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4 Lecture 4, 16 March 2022: Symmetrizers and E-expansions

4.1 Page 1: Nonsymmetric, relative, symmetric and fermionic Macdonald poly-
nomials

Let q, t
1
2 2 C⇥. Let yn be the operator on C[x±1

1 , . . . , x
±1
n ] given by

(ynh)(x1, . . . , xn) = h(x1, . . . , xn�1, q
�1

xn).

The symmetric group Sn acts on C[x±1
1 , . . . , x

±1
n ] by permuting the variables x1, . . . , xn. Define oper-

ators T1, . . . , Tn�1, g and g
_ on C[x±1

1 , . . . , x
±1
n ] by

Ti = t
� 1

2
�
t�

txi � xi+1

xi � xi+1
(1� si)

�
, g = s1s2 · · · sn�1yn, g

_ = x1T1 · · ·Tn�1, (4.1)

where s1, . . . , sn�1 are the simple transpositions in Sn. The Cherednik-Dunkl operators are

Y1 = gTn�1 · · ·T1, Y2 = T
�1
1 Y1T

�1
1 , Y3 = T

�1
2 Y2T

�1
2 , . . . , Yn = T

�1
n�1Yn�1T

�1
n . (4.2)

For µ 2 Zn the nonsymmetric Macdonald polynomial Eµ is the (unique) element Eµ 2 C[x±1
1 , . . . , x

±1
n ]

such that

YiEµ = q
�µit

�(vµ(i)�1)+ 1
2 (n�1)

Eµ, and the coe�cient of xµ1
1 · · ·x

µn
n in Eµ is 1, (4.3)

where vµ 2 Sn is the minimal length permutation such that vµµ is weakly increasing.
Let µ = (µ1, . . . , µn) and let z 2 Sn.

The relative Macdonald polynomial Ez
µ is E

z

µ = t
� 1

2 (`(zv
�1
µ )�`(v�1

µ ))
TzEµ. (4.4)

Let � = (�1 � · · · � �n) 2 Zn.

The symmetric Macdonald polynomial P� is P� =
X

⌫2Sn�

t
1
2 `(z⌫)Tz⌫E�, (4.5)

where the sum is over rearrangements ⌫ of � and z⌫ 2 Sn is minimal length such that ⌫ = z⌫�.

Let ⇢ = (n� 1, n� 2, . . . , 2, 1, 0). The fermionic Macdonald polynomial A�+⇢ is

A�+⇢ = (�t)`(w0)
X

z2Sn(�+⇢)

(�t
� 1

2 )`(z)TzE�+⇢. (4.6)

4.2 Page 2: HY -decomposition of the polynomial representation

Let HY be the algebra generated by the operators T1, . . . , Tn�1 and Y1, . . . , Yn (so that HY is an a�ne
Hecke algebra). For i 2 {1, . . . , n� 1}, let

⌧
_
i = Ti +

t
� 1

2 (1� t)

1� Y
�1
i

Yi+1
= T

�1
i

+
t
� 1

2 (1� t)Y �1
i

Yi+1

1� Y
�1
i

Yi+1
, (tauipm)

where the second equality is a consequence of Ti � T
�1
i

= t
1
2 � t

� 1
2 . As HY -modules

C[x±1
1 , . . . , x

±1
n ] =

M

�

C[X]� where C[X]� = span{Eµ | µ 2 Sn�},
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and the direct sum is over decreasing � = (�1 � · · · � �n) 2 Zn. A description of the action of H on
C[X]� is given by the following. Let µ 2 Zn and let i 2 {1, . . . , n � 1}. Let vµ 2 Sn be the minimal
length permutation such that vµµ is weakly increasing and let

aµ = q
µi�µi+1t

vµ(i)�vµ(i+1)
,

asiµ = q
µi+1�µit

vµ(i+1)�vµ(i),
and Dµ =

(1� taµ)(1� tasiµ)

(1� aµ)(1� asiµ)
. (forHaction)

Assume that µi > µi+1. By using the identity Esiµ = t
1
2 ⌧

_
i
Eµ if µi > µi+1 from (E2), the eigenvalue

from (8.3) and the two formulas in (tauipm),

Y
�1
i

Yi+1Eµ = aµEµ,

Y
�1
i

Yi+1Esiµ = asiµEsiµ,

t
1
2 ⌧

_
i
Eµ = Esiµ,

t
1
2 ⌧

_
i
Esiµ = DµEµ,

and
t
1
2TiEµ = �

1�t

1�aµ
Eµ + Esiµ,

t
1
2TiEsiµ = DµEµ + 1�t

1�asiµ
Esiµ.

(CXlambdaaction)
Now assume that µi = µi+1. Then vµ(i+ 1) = vµ(i) + 1 and aµ = t

�1 so that

Y
�1
i

Yi+1Eµ = t
�1

Eµ, (t
1
2 ⌧

_
i )Eµ = 0, and (t

1
2Ti)Eµ = tEµ. (Tigivest)

These formulas make explicit the action of HY on C[X]� in the basis {Eµ | µ 2 Sn�}.

4.3 Page 3: Symmetrizers

4.3.1 Bosonic and fermionic symmetrizers

Let w0 be the longest element of Sn so that

w0(i) = n� i+ 1, for i 2 {1, . . . , n}, and `(w0) =
n(n� 1)

2
=

✓
n

2

◆
.

Let z 2 Sn. A reduced expression for z is an expression for z as a product of si,

z = si1 · · · si` , such that i1, . . . , i` 2 {1, . . . , n� 1} and ` = `(z).

Define
Tz = Ti1 · · ·Ti` if z = si1 · · · si` is a reduced word for z.

The bosonic symmetrizer

10 =
X

z2Sn

t
1
2 (`(z)�`(w0))Tz is a t-analogue of p0 =

X

z2Sn

z. (fullsymm)

The fermionic symmetrizer

"0 =
X

w2Sn

(�t
� 1

2 )`(z)�`(w0)Tz is a t-analogue of e0 =
X

w2Sn

(�1)`(z)�`(w0)z.

The symmetrizers satisfy

Ti10 = 10Ti = t
1
210 and Ti"0 = "0Ti = �t

� 1
2 "0, for i 2 {1, . . . , n� 1},

120 = t
� 1

2 `(w0)W0(t)10 and "
2
0 = t

� 1
2 `(w0)W0(t)"0, (symmprops)

where
W0(t) =

X

z2Sn

t
`(z)is the Poincaré polynomial for Sn. (Poincarepoly)
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Proposition 4.1. As operators on C[x±1
1 , . . . , x

�1
n ],

10 =
⇣ X

z2W
z

⌘⇣ Y

1i<jn

xi � txj

xi � xj

⌘
.

Let

cij(x) =
t
� 1

2 � t
1
2xix

�1
j

1� xix
�1
j

= t
� 1

2
xj � txi

xj � xi
, for i, j 2 {1, . . . , n} with i 6= j. (cfnxdefn)

If w 2 Sn then let Inv(w) = {(i, j) | i, j 2 {1, . . . , n}, i < j and w(i) > w(j)} and define

cw(x) =
Y

(i,j)2Inv(w)

cij(x). (cfcnxw)

With these notations the identity in Proposition 4.1 is

10 = p0cw0(x
�1), (symmopalt)

where

cw0(x
�1) =

Y

1i<jn

cij(x
�1) =

Y

1i<jn

t
� 1

2 � t
1
2x

�1
i

xj

1� x
�1
i

xj

= t
�(n2)

Y

1i<jn

xi � txj

xi � xj
.

Proposition 4.2. As operators on C[x±1
1 , . . . , x

�1
n ],

10 = p0cw0(x
�1).

Proof. Let w 2 Sn. Using Ti = sici,i+1(x�1) + (t
1
2 � ci,i+1(x)) and a reduced word w = si1 · · · si` and

expanding, gives

Tw = Ti1 · · ·Ti` = Tw = wcw(x
�1) +

X

v<w

vbv(x), with bv(x) 2 C(x1, . . . , xn).

Thus there are av(x) 2 C(x1, . . . , xn) such that

10 =
X

w2Sn

t
� 1

2 `(w0w)
Tw = w0cw0(x

�1) +
X

w<w0

vav(x), (topterm)

Since p0 =
P

w2Sn
w then sip0 = p0 and

Ti(p0cw0(x
�1)) =

�
ci,i+1(x)si + (t

1
2 � ci,i+1(x))

�
p0cw0(x

�1)

=
�
ci,i+1(x) + (t

1
2 � ci,i+1(x))

�
p0cw0(x

�1) = t
1
2
�
p0cw0(x

�1)
�
.

Since 10 is determined, up to multiplication by a constant, by the property that Ti10 = t
1
210 for

i 2 {1, . . . , n� 1}, it follows from (topterm) that, as operators on C[X],

10 = p0cw0(x
�1).
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4.3.2 Symmetrizers and stabilizers

Let � = (�1, . . . ,�`) 2 Zn. Let

W� = {w 2 Sn | w� = �} which has longest element denoted w�, and

W
� = {minimal length representatives of the cosets in Sn/W�},

so that W� is the stabilizer of � under the action of Sn (acting by permutations of the coordinates).
Let

p
� =

X

u2W�

u and p� =
X

v2W�

v. (partialWsymm)

The elements p� and p� have t-analogues given by

1� = t
� 1

2 `(w0w�)
X

u2W�

t
1
2 `(u)Tu and 1� = t

� 1
2 `(w�)

X

v2W�

t
1
2 `(v)Tv. (partialHsymm)

Then
p0 = p

�
p� and 10 = 1�1�.

The following proposition provides a formula for the bosonic symmetrizer 10 which is of striking
utility (see the proof of the E-expansion and the proof that Macdonald’s operators are the same as
the elementary symmetric functions in the Yi).

Proposition 4.3. Let � = (�1, . . . ,�`) 2 Zn and let w� be the longest element of the set W �. Use
notations for the symmetrizers and c-functions as in (fullsymm), (partialWsymm), (partialHsymm)
and (cfcnxw). Then, as operators on C[X],

10 = p
�
cw�(x�1)1�.

Proposition 4.4. Let � = (�1, . . . ,�`) 2 Z and let w
� be the longest element of the set W

�. Use
notations for the symmetrizers and c-functions as in (fullsymm), (partialWsymm), (partialHsymm)
and (cfcnxw). Then, as operators on C[X],

10 = p
�
cw�(x�1)1�.

Proof. For � = (�1, . . . ,�n) with �1 � �2 � · · · � �n,

Inv(w�) = {(i, j) | i < j and �i = �j } and Inv(w�) = {(i, j) | i < j and �i > �j }.

If u 2 W� then �u(i) > �u(j) if �i > �j so that uInv(w�) = {(u(i), u(j)) | i < j and �i > �j} = Inv(w�),

which gives that w�1
�

cw� = ucw� = c
w� for u 2 W�. This is the reason for the equalities

cw0 = (w�1
�

cw�)cw� = cw�cw� and p�cw� = cw�p�. (cfcnsplit)

Replacing Sn by the group W� in the proof of Proposition 4.1 gives 1� = p�cw�(x
�1). Using the

relations in (cfcnsplit) and 1� = p�cw�(x
�1) gives

10 = p0cw0(x
�1) = p

�
p�cw�1

� w�(x
�1)cw�(x

�1) = p
�
cw�(x�1)p�cw�(x

�1) = p
�
cw�(x�1)1�.
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4.3.3 Symmetrizers and XY-parallelism

The double a�ne Hecke algebra (of type GLn) is the algebra generated by symbols g and Xk and Ti

for i, k 2 Z with relations

Ti+n = Ti, Xi+n = q
�1

Xi, XkX` = X`Xk, for i, k, ` 2 Z; (periodicityrelsF)

TiTi+1Ti = Ti+1TiTi+1, TiTj = TjTi, T
2
i = (t

1
2 � t

� 1
2 )Ti + 1, (HeckerelsF)

for i, j 2 Z with j 62 {i� 1, i+ 1};

Tixi = Xi+1Ti � (t
1
2 � t

� 1
2 )Xi+1,

Tixi+1 = XiTi + (t
1
2 � t

� 1
2 )Xi+1,

Xi+1 = TiXiTi, and TiXj = XjTi, (Xa↵HeckerelsF)

for i 2 {1, . . . , n� 1} and j 2 {1, . . . , n} with j 62 {i, i+ 1}; and

gXi = Xi+1g and gTi = Ti+1g for i 2 Z. (DAHArels2F)

The Cherednik-Dunkl operators are Y1, . . . , Yn given by

Y1 = gTn�1 · · ·T1, and Yj+1 = T
�1
j

YjT
�1
j

for j 2 {1, . . . , n� 1}. (CDops)

Define Yi for i 2 Z by setting

Yi+n = q
�1

Yi and let g
_ = x1T1 · · ·Tn�1.

c-functions. For i, j 2 Z with i 6= j set

cij(X) =
t
� 1

2 � t
1
2XiX

�1
j

1�XiX
�1
j

and cij(Y ) =
t
� 1

2 � t
1
2YiY

�1
j

1� YiY
�1
j

. (cfnadefn)

Y-intertwiners. For i 2 {1, . . . , n� 1} define ⌘si by the equation

⌘si =
1

c�↵
_
i

(T_
i + (c�↵

_
i
� t

1
2 )) =

1

c�↵
_
i

((T_
i )

�1 + (c�↵
_
i
� t

� 1
2 )). (etaidefn)

X-intertwiners. For i 2 {1, . . . , n� 1} define ⇠si by the equation

⇠si =
1

c�↵i

(Ti + (c�↵i � t
1
2 )) =

1

c�↵i

((Ti)
�1 + (c�↵i � t

� 1
2 ). (xiidefn)

If w 2 Sn and w = si1 · · · si` is a reduced word for w define

⇠w = ⇠si1
· · · ⇠si`

and ⌘w = ⌘sj1
· · · ⌘sjm

, (etawxiv)

Define the

X-symmetrizer p
X

0 =
X

w2W0

⇠w , X-antisymmetrizer e
X

0 =
X

w2W0

det(w0w)⇠w,

Y -symmetrizer p
Y

0 =
X

w2W0

⌘w , Y -antisymmetrizer e
Y

0 =
X

w2W0

det(w0w)⌘w.

The bosonic symmetrizer and the fermionic symmetrizer are

10 =
X

z2Sn

t
1
2 (`(z)�`(w0))Tz and e0 =

X

w2Sn

(�1)`(z)�`(w0)z. (bosfersymm)

The bosonic symmetrizer 10 is a t-analogue of pX0 and p
Y

0 and the fermionic symmetrizer "0 is a t-
analogue of eX0 and e

Y

0 . The following Proposition rewrites the bosonic and fermionic symmetrizers
in terms of the X-symmetrizers and the Y -symmetrizers. It is a reformulation of (symmopalt) which
highlights the XY-parallelism in the DAHA.
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Proposition 4.5. ([Mac03, (5.5.14) and (5.5.16)])

10 = p
X

0 cw0(X
�1) = p

Y

0 cw0(Y ) and "0 = cw0(X)eX0 = cw0(Y
�1)eY0 . (slicksymmA)

4.3.4 Symmetrizers, stabilizers and XY-parallelism

Let � 2 (a⇤Z)
+. The stabilizer of � under the action of W0 is

W� = {v 2 W0 | v� = �} and w� denotes the longest element of W�.

Let
W

� be the set of minimal length representatives of the cosets in W/W�.

Let w� be the longest element of W � so that w0 = w
�
w� with `(w0) = `(w�) + `(w�). Let

p
�

X =
X

u2W�

⇠u and p
X

�
=

X

v2W�

⇠v so that p
X

0 = p
�

X
p
X

�
,

e
�

X =
X

u2W�

det(w�
u)⇠u and e

X

�
=

X

v2W�

det(w�v)⇠v so that e
X

0 = e
�

X
e
X

�
,

p
�

Y =
X

u2W�

⌘u and p
Y

�
=

X

v2W�

⌘v, so that p
Y

0 = p
�

Y
p
Y

�
,

e
�

Y =
X

u2W�

det(w�
u)⌘u and e

Y

�
=

X

v2W�

det(w�v)⌘v so that e
Y

0 = e
�

Y
e
Y

�
.

(pWs)

The elements in (pWs) have t-analogues:

1� = t
� 1

2 `(w
�)

X

u2W�

(t
1
2 )`(u)Tu and 1� = t

� 1
2 `(w�)

X

v2W�

(t
1
2 )`(v)Tv,

"
� = (�t

� 1
2 )�`(w�)

X

u2W�

(�t
� 1

2 )`(u)Tu and "� = (�t
� 1

2 )�`(w�)
X

v2W�

(�t
� 1

2 )`(v)Tv.

(pHs)

Then
10 = 1�1� and "0 = "

�
"�.

The following is a generalization of Proposition 4.5. It is a reformulation of (4.3) which highlights the
XY-parallelism in the DAHA.

Proposition 4.6. Let � 2 (a⇤Z)
+ and let w� be the longest element of the set W �. Use notations of

the symmetrizers and c-functions as in (cfnadefn), (bosfersymm), (pHs) and (pWs).

10 = p
�

Xcw�(X�1)1� = p
�

Y cw�(Y )1� and

"0 = cw�(X)e�X"� = cw�(Y �1)e�Y "�.
(symwparabA)

4.4 Page 4: E-expansions

Proposition 4.7. Let � = (�1, . . . ,�n) 2 Zn with �1 � �2 � · · · � �n and let Sn� be the set of
distinct rearrangements of �. Then

P� =
X

z2W�

t
1
2 `(w

�
z)ev⇢

z�
(cw�z(Y ))Ez� and

A�+⇢ =
X

z2W0

(�t
1
2 )`(w0z)ev⇢

z(�+⇢)(cw0z(Y
�1))Ez(�+⇢).
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Alternatively, letting vµ 2 Sn be the minimal length permutation such that vµµ is weakly increasing,

P� =
X

µ2Sn�

t
#{i<j | µi>µj}

⇣ Y

1i<jn
µi>µj

1� q
µi�µj t

vµ(j)�vµ(i)�1

1� qµi�µj tvµ(j)�vµ(i)

⌘
Eµ and

A�+⇢ =
X

µ2Sn(�+⇢)

⇣⇣ Y

1i<jn
µi>µj

(�1)
⇣1� q

µi�µj t
vµ(j)�vµ(i)+1

1� qµi�µj tvµ(j)�vµ(i)

⌘⌘
Eµ.

If n = 2 and m 2 Z>0 then

P(m,0) = E(0,m) + t
1
2 ev⇢(m,0)(c12)E(m,0) = E(0,m) + t

⇣ 1� q
m

1� qmt

⌘
E(m,0),

Am!1 = E(0,m) � t
1
2 ev⇢(m,0)(c21)E(m,0) = E�m!1 �

1� q
m
t
2

1� qmt
Em!1 .

To relate the expressions to the c-functions note that t
⇣

1�q
m

1�qmt

⌘
= t

1
2

⇣
t
� 1

2�t
1
2 q�m

t
�1

1�q�mt�1

⌘
. If n = 3 then

P(2,1,0) = E(0,1,2) + t

⇣ 1� q

1� qt

⌘
E(1,0,2) + t

⇣ 1� q

1� qt

⌘
E(0,2,1) + t

2
⇣ 1� qt

1� qt2

⌘⇣ 1� q
2

1� q2t

⌘
E(2,0,1)

+ t
2
⇣ 1� qt

1� qt2

⌘⇣ 1� q
2

1� q2t

⌘
E(1,2,0) + t

3
⇣ 1� q

1� qt

⌘⇣ 1� q
2
t

1� q2t2

⌘⇣ 1� q

1� qt

⌘
E(2,1,0),

P(1,0,0) = E(0,0,1) + t

⇣ 1� q

1� qt

⌘
E(0,1,0) + t

2
⇣ 1� q

1� qt

⌘⇣ 1� qt

1� qt2

⌘
E(1,0,0)

For general n, if "i = (0, . . . , 0, 1, 0, . . . , 0) is the sequence of length n with 1 in the ith spot and 0
elsewhere then

P(r,0,...,0) =
nX

i=1

t
n�i

⇣ 1� q
r

1� qrt

⌘⇣ 1� q
r
t

1� qrt2

⌘
· · ·

⇣1� q
r
t
n�i�1

1� qrtn�i

⌘
Er"i =

nX

i=1

t
n�i

⇣ 1� q
r

1� qrtn�i

⌘
Er"i .

4.5 Page 5: Symmetrization of Eµ

The following Proposition shows that the symmetrization 10Eµ of the nonsymmetric Macdonald poly-
nomial Eµ is always, up to an explicit constant factor, equal to the symmetric Macdonald polynomial
P�.

Proposition 4.8. Let µ = (µ1, . . . , µn) 2 Zn. Let � = (�1, . . . ,�n) be the weakly decreasing rear-
rangement of µ and let zµ 2 Sn be minimal length such that µ = zµ�. Let

W� = {y 2 Sn | y� = �} and W�(t) =
X

y2W�

t
`(y)

.

Then

P� =
t
1
2 `(w0)

W�(t)

⇣ 1

t
1
2 `(zµ)ev⇢

�
(czµ(Y ))

⌘
10Eµ.

Alternatively,

P� =
t
1
2 `(w0)

W�(t)

⇣ Y

(i,j)2Inv(zµ)

1� q
�i��j t

j�i

1� q�i��j tj�i+1

⌘
10Eµ.
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4.6 Page 6: KZ families

For µ 2 Zn, let � = (�1 � · · · � �n) be the decreasing rearrangement of µ and let zµ 2 Sn be minimal
length such that µ = zµ�. Define

fµ = E
zµ

�
= t

1
2 `(zµ)TzµE�. (4.7)

It follows from the identities in the last column of (CXlambdaaction) that

{fµ | µ 2 Sn�} is another basis of C[X]�.

The following Proposition says that the {fµ | µ 2 Zn
} form a KZ-family, in the terminology of [KT06,

Def. 3.3] (see also [CMW18, Def. 1.13], [CdGW15, (17), (18), (19)], [CdGW16, Def. 2]).

Proposition 4.9. Let µ = (µ1, . . . , µn) 2 Zn

�0. Let i 2 {1, . . . , n � 1} and let Ti and g be as defined
in (8.1). Then

t
1
2Tifµ =

(
fsiµ, if µi > µi+1,

tfµ, if µi = µi+1,
and gfµ = q

�µnf(µn,µ1,...,µn�1).

4.7 Lecture 4: Notes and references

Following [Fe11, Definition 4.4.2] and [Al16, Definition 5] and [Mac03, (5.7.6)] (Ferreira references
private communication with Haglund), define the permuted basement Macdonald polynomials by

E
z

µ = t
� 1

2 `(w0)t
1
2 `(z)TzEµ, for µ 2 Zn and z 2 Sn. (4.8)

For the symmetrization of Eµ see [Mac03, (5.7.1)] and [Mac95, Remarks after (6.8)]). See [Mac95,
remarks after (6.8)] or [Mac03, (5.7.2)] for the explicit constant.

The fomulas for the symmetrizers 10 and "0 in Section 4.3 follow [Mac03, (5.5.14) and (5.5.16)].
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