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4 Lecture 4, 16 March 2022: Symmetrizers and E-expansions

4.1 Page 1: Nonsymmetric, relative, symmetric and fermionic Macdonald poly-
nomials

Let q,t% € C*. Let y, be the operator on Clzi!, ...,z '] given by

(Ynh) (@1, @n) = h(@1, .. Tn1,q ).

The symmetric group S, acts on (C[a:lil, cee x%l} by permuting the variables x1, ..., x,. Define oper-
ators T1,...,T,_1, g and g¥ on C[mlﬂ, oz by
1 tr; — rit1
Ti=t2(t-———"2(1-s)), g=s15 " Sp-1Yn, g =amTi-Tp1,  (4.1)
T — Ti+1
where s1,...,S,—1 are the simple transpositions in S,,. The Cherednik-Dunkl operators are
Yi=gTnh 1T, Yo=T 'V, Ys=T,'V215", ..., Y, =T, Y, T, " (4.2)
For p € Z™ the nonsymmetric Macdonald polynomial E,, is the (unique) element E,, € C[xlil, ot
such that
YE, = qf”itf(”“(i)fl)Jr%(”*l)E#, and the coefficient of z{" -+ 24" in E, is 1, (4.3)

where v, € Sy, is the minimal length permutation such that v,u is weakly increasing.
Let p= (u1,...,1n) and let z € Sp,.

The relative Macdonald polynomial E, is E, = t_%(az”’:l)_z(”;l))TzE“. (4.4)

Let \= (A1 > - 2> \,) €2™
The symmetric Macdonald polynomial Py is P, = Z t%é(z")TZVE,\, (4.5)
VESRA

where the sum is over rearrangements v of A and z,, € S, is minimal length such that v = z, A

Let p=(n—1,n—-2,...,2,1,0). The fermionic Macdonald polynomial Ay, is

1y
Appp = (010 3™ (3 OITLE,,, (4.6)
2€8n (A +p)

4.2 Page 2: Hy-decomposition of the polynomial representation

Let Hy be the algebra generated by the operators Ti,...,T,—1 and Y7, ..., Y, (so that Hy is an affine
Hecke algebra). For i € {1,...,n — 1}, let

1 _
E1—t) g, (1= 0¥ Wi

\Y
1Y i ‘ 1-Y i

) (tauipm)

where the second equality is a consequence of T; — Ti_1 —13 —t73. As Hy-modules

(C[x{d, .. ,xfl] = @(C[X])‘ where (C[X])‘ =span{E, | p € Sy},
A
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and the direct sum is over decreasing A = (A\y > --- > \;,) € Z". A description of the action of H on
C[X]* is given by the following. Let p € Z" and let i € {1,...,n — 1}. Let v, € S, be the minimal
length permutation such that v,u is weakly increasing and let

ap‘ = qu_MH»lt'Uu(i)—'Uu(i‘i'l)’ and DH — (1 B ta’ﬂ)(l - taSiN)

i i . forHacti
As;p = gttt Higvu (i) —ou (i) (1= au) (1 — as,) (forHaction)

Assume that p; > p;q1. By using the identity E,, = t%TiVEH if p; > piq1 from (E2), the eigenvalue

from (8.3) and the two formulas in ,

—1 1 \V
Y 1Yi+1Eu = auky, thi E, = Egp,
}/i Y;lJrlEsi/L = asqusiua t§7—i\/Esiu = DMEM’

1
t2T,E, = —1{;;#]3# + Esip
1
t2Tib,, = Dy By + 1—1(1;;qu51'11'
(CXlambdaaction)

and

Now assume that y; = ;1. Then v, (i + 1) = v, (i) + 1 and a,, = t~! so that
Y YinE,=t"'E,  (t2r/)E,=0, and (t2T})E, = tE,. (Tigivest)

These formulas make explicit the action of Hy on C[X]* in the basis {E,, | 4 € S,A}.

4.3 Page 3: Symmetrizers
4.3.1 Bosonic and fermionic symmetrizers

Let wp be the longest element of S, so that

wo(i) =n—i+1, forie{l,...,n}, and E(wo):n(nQ_D:C;).

Let z € S,,. A reduced expression for z is an expression for z as a product of s;,
Z =84 - 8y, such that i1,...,ip € {1,...,n — 1} and ¢ = {(2).

Define
T,=1T, 1, if z=s;, ---s;, is a reduced word for z.

The bosonic symmetrizer

19 = Z t%(z(z)_l(wo))TZ is a t-analogue of po = Z z. (fullsymm)
2ESn z€Sy

The fermionic symmetrizer

g0 = Z (—t’%)é(z)%(wo)Tz is a t-analogue of ey = Z (—1)4=)~two) ;.

weSy WESy

The symmetrizers satisfy

Ti1g = 1oT; Zt%]_() and Tieg = eoT; = —t7%€0, forie{1,...,n—1},

12 = t_%z(wo)Wo(t)lo and €2 = t_%é(wo)WO(t)eo, (symmprops)
where
Wo(t) = Z t“®)is the Poincaré polynomial for S,,. (Poincarepoly)
ZESn
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Proposition 4.1. As operators on C[xfl, conym Y,
T; — tx;
w=(2:)( 1T T=7)
0 Z H T; —Tj
zeW 1<i<j<n
Let
t*% t%x ! t
- 2 2ot
cij(z) = —2_1] L iy fori,j € {1,...,n} with i # j. (ctnxdefn)
1-— T3k Tj— X

If w € S, then let Inv(w) = {(4,4) | i, € {1,...,n}, i < j and w(i) > w(j)} and define

cw(x) = H cij(x). (cfenxw)

(3,7)Elnv(w)

With these notations the identity in Proposition is

1o = pocu,(z 1), (symmopalt)
where T
el = I = I o mt=r® I 2=
1<i<j<n 1<i<j<n A 1<i<j<n TE T i
Proposition 4.2. As operators on Clzi!, ... x, 1],

19 = Pocuy ().

Proof. Let w € S,. Using T; = SiCi’i_A,_]_(x_l) + (t% — ¢ i+1(2)) and a reduced word w = s;, - - - 8, and
expanding, gives

T, = T, = w:wcw(x_l)JerbU(x), with b,(z) € C(z1,...,zn).

v<w

i1 "
Thus there are a,(x) € C(xy,...,x,) such that

1y = Z = 3twow) WoCwy (1) + Z vay(z), (topterm)

wWESy w<wo

Since pg = ZwESn w then s;pg = pp and

Ti(pocuo (r71)) = (craa1 (@)si + (£2 — c1i01(2))) Pocu ()
= (i (@) + (87 = ciir1(2))Pocus (271) = £2 (pocuy (271)).

Since 1p is determined, up to multiplication by a constant, by the property that T;1¢p = t%]_() for

i€ {l,...,n—1}, it follows from (topterm) that, as operators on C[X],

1o = pocuy ().
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4.3.2 Symmetrizers and stabilizers

Let A= (A1,...,A\¢) € Z™. Let

Wy={we S, | wh=A\} which has longest element denoted w)y, and

W = {minimal length representatives of the cosets in S, /W },

so that W), is the stabilizer of A\ under the action of S,, (acting by permutations of the coordinates).
Let
p = Z U and Dy = Z v. (partial Wsymm)
u€WA vEW

The elements p* and py have t-analogues given by

1% = ¢ alwowy) Z ¢t T, and 1, = ¢~ 2tw) Z t340)T,. (partialHsymm)
ueEWX veEW)

Then
po =p’pa and 1o =1'1,.

The following proposition provides a formula for the bosonic symmetrizer 1o which is of striking
utility (see the proof of the E-expansion and the proof that Macdonald’s operators are the same as
the elementary symmetric functions in the Y;).

Proposition 4.3. Let A = (A1,...,\) € Z" and let w* be the longest element of the set W>. Use
notations for the symmetrizers and c-functions as in (fullsymm)), (partialWsymm), (partialHsymm)
and (cfenxw). Then, as operators on C[X],

19 = plega(z7 )1y,

Proposition 4.4. Let A = (A1,..., ) € Z and let w? be the longest element of the set W*. Use
notations for the symmetrizers and c-functions as in (fullsymm)), (partialWsymm), (partialHsymm)
and (cfenxw)). Then, as operators on C[X],

19 = plegr (271,
Proof. For A = (A1,...,Ay) with Ay > Ao > -+ > Ay,
Inv(wy) = {(4,7) | i <jand \; = \j } and Inv(w) = {(3,7) | i <jand \; > \; }.

If w € Wy then Ay > Ay(j) if Ai > Aj so that ulnv(w?) = {(u(i),u(j)) | i < j and A; > \;} = Inv(uw?),
which gives that w;lch = uc,» = ¢ for u € W). This is the reason for the equalities

Cuwy = (W3 'y )Cwy = CuprCuny and  PrC,A = CuaDa- (cfensplit)

Replacing S,, by the group W) in the proof of Proposition gives 1)\ = pycw, (7 1). Using the

relations in (cfensplit) and 1) = pycy, (z71) gives

19 = pocuy, (;c_l) = pAp)\nglwA (x_l)cwk(x_l) = p’\cwx(ac_l)p,\cwA (x_l) = p)‘cwx (x_l)l/\.
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4.3.3 Symmetrizers and XY-parallelism

The double affine Hecke algebra (of type GL, ) is the algebra generated by symbols g and X}, and T;
for ¢, k € Z with relations

Tiyn =T5, Xitn =q ' X5, X Xy = XoXg, for i,k ¢ € Z; (periodicityrelsF)
T,Ti1T; = Ty T Tiaa, T;T; = T,T;, TiQ = (t% — tié)Ti +1, (HeckerelsF)
fori,j € Z with j & {i —1,i+1};
Tix; = Xi1 T — (t% - f%)XiH,
Tywipn = XiTi+ (62 — t72) X1,
forie{l,...,n—1}and j € {1,...,n} with j & {4,794+ 1}; and
9X; = Xit19 and gT; = Tit1g for i € Z. (DAHArels2F)

Xy =T XT;, and T;X; = X;T;, (XaffHeckerelsF)

The Cherednik-Dunkl operators are Yi,...,Y, given by
Yi=9¢Tn 1---T1, and Yj1 = Tj*leijl forje{l,...,n—1}. (CDops)
Define Y; for ¢ € Z by setting
Yien =¢7YY;  andlet  ¢Y =a1Ty Tt
c-functions. For i,j € Z with i # j set

3 _t%XZ-Xj—l 3 _t%ygyj—l

cii(X) = and ¢i(Y) = cfnadefn
W0 = o) =y (ctnadiefn)
Y-intertwiners. For i € {1,...,n — 1} define 7,, by the equation
1 1
Moy = —— (T + (cqv — 12)) = —— () + (c_ay —t72)). (etaidefn)
C_a;{ k3 C_a;/ k2
X-intertwiners. For i € {1,...,n — 1} define &, by the equation
1 1 1 1 _1 ..
€= (Tt (o — 1)) = = (1) + (o — £3). (xiidefn)
C—o Cooy
IfwesS, and w=s; s, is a reduced word for w define
§w =28 &y, and M =gy N, (etawxiv)
Define the
X-symmetrizer py = Z v s X-antisymmetrizer e = Z det(wow)&y,
weWp weWp
Y -symmetrizer pé/ = Z Nw Y -antisymmetrizer eg = Z det(wow)ny.
weWp weWy
The bosonic symmetrizer and the fermionic symmetrizer are
1y = Z ¢3 (L) —two)) T, and ey = Z (—1)t=)—wo) . (bosfersymm)

z€Sn wWESy

The bosonic symmetrizer 1y is a t-analogue of pé( and p%/ and the fermionic symmetrizer g is a t-
analogue of e’ and e} . The following Proposition rewrites the bosonic and fermionic symmetrizers
in terms of the X-symmetrizers and the Y-symmetrizers. It is a reformulation of which
highlights the XY-parallelism in the DAHA.
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Proposition 4.5. ([Mac03| (5.5.14) and (5.5.16)])

1g = pé(cw0 (X_l) = poycw0 (Y) and €0 = Cuyp (X)eé( = Cuyp (Y_l)eé/. (slicksymmA)

4.3.4 Symmetrizers, stabilizers and XY-parallelism
Let A € (a%)". The stabilizer of A under the action of Wy is
Wy={veWy|vix=A} and w) denotes the longest element of W).

Let
WA be the set of minimal length representatives of the cosets in W/Wj.

Let w* be the longest element of W* so that wy = wwy with £(wg) = £(w?) + £(w)). Let

=) & and py = Y & so that Py = pxpY,
’U,EW)‘ veEW
ex = Z det(w*u)é, and el = Z det(wyv)€, so that el = eyey,
ueW?* veWy (
pWs)
Y= > M and p) = > m, so that Py =pypy,
ueEWX veWy
ey = Z det(wu)n, and e} = Z det(wyv)n, so that ey = eyel.
UEWA vEW
The elements in (pWs) have ¢-analogues:
— t——f(wk) Z % f(u and 1)\ — t—%é(UJ)\) Z (t%)ﬁ(’u)Tv’
ueEWX veW)y
RN 1 (pHs)
N = (=t z)w) Z (=t72)" 7T, and ey = (- —wa) Z g(”
wEWA veEW
Then
1p = 1)‘1)\ and €0 = 5)‘5,\.

The following is a generalization of Proposition It is a reformulation of (4.3) which highlights the
XY-parallelism in the DAHA.

Proposition 4.6. Let A € (a3)" and let w? be the longest element of the set W>. Use notations of
the symmetrizers and c-functions as in (ciadefn)), (bosfersymm), (pHs) and (pWs).

1o = prepn (X D1y = pyega (V)1 and
(symwparabA)

g0 = cpr (X)exer = e (Y Hegen.

4.4 Page 4: E-expansions

Proposition 4.7. Let A\ = (A,...,\y) € Z™ with Ay > A2 > -+ > A, and let S\ be the set of
distinct rearrangements of . Then

Py = Z tée(wAz)eV’Z)/\(cwxz(Y))Ez)\ and
zeWA

1\ plwo s _
A>\+p = Z( Q)Z( 02)e Z()\.;_p)(CwOZ(Y 1))Ez()\+p)'
zeWp
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Alternatively, letting v, € Sy be the minimal length permutation such that v,u is weakly increasing,

1 — gri—Hitvn()—ou(i)—1
)E.

_ #{i<j | Hi>ﬂj}(
Py= )t Il —mowo and
/JESn)\ 1<i<j<n
HiZHj

1 — qHe—H $on(d)—vu(@)+1
A)\+p N Z (( H (_1>( 1— q#i—#_jtvu(j)—v“(i) ))Eﬂ
Nesn()\-i-p) IEZZJM?"

If n =2 and m € Z~( then
1—qg™
Pin0) = Eo,m) + t2eV( 0)(€12)Egn0) = E(om) + t(m)E(m,oy

Amwl = E(O m) tQGV( 0)(021>E(m 0) — =FE_muw —

R R
To relate the expressions to the c-functions note that t( mt) =13 (tiﬁiﬁ’ntl) If n = 3 then

1-— q 1-q 1—qt\/1-¢*

1—q 1—¢? 1—gq 1— ¢t 1—gq
“( )( )E f3( )( ) (T=5) Feror
RN rr-Y AN ey AU R Sppery A prer-) MG gy SR CHD)

P1,0,0) = Ep0,1) t( L~ )E(o 1,0+ t2<11—;;t> (f%;;)E(l,O,O)

For general n, if ¢; = (0,...,0,1,0,...,0) is the sequence of length n with 1 in the ith spot and 0
elsewhere then

n n

1= qr 1— qrt 1— qrtn—i—l » 1— qr
Pro,..0) = Ztn Z(1 - qrt) (1 - th2) ( 1—grn—i )E’“Ei - Ztn 1<W>Em.

i=1 i=1

4.5 Page 5: Symmetrization of F,

The following Proposition shows that the symmetrization 19£, of the nonsymmetric Macdonald poly-

nomial F,, is always, up to an explicit constant factor, equal to the symmetric Macdonald polynomial
Py.

Proposition 4.8. Let u = (i1, ..., pn) € Z™. Let A = (A1,...,\,) be the weakly decreasing rear-
rangement of i and let z,, € Sy, be minimal length such that yu = z,\. Let

W)\ = {y S Sn | y>\ = )\} and W)\(t) — Z tz(y)

yeEW,
Then
P t2/010) 1 .
\ = ( )10 .
W(t) \t3tevt (¢, (V) n

Alternatively,

tZZ(wO) 1-— q)‘i_)‘]'tj—i

= Wi(t) H W)%Ew

(i,4)€lnv(z,)
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4.6 Page 6: KZ families

For pe Z", let A= (A > --- > \y,) be the decreasing rearrangement of y and let z, € S,, be minimal
length such that p = z,A. Define

fu=Ey = 3'G0T, By (4.7)

It follows from the identities in the last column of (CXlambdaaction) that

{fu | n€Sy,A} is another basis of C[X]*.

The following Proposition says that the {f, | © € Z"} form a KZ-family, in the terminology of [KT06
Def. 3.3] (see also [CMWI8| Def. 1.13], (17), (18), (19)], Def. 2]).

Proposition 4.9. Let i = (u1,...,un) € Z%,. Leti € {1,...,n— 1} and let T; and g be as defined

mn . Then

t%Tz‘fﬂ _ {fsma ifﬂi > i+,

) and G =4 fum i sin1)-
tfus, i i = piy, . (Hopiteopin=1)

4.7 Lecture 4: Notes and references

Following [Fell] Definition 4.4.2] and Definition 5] and [Mac03| (5.7.6)] (Ferreira references
private communication with Haglund), define the permuted basement Macdonald polynomials by

B =t 2" AT B, for peZ" and z € Sy (4.8)
For the symmetrization of E,, see [Mac03] (5.7.1)] and [Mac95| Remarks after (6.8)]). See [Mac95}

remarks after (6.8)] or [Mac03} (5.7.2)] for the explicit constant.
The fomulas for the symmetrizers 1¢ and ¢ in Section follow [Mac03} (5.5.14) and (5.5.16)].
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