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1 Lecture 1, 23 February 2022: n-periodic permutations

1.1 The a�ne Weyl group

The (type GLn) finite Weyl group is

Wfin = Sn, the symmetric group of bijections v : {1, . . . , n} ! {1, . . . , n}

with operation of composition of functions. The type GLn a�ne Weyl group W is the group of
n-periodic permutations w : Z ! Z i.e.,

bijective functions w : Z ! Z such that w(i+ n) = w(i) + n. (1.1)

Any n-periodic permutation w is determined by its values w(1), . . . , w(n). Using w(i+n) = w(i) +n,
any permutation v : {1, . . . , n} ! {1, . . . , n} in Sn extends to an n-periodic permutation in W , and so
Sn ✓ W .

Define ⇡ 2 W by
⇡(i) = i+ 1, for i 2 Z. (1.2)

Define s0, s1, . . . , sn�1 2 W by

si(i) = i+ 1,
si(i+ 1) = i,

and si(j) = j for j 2 {0, 1, . . . , i� 1, i+ 2, . . . , n� 1}. (1.3)

The finite Weyl group Sn is the subgroup of W generated by s1, . . . , sn�1.
For µ = (µ1, . . . , µn) 2 Zn define tµ 2 W by

tµ(1) = 1 + nµ1, tµ(2) = 2 + nµ2, . . . , tµ(n) = n+ nµn. (1.4)

Then
W = {tµv | µ 2 Zn

, v 2 Sn} with vtµ = tvµv for v 2 Sn and µ 2 Zn. (1.5)

The map
: W ! Sn given by tµv = v, for µ 2 Zn and v 2 Sn, (1.6)

is a surjective group homomorphism.

1.2 Inversions

Let w 2 W be an n-periodic permutation. An inversion of w is

(j, k) with j < k and w(j) > w(k).

If (j, k) is an inversion of w then (j + `n, k + `n) is an inversion of w for ` 2 Z and so it is sensible to
assume j 2 {1, . . . , n} and define

Inv(w) = {(j, k) | j 2 {1, . . . , n}, k 2 Z, j < k and w(j) > w(k)}.

The number of elements of Inv(w),

`(w) = #Inv(w), is the length of w.

5



GradStudies A Notes, Arun Ram, version: February 18, 2022

Proposition 1.1. Let µ 2 Zn and v 2 Sn. Then

Inv(tµv) =
⇣ [

i<j,v(i)<v(j)
µv(i)�µv(j)

µj�µi�1[

`=0

{(i, j + `n)}
⌘
[

⇣ [

i<j,v(i)>v(j)
µv(i)�µv(j)

µj�µi[

`=0

{(i, j + `n)}
⌘

[

⇣ [

i<j,v(i)<v(j)
µv(i)<µv(j)

µi�µj[

`=1

{((j, i+ `n)}
⌘
[

⇣ [

i<j,v(i)>v(j)
µv(i)<µv(j)

µi�µj�1[

`=1

{((j, i+ `n)}
⌘

For notational convenience when working with reduced words, let s⇡ = ⇡. Then

`(s⇡) = `(⇡) = 0 and `(si) = 1 for i 2 {1, . . . , n� 1}.

Let w 2 W . A reduced word for w is an expression of w as a product of s1, . . . , sn�1 and s⇡,

w = si1 . . . si` with i1, . . . , i` 2 {1, . . . , n� 1,⇡} such that `(w) = `(si1) + · · ·+ `(si`).

1.3 The elements uµ, vµ, tµ

As in (1.4), for µ = (µ1, . . . , µn) 2 Zn define tµ 2 W by

tµ(1) = 1 + nµ1, tµ(2) = 2 + nµ2, . . . , tµ(n) = n+ nµn.

Then
tµ = uµvµ, where vµ 2 Sn and uµ is minimal length in the coset tµWfin. (1.7)

Proposition 1.2. Let µ = (µ1, . . . , µn) 2 Zn

�0. Let uµ and vµ be as defined in (1.7).

(a) vµ is the minimal length element of Sn such that vµµ is (weakly) increasing.

(b) The permutation vµ : {1, . . . , n} ! {1, . . . , n} is given by

vµ(i) = 1 +#{i
0
2 {1, . . . , i� 1} | µi0  µi}+#{i

0
2 {i+ 1, . . . , n} | µi0 < µi}.

(c) The n-periodic permutations uµ : Z ! Z and u
�1
µ : Z ! Z are given by

uµ(i) = v
�1
µ (i) + nµi and u

�1
µ (i) = vµ(i)� nµvµ(i) for i 2 {1, . . . , n}.

(d) Let |µi � µj | denote the absolute value of µi � µj. Then

`(tµ) =
X

i,j2{1,...,n}
i<j

|µi � µj |, `(vµ) = #{i < j | µi > µj} and `(uµ) = `(tµ)� `(vµ).

Remark 1.3. Define an action of W on Zn by

⇡(µ1, . . . , µn) = (µn + 1, µ1, . . . , µn�1) and (1.8)

si(µ1, . . . , µn) = (µ1, . . . , µi�1, µi+1, µi, µi+2, . . . , µn), for i 2 {1, . . . , n}.

Then uµ is the minimal length element of W such that uµ(0, 0, . . . , 0) = (µ1, . . . , µn).
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1.4 Boxes

Fix n 2 Z>0. A box is an element of {1, . . . , n}⇥ Z�0 so that

{boxes} = {(r, c) | r 2 {1, . . . , n}, c 2 Z�0}.

To conform to [Mac, p.2], we draw the box (r, c) as a square in row r and column c using the same
coordinates as are usually used for matrices.

The cylindrical coordinate of the box (r, c) is the number r + nc. (1.9)

The basement is the set {(r, 0) | r 2 {1, . . . , n}}, so that the basement is the collection of boxes in the
0th column. Pictorially,

1 (1, 0) 6 (1, 1) 11(1, 2) 16 (1, 3) 23 (1, 4) · · ·

2 (2, 0) 7 (2, 1) 12 (2, 2) 17 (2, 3) 22 (2, 4) · · ·

3 (3, 0) 8 (3, 1) 13 (3, 2) 18 (3, 3) 23 (3, 4) · · ·

4 (4, 0) 9 (4, 1) 14 (4, 2) 19 (4, 3) 24 (4, 4) · · ·

5 (5, 0) 10 (5, 1) 15 (5, 2) 20 (5, 3) 25 (5, 4) · · ·

with box (r, c) numbered r+nc.

Let µ = (µ1, . . . , µn) 2 Zn

�0 an n-tuple of nonnegative integers. The diagram of µ is the set dg(µ)

of boxes with µi boxes in row i and the diagram of µ with basement cdg(µ) includes the extra boxes
(r, 0) for r 2 {1, . . . , n}:

dg(µ) = {(r, c) | r 2 {1, . . . , n} and c 2 {1, . . . , µr}} and

cdg(µ) = {(r, c) | r 2 {1, . . . , n} and c 2 {0, 1, . . . , µr}}

It is often convenient to abuse notation and identify µ, dg(µ) and cdg(µ) (because these are just di↵erent
ways of viewing the sequence (µ1, . . . , µn)). For example, if µ = (0, 4, 1, 5, 4) then

dg(µ) = and cdg(µ) = .

1.5 A�ne coroots

Let aZ be the set of Z-linear combinations of symbols "_1 , . . . , "
_
n ,K. The a�ne coroots are

↵
_
i,j+`n

= "
_
i � "

_
j + `K with i, j 2 {1, . . . , n} and i 6= j and ` 2 Z

(in the context of the corresponding a�ne Lie algebra the symbol K is the central element). The shift
and height of an a�ne coroot are given by

sh("_i � "
_
j + `K) = �` and ht("_i � "

_
j + `K) = j � i. (1.10)

The a�ne coroot corresponding to an inversion

(i, k) = (i, j + `n) with i, j 2 {1, . . . , n} and ` 2 Z, is ↵
_
i,j+`n

= "
_
i � "

_
j + `K. (1.11)
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Define a Z-linear action of the a�ne Weyl group W on aZ by

⇡
�1

"
_
1 = "

_
n +K, ⇡

�1
"
_
i = "

_
i�1 for i 2 {2, . . . , n}, (1.12)

si"
_
i = "

_
i+1, si"

_
i+1 = "

_
i , si"j = "

_
j if j 2 {1, . . . , n} and j 62 {i, i+ 1}.

If µ = (µ1, . . . , µn) 2 Zn then tµ"
_
i
= "

_
i
� µiK.

Let

↵
_
0 = ↵

_
n,n+1 = "

_
n � "

_
1 +K, and ↵

_
i = "

_
i � "

_
i+1 for i 2 {1, . . . , n� 1}.

Let w 2 W and let w = si1 · · · si` be a reduced word for w. The coroot sequence of the reduced word
w = si1 · · · si` (recall that s⇡ = ⇡) is

the sequence (�_
k
| k 2 {1, . . . , `} and ik 6= ⇡}) given by �

_
k
= s

�1
i`

· · · s
�1
ik+1

↵
_
ik
. (1.13)

Then, identifying inversions with a�ne coroots as in (1.11),

Inv(w) = {�
_
k
| k 2 {1, . . . , `} and k 6= ⇡} (1.14)

(see [Mac03, (2.2.9)] or [Bou, Ch. VI §1 no. 6 Cor. 2]).

1.6 The box greedy reduced word for uµ

Let µ 2 Zn.
Write (r, c) 2 µ if r 2 {1, . . . , n} and c 2 Z with c  µr.

For (r, c) 2 µ define

uµ(r, c) = #{r
0
2 {1, . . . , r � 1} | µr0 < c  µr}+#{r

0
2 {r + 1, . . . , n} | µr0 < c� 1 < µr}.

The box greedy reduced word for uµ is

u
⇤
µ =

Y

(r,c)2µ

(suµ(r,c) · · · s1⇡), (1.15)

where the product is over the boxes of µ in increasing cylindrical wrapping order. The following
Proposition justifies the terminology box greedy reduced word for uµ.

Proposition 1.4. Let µ 2 Zn. For r 2 {1, . . . , n} and c 2 Z define

vµ(r) = 1 +#{r
0
2 {1, . . . , r � 1} | µr0  µr}+#{r

0
2 {r + 1, . . . , n} | µr0 < µr}.

and
armµ(r, c) = µr � c+ 1.

The product u⇤µ is a reduced word for uµ, the inversion set of uµ is

Inv(uµ) =
[

(r,c)2µ

uµ(r,c)[

i=1

{"
_
vµ(r) � "

_
i + armµ(r, c)K} and `(uµ) =

X

(r,c)2µ

uµ(r, c).
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Remark 1.5. Let µ 2 Zn

�0. For (r, c) 2 µ define

attackµ(r, c) = {(r0, c) 2 µ | r
0
< r} t {(r0, c� 1) 2 µ | r

0
> r}.

Then
uµ(r, c) = n� 1�#attackµ(r, c).

For example, with µ = (3, 0, 5, 1, 4, 3, 4) and b = (5, 2), which has cylindrical coordinate b = 5+7·2 = 19
the set attackµ(b) is pictured as

attackµ(b) =

X

X

b

X

X

and uµ(b) = uµ(5, 2) = 7� 1� 4 = 2.
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