1.15 Limits and addition, scalar multiplication, multiplication, composition and order

The tolerance set is

$$\mathbb{E} = \{10^{-1}, 10^{-2}, \ldots\}.$$

Let $m, n \in \mathbb{Z}_{>0}$ and let $f : \mathbb{R}^m \to \mathbb{R}^n$. Let $a \in \mathbb{R}^m$ and $\ell \in \mathbb{R}^n$.

$$\lim_{x \to a} f(x) = \ell \qquad \text{means}$$

if $\varepsilon \in \mathbb{E}$ then there exists $\delta \in \mathbb{E}$ such that if $d(x,a) < \delta$ then $d(f(x),\ell) < \varepsilon$.

Let a_1, a_2, \ldots be a sequence in \mathbb{R}^m . Let $\ell \in \mathbb{R}^m$.

$$\lim_{n \to \infty} a_n = \ell \qquad \text{means}$$

if $\varepsilon \in \mathbb{E}$ then there exists $N \in \mathbb{Z}_{>0}$ such that if $n \in \mathbb{Z}_{>N}$ then $d(a_n, \ell) < \varepsilon$.

Theorem 1.5. Let $n \in \mathbb{Z}_{>0}$. Let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be functions and let $a \in X$.

Assume that
$$\lim_{x \to a} f(x)$$
 and $\lim_{x \to a} g(x)$ exist

Then

(a)
$$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x),$$

- (b) If $c \in \mathbb{R}$ then $\lim_{x \to a} cf(x) = c \lim_{x \to a} f(x)$,
- (c) $\lim_{x \to a} (f(x)g(x)) = \left(\lim_{x \to a} f(x)\right) \left(\lim_{x \to a} g(x)\right).$

Theorem 1.6. Let $m, n, p \in \mathbb{Z}_{>0}$ Let $f: \mathbb{R}^n \to \mathbb{R}^p$ and $g: \mathbb{R}^m \to \mathbb{R}^n$ be functions and let $a \in \mathbb{R}^m$ and $\ell \in \mathbb{R}^n$.

Assume that
$$\lim_{x \to a} g(x)$$
 and $\lim_{x \to a} f(g(x))$ exist and $\lim_{x \to a} g(x) = \ell$.

Then

$$\lim_{y \to \ell} f(y) = \lim_{x \to a} f(g(x)).$$

Theorem 1.7.

(a) Let $(a_1, a_2, ...)$ and $(b_1, b_2, ...)$ be sequences in \mathbb{R} . Assume that $\lim_{n \to \infty} a_n$ and $\lim_{n \to \infty} b_n$ exist and

if
$$n \in \mathbb{Z}_{>0}$$
 then $a_n \le b_n$. Then $\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n$.

(b) Let $n \in \mathbb{Z}_{>0}$ and let $f: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}$ be functions. Let $a \in \mathbb{R}^n$. Assume that $\lim_{x \to a} f(x)$ and $\lim_{x \to a} g(x)$ exist and

if
$$x \in X$$
 then $f(x) \le g(x)$. Then $\lim_{x \to a} f(x) \le \lim_{x \to a} g(x)$.