in F. Let x, y 2 V . Then

hx, yi = 1
2(kx+ yk

2
� kxk

2
� kyk

2).

Proof.
(a) Assume x, y 2 V . Then

kx+ yk
2 + kx� yk

2 = hx+ y, x+ yi+ hx� y, x� yi

= hx, xi+ hx, yi+ hy, xi+ hy, yi+ hx, xi � hx, yi � hy, xi+ hy, yi

= 2kxk2 + 2kyk2.

(b) Assume x, y 2 V and hx, yi = 0 and hy, xi = 0. Then

kx+ yk
2 = hx+ y,+x+ yi = hx, xi+ hx, yi+ hy, xi+ hy, yi

= kxk
2 + 0 + 0 + kyk

2 = kxk
2 + 0 + 0 + kyk

2
.

(c) Assume x, y 2 V . Then

kx+ yk
2
� kxk

2
� kyk

2 = hx+ y, x+ yi � hx, xi � hy, yi

= hx, xi+ hx, yi+ hy, xi+ hy, yi � hx, xi � hy, yi

= 2hx, yi.

3.13.2 Cauchy-Schwarz

Theorem 3.16. Let F be a field with an involution : F ! F such that the fixed field

K = {a 2 F | a = ā} is an ordered field.

For a 2 K define
|a|

2 = aā.

Let V be an K-vector space with a sesquilinear form h, i : V ⇥ V ! F such that

(a) If x, y 2 V then hy, xi = hx, yi.

(b) If x 2 V then hx, xi 2 K�0.
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Let k k : V ! F be the corresponding quadratic form and assume that if a 2 K�0 then there exists a
unique c 2 K�0 such that c2 = a. Then

(c) (Cauchy-Schwarz) If x, y 2 V then |hx, yi|  kxk · kyk.

(d) (Triangle inequality) If x, y 2 V then kx+ yk  kxk+ kyk.

Proof. (c) Let x, y 2 V . If x = 0 then both sides of the Cauchy-Schwarz inequality are 0. Assume
x 6= 0. The Gram-Schmidt process on the vectors (x, y) suggests the consideration of

u1 =
x

kxk
and u2 = y �

hy, xi

hx, xi
x.

To avoid denominators, let u = hx, xiy � hy, xix. Then

0  hu, ui =
⌦
hx, xiy � hy, xix, hx, xiy � hy, xix

↵

= hx, xihx, xi|hy, yi � hx, xihy, xihy, xi � hy, xihx, xihx, yi+ |hy, xi|
2
hx, xi

= hx, xi(hx, xihy, yi � |hy, xi|
2)

Since x 6= 0 then hx, xi 2 K>0 and so hx, xi = hx, xi 2 K>0. Thus,

0  hx, xihy, yi � |hy, xi|
2 and so |hy, xi|

2
 hx, xihy, yi.

Since the function f : K�0 ! K�0 given by f(z) = z
2 is injective and monotone (Proposition 3.3) then

|hx, yi|  kxk · kyk.

(d) Let a 2 F. Using that if z 2 F then |z|
2 = zz̄ 2 K�0, then

|a+ ā|
2
 |a+ ā|

2 + |a� ā|
2 = (a+ ā)2 � (a� ā)2 = 4aā = 4|a|2.

So |a+ ā|  2|a|. Also

if a+ ā 2 K0 then a+ ā  0  |a+ ā| and if a+ ā 2 K�0 then a+ ā = |a+ ā|.

Combining these with |a+ ā|  2|a| gives

a+ ā  2|a|.

Assume x, y 2 V . Then

kx+ yk
2 = hx, xi+ hx, yi+ hy, xi+ hy, yi

= kxk
2 + |yk

2 + hx, yi+ hx, yi

 kxk
2 + |yk

2 + 2|hx, yi|

 kxk
2 + |yk

2 + 2kx| · kyk

= (kxk+ kyk)2.

Thus kx+ yk  kxk+ kyk.
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3.13.3 Nondegeneracy and dual bases

Proposition 3.17. Let V be a vector space with a sesquilinear form h, i : V ⇥ V ! F. Let W ✓ V be
a subspace of V . Assume W is finite dimensional, that (w1, . . . , wk) is a basis of W and that G is the
Gram matrix of h, i with respect to the basis {w1, . . . , wk}. The following are equivalent:

(a) A dual basis to (w1, . . . , wk) exists.

(b) G is invertible.

(c) W \W
? = 0.

(d) The linear transformation

 W : W ! W
⇤

v 7�! 'v

given by 'v(w) = hv, wi,

is an isomorphism.

Proof.

(a) ) (b): Assume that {w1
, . . . , w

k
} exists.

To show: G is invertible.
Define H(`, i) 2 F by

w
i =

kX

`=1

H(i, `)w`.

Then

�ij = hw
i
, wji =

kX

`=1

H(i, `)hw`, wji =
kX

`=1

H(i, `)G(`, j) = (HG)(i, j).

So HG = 1, H is the inverse of G, and G is invertible.

(b) ) (a): Assume that G is invertible.
For i 2 {1, . . . , k} define

w
i =

kX

`=1

G
�1(i, `)w`, for i 2 {1, . . . , k}.

Then

hw
i
, wji =

kX

`=1

G
�1(i, `)hw`, wji =

kX

`=1

G
�1(i, `)G(`, j) = (G�1

G)(i, j) = �ij .

So {w
1
, . . . , w

k
} is a dual basis to {w1, . . . , wk}.

(b) ) (c): Assume that G is invertible.
To show: W \W

? = 0.
Let w 2 W \W

?.
To show: w = 0.
Write w = c1w1 + · · ·+ ckwk.
To show: If j 2 {1, . . . , k} then cj = 0.
Since w 2 W

? then hw,wri = 0 for r 2 {1, . . . , k} and

cj =
nX

`=1

c`�`j =
nX

`=1

c`G(`, r)G�1(r, j)

=
kX

`=1

c`hw`, wriG
�1(r, j) =

kX

r=1

hw,wriG
�1(r, j) = 0. =

kX

r=1

0 ·G�1(r, j) = 0.
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So w = 0.

(c) ) (b): Assume that W \W
? = 0.

To show: G is invertible.
To show: The rows of G are linearly independent.
To show: If c1, . . . , ck 2 F and (c1, . . . , ck)G = 0 then c1 = 0, c2 = 0, . . . , ck = 0.
Assume c1, . . . , ck 2 F and (c1, . . . , ck)G = 0.
To show: c1 = 0, c2 = 0, . . . , ck = 0.
Let w = c1w1 + · · ·+ ckwk.
If i 2 {1, . . . , k} then, since (c1, . . . , ck)G = 0,

0 =
kX

`=1

c`G(`, i) =
kX

`=1

ckhw`, wii = hc1w1 + · · · ckwk, wii = hw,wii.

So w 2 W
?.

So w 2 W \W
?.

So w = 0.
So c1 = 0, c2 = 0, . . . , ck = 0.
Thus the rows of G are linearly independent and G is invertible.

(c) ) (d): Assume that W \W
? = 0

To show:  W : W ! W
⇤ is an isomorphism.

To show: (ca)  W is injective.
(cb)  W is surjective.

(ca) Since ker( W ) = W \W
? then ker( W ) = 0.

So  W is injective.

(cb) If {w1, . . . , wk} is a basis of W then defining 'i : W ! F by

if c1, . . . , ck 2 F then '
i(c1w1 + · · ·+ ckwk) = ci,

produces a basis {'1
, . . . ,'

k
} of the dual space W

⇤.

So dim(W ) = dim(W ⇤).

Since  W is injective W is finite dimensional then dim(im( W )) = dim(W ) = dim(W ⇤).

So im( W ) = W
⇤ and  W is surjective.

So  W is an isomorphism.

(d) ) (c): Assume that  W is an isomorphism.
So  W is injective.
So ker( W ) = 0.
Since ker( W ) = W \W

? then W \W
? = 0.

3.13.4 Isotropy and nondegeneracy

Proposition 3.18. A sesquilinear form h, i : V ⇥ V ! F satisfies

(no isotropic vectors condition) If v 2 V and hv, vi = 0 then v = 0.

if and only if it satisfies

(no isotropic subspaces condition) If W is a subspace of V then W \W
? = 0.
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Proof. ): Assume that if v 2 V and hv, vi = 0 then v = 0.
To show: If W is a subspace of V then W \W

? = 0.
Assume W is a subspace of V .
To show: If w 2 W \W

? then w = 0.
Assume w 2 W \W

?.
Then hw,wi = 0.
So w = 0.

(: Assume that if W is a subspace of V then W \W
? = 0.

To show: If v 2 V and hv, vi = 0 then v = 0.
Assume v 2 V .
To show: If v 6= 0 then hv, vi 6= 0.
Assume v 6= 0.
Let W = Fv, a one-dimensional subspace of V .
Since Fv \ (Fv)? = 0 then v 62 (Fv)?.
So hv, vi 6= 0.

3.13.5 Characterizing orthogonal projections

Proposition 3.19. (Characterization of orthogonal projection) Let F be a field and let V be an F-
vector space. Let h, i : V ⇥ V ! F be a sesquilinear form. Let k 2 Z>0 and let W be a subspace of
V such that dim(W ) = k and W \W

? = 0. The orthogonal projection onto W is the unique linear
transformation P : V ! V such that

(1) If v 2 V then P (v) 2 W .

(2) If v 2 V and w 2 W then hv, wi = hP (v), wi.

Proof. Let (w1, . . . , wk) be a basis of W and let (w1
, . . . , w

k) be the dual basis of W . The orthogonal
projection onto W is the function

PW : V ! V given by PW (v) =
kX

i=1

hv, wiiw
i
.

To show: (a) PW is a linear transformation that satisfies conditions (1) and (2).
(b) If Q is a linear transformation that satisfies (1) and (2) then Q = PW .

(a) To show: (0) PW is a linear transformation.

(1) If v 2 V then P (v) 2 W .

(2) If v 2 V and w 2 W then hv, wi = hP (v), wi.

(0) To show: If c 2 F and v, v1, v2 2 V then PW (cv) = cPW (v) and PW (v1 + v2) = PW (v1) +
PW (v2).
Assume c 2 F and v, v1, v2 2 V .
To show: PW (cv) = cPW (v) and PW (v1 + v2) = PW (v1) + PW (v2).
Since h, i ls linear in the first coordinate then

PW (cv) =
kX

i=1

hcv, wiiw
i =

kX

i=1

chv, wiiw
i = c

⇣ kX

i=1

hv, wiiw
i

⌘
= cPW (v), and

PW (cv) =
kX

i=1

hv1 + v2, wiiw
i =

kX

i=1

chv1, wiiw
i +

kX

i=1

chv1, wiiw
i = PW (v1) + PW (v2).
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So PW is a linear transformation.
(1) Assume v 2 V .

Since w
1
, . . . , w

k
2 W and PW (v) =

kX

i=1

hv, wiiw
i then PW (v) 2 W .

(2) Assume v 2 V and w 2 W .
Since {w1, . . . , wk} is a basis of W then there exist c1, . . . , ck 2 F such that w = c1w1 +
· · ·+ ckwk.
Then

hPW (v), wi =
D kX

i=1

hv, wiiw
i
,

kX

j=1

cjwj

E
=

kX

i=1

cihv, wii = hv, wi.

Thus PW (v) is a linear transformation that satisfies (1) and (2).

(b) Assume Q : V ! V is a linear transformation that satisfies (1) and (2).

To show: Q = PW .

To show: If v 2 V then Q(v) = PW (v).
Assume v 2 V .
Since Q satisfies property (2), if w 2 W then hQ(v), wi = hv, wi.
So hQ(v), wi = hv, wi = hPW (v), wi.
So, if w 2 W then hPW (v)�Q(v), wi = 0.
So PW (v)�Q(v) 2 W

?.
By Property (1), PW (v)�Q(v) 2 W .
So PW (v)�Q(v) 2 W \W

?.
Since W \W

? = 0 then PW (v)�Q(v) = 0.

So PW = Q.

3.13.6 Orthogonal decomposition

Theorem 3.20. Let n 2 Z>0 and let V be an inner product space with dim(V ) = n. Let W be
a subspace of V such that W \ W

? = 0. Let PW be the orthogonal projection onto W and let
PW? = 1� PW . Then

P
2
W = PW , P

2
W? = PW? , PWPW? = PW?PW = 0, 1 = PW + PW? ,

ker(PW ) = W
?
, im(PW ) = W and V = W �W

?
.

Proof. (a) Assume v 2 V . Then, by properties (1) and (2) of Proposition 3.7,

P
2
W (v) =

kX

i=1

hPW (v), wi
iwi =

kX

i=1

hv, w
i
iwi = PW (v). So P

2
W

= PW .

(b) Since P
2
W

= PW then

P
2
W? = (1� PW )2 = 1� 2PW + P

2
W = 1� 2PW + PW = 1� PW = PW? .
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(c) Since P
2
W

= PW and PW? = 1� PW then

PWPW? = PW (1� PW ) = PW � P
2
W = PW � PW = 0 and

PW?PW = (1� PW )PW = PW � P
2
W = PW � PW = 0.

(d) Since PW? = 1� PW then PW + PW? = PW + (1� PW ) = 1.

(e) To show ker(PW ) = W
?.

To show: (ea) ker(PW ) ✓ W
?.

(eb) W?
✓ ker(PW ).

(ea) Assume v 2 ker(PW ).
By property (2) in Proposition 3.7, hv, wi = hPW (v), wi = h0, wi = 0.
So v 2 W

?.
So ker(PW ) ✓ W

?.
(eb) Assume v 2 W

?.
If w 2 W then hPW (v), wi = hv, wi = 0 and so PW (v) 2 W

?.
By property (1), PW (v) 2 W and so PW (v) 2 W \W

? = 0.
So v 2 ker(PW ).
So W

?
✓ ker(PW ).

So ker(PW ) = W
?.

(f) To show: im(PW ) = W .

To show: (fa) im(PW ) ✓ W .

(fb) W ✓ im(PW ).

(fa) By property (1) of Proposition 3.7, im(PW ) ✓ W .
(fb) Assume w 2 W .

Let c1, . . . , ck 2 F such that w = c1w
1 + · · ·+ ckw

k.
Since hw

i
, wji = �ij then

PW (w) =
kX

i=1

hw,wiiw
i =

kX

i=1

kX

j=1

hcjw
j
, wiiw

i =
kX

j=1

cjw
i = w.

So W ✓ im(PW ).

So im(PW ) = W .

(g) If v 2 V then v = PW (v) + (1� PW )(v) 2 W +W
?.

So V = W +W
?.

By assumption W \W
? = 0, and so V = W �W

?.

3.13.7 Orthonormal sequences are linearly independent

Proposition 3.21. Let V be an F-vector space with a Hermitian form. An orthonormal sequence
(a1, a2, . . .) in V is linearly independent.
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Proof. Let (a1, a2, . . .) be an orthonormal sequence in V .
To show: {a1, a2, . . .} is linearly independent.
To show: If ` 2 Z>0 and µ1a1 + µ2a2 + · · ·+ µ`a` = 0 then µj = 0 for j 2 {1, 2, . . . , `}.
Assume ` 2 Z>0 and µ1a1 + µ2a2 + · · ·+ µ`a` = 0.
To show: If j 2 {1, . . . , `} then µj = 0.
Assume j 2 {1, . . . , `}.
Then 0 = hµ1a1 + µ2a2 + · · ·+ µ`a`, aji = µjhaj , aji = µj .
So {a1, a2, . . .} is linearly independent.

3.13.8 Gram-Schmidt

Theorem 3.22. (Gram-Schmidt) Let V be an F-vector space with a sesquilinear form h, i : V ⇥V ! F.
Assume that h, i is nonisotropic and that h, i is Hermitian i.e.,

(1) (Nonisotropy condition) If v 2 V and hv, vi = 0 then v = 0, and

(2) (Hermitian condition) If v1, v2 2 V then hv2, v1i = hv1, v2i.

Let p1, p2, . . . be a sequence of linear independent elements of V .

(a) Define b1 = p1 and

bn+1 = pn+1 �
hpn+1, b1i

hb1, b1i
b1 � · · ·�

hpn+1, bni

hbn, bni
bn, for n 2 Z>0.

Then (b1, b2, . . .) is an orthogonal sequence in V .

(b) Assume that F is a field in which square roots can be made sense of and that if v 2 V and v 6= 0
then hv, vi 6= 0. Define

kvk =
p
hv, vi, for v 2 V .

Let (b1, . . . , bn) be an orthogonal basis of V . Define

u1 =
b1

kb1k
, . . . , un =

bn

kbnk
.

Then (u1, . . . , un) is an orthonormal basis of V .

Proof. (Sketch) The proof is by induction on n.
For the base case, there is only one vector b1 and so there is nothing to show.
Induction step: Assume (b1, . . . , bn) are orthogonal.
Let j 2 {1, . . . , n}. Then

hbn+1, bji =
D
pn+1 �

hpn+1, b1i

hb1, b1i
b1 � · · ·�

hpn+1, bni

hbn, bni
bn, bj

E

= hpn+1, bji �
hpn+1, b1i

hb1, b1i
hb1, bji � · · ·�

hpn+1, bni

hbn, bni
hbn, bji

= hpn+1, bji �
hpn+1, bji

hbj , bji
hbj , bji = hpn+1, bji � hpn+1, bji = 0 and

hbj , bn+1i =
D
bj , pn+1 �

hpn+1, b1i

hb1, b1i
b1 � · · ·�

hpn+1, bni

hbn, bni
bn

E

= hbj , pn+1i �
hpn+1, b1i

hb1, b1i
hbj , b1i � · · ·�

hpn+1, bni

hbn, bni
hbj , bni

= hbj , pn+1i �
hpn+1, bji

hbj , bji
hbj , bji = hbj , pn+1i � hpn+1, bji = 0,
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where the identity hbk, bki = hbk, bki and the last equality follow from the assumption that h, i is
Hermitian. So (b1, . . . , bn+1) are orthogonal.

3.13.9 The role of normal matrices

Proposition 3.23. Let V = Cn with inner product given by (3.1). Let

A 2 Mn(C), � 2 C and V� = ker(��A).

If AA⇤ = A
⇤
A then

V� is A-invariant, V
?
�

is A-invariant, V� is A
⇤-invariant and V

?
�

is A
⇤-invariant.

Proof.

(a) Let p 2 V�. Then Ap = �p 2 V�. So V� is A invariant.

(b) Let p 2 V�. Since A(A⇤
p) = A

⇤
Ap = �A

⇤
p then A

⇤
p 2 V�. So V� is A⇤ invariant.

(c) Let z 2 V
?
�
.

To show Az� 2 V
?
�
.

To show: If u 2 V� then hAz, ui = 0.

Assume u 2 V�.

To show: hAz, ui = 0.

By (b), A⇤
u 2 V�, and so hAz, ui = hz,A

⇤
ui = 0.

So Az 2 V
?
�
.

So V
?
�

is A-invariant.

(d) Let z 2 V
?
�
.

To show: If u 2 V� then hA
⇤
z, ui = 0.

hA
⇤
z, ui = hz,Aui = 0, since Au 2 V�.

So A
⇤
z 2 V

?
�
. So V

?
�

is A⇤-invariant.

3.13.10 The Spectral theorem

Theorem 3.24. (Spectral theorem)
Let n 2 Z>0 and V = Cn with inner product given by (3.1).

(a) Let n 2 Z>0 and A 2 Mn(C) such that AA⇤ = A
⇤
A. Then there exists a unitary U 2 Mn(C) and

�1, . . . ,�n 2 C such that
U

�1
AU = diag(�1, . . . ,�n).

(b) Let f : V ! V be a linear transformation such that ff⇤ = f
⇤
f . Then there exists an orthonormal

basis (u1, . . . , un) of V consisting of eigenvectors of f .

Proof. The two statements are equivalent via the relation between A and f given by

f : V �! V

v 7�! Av.
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The proof is by induction on n.
The base case is when dim(V ) = 1. In this case A 2 M1(C) is diagonal.
The induction step:
For µ 2 C let Vµ = ker(µ� f), the µ-eigenspace of f .
Since C is algebraically closed, there exists � 2 C which is a root of the characteristic polynomial
det(x�A).
So there exists � 2 C such that det(��A) = 0.
So there exists � 2 C such that V� = ker(��A) 6= 0.
Let k = dim(V�) and let (p1, . . . , pk) be a basis of V�.
Use Gram-Schmidt to convert (p1, . . . , pk) to an orthogonal basis (u1, . . . , uk) of V�.
By definition of V�, the basis vectors (u1, . . . , uk) are all eigenvectors of f (of eigenvalue �.
By Theorem 3.20 (orthogonal decomposition) and Proposition 3.12,

V = V� � (V�)
? and V

?
�

is A-invariant and A
⇤-invariant.

Let
f1 : V

?
�

! V
?
�

v 7! Av
and

g1 : V
?
�

! V
?
�

v 7! A
⇤
v

Then g1 = f
⇤
1 and f1f

⇤
1 = f

⇤
1 f1.

Thus, by induction, there exists an orthonormal basis (uk+1, . . . , un) of V ?
�

consisting of eigenvectors
of f1.
By definition of f1, eigenvectors of f1 are eigenvectors of f .
So (u1, . . . , uk, uk+1, . . . , un) is an orthonormal basis of eigenvectors of f .
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