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1.8. Bilinear, Sesquilinear and quadratic forms for GTLA

1.8.1. Bilinear forms. — Let F be a field and let V' be an F-vector space. A bilinear
form on V is a function

() VXV F

(v, w) ; (v, w) such that

(a) If vy, ve, w € W then (vy + vg, w) = (v, w) + (v2, W),
(b) If v, wy,wy € V then (v, wy + ws) = (v, wy) + (v, ws),
(c) If c € F and v,w € W then (cv, w) = c¢(v,w),
(d) If ¢ € F and v,w € W then (v, cw) = c¢{v,w).

A bilinear form (,): V x V — F is symmetric if it satsfies:
(S) If v,w € V then (v,w) = (w,v).

A bilinear form (,): V x V — F is skew-symmetric if it satsfies:
(A) If v,w € V then (v, w) = —(w,v).

1.8.2. Quadratic forms. — Let F be a field, V' and F-vector space and (,): VxV — F
a bilinear form. The quadratic form associated to (,) is the function

[ ||2: VoF given by ||v||2 (v,v).

Theorem 1.8.1. — Let V be an inner product space.

(a) (Parallelogram property) If x,y € V then
Iz + yll* + llz = yll* = 2[|=]* + 2[ly]|*.
(b) (Pythagorean theorem) If x,y € V and (z,y) =0 and (y,x) =0 then
[ + llyll* = ll= + yl*.

(¢) (Reconstruction) Assume that (,) is symmetric and that 2 # 0 in F. Let x,y € V.

Then

(@,y) =5z +yl* = lz1* = yl®).

1.8.3. Sesquilinear forms. — Let F be a field and let : F — F be a function that
satisfies:
if cj,co€Fthen ¢ fca=0+0, ee=cec and 1=1.
The favourite example of such a function is complex conjugation. The other favourite
example is the identity map idp.
Let V' be an F-vector space. A sesquilinear form on V is a function
(,)y: VxV — F
(v,w) — (v, w)
(a) If vy, v9, w € W then (vy + vo, w) = (v, w) + (v2, W),
(b) If v, wy,wy € V then (v, w; + wq) = (v, wy) + (v, ws),
(c) If c € F and v,w € W then (cv, w) = c¢(v,w),
(d) If c € F and v,w € W then (v, cw) = ¢(v, w).

A sesquilinear form (,): V x V' — F is Hermitian if (,) satsfies:
(H) If v,w € V then (v, w) = (w,v).

such that
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1.8.4. Gram matrix of (,) with respect to a basis B. — Assume n € Z-( and
dim(V) =n. Let (,): V x V — F be a bilinear form and let B = {by,...,b,} be a basis
of V. The Gram matriz of (,) with respect to the basis B is

Gp € M,(F) given by Gp(i,7) = (bi, bj).

Let C' = {c1,...,¢,} be another basis of V' and let Pop be the change of basis matrix
given by

¢i =Y Ppe(ji);,  forie{l,... n}
i=1

Since
Gol(i,j) = {cie;) = > (Ppo(k, )b, Ppe(l, j)or) = > Pk, i)Gp(k,1)Pacl(l, j),
k=1 k=1
then

Geo = PpoGgpPes,

1.8.5. Orthogonals, Isotropy and dual bases. — Let W C V be a subspace of V.
The orthogonal to W' is

W+ ={veV|ifweW then (v,w) = 0}.
The subspace W is nonisotropic if W N W+ = 0.

Proposition 1.8.2. — A sesquilinear form (,): V x V. — F satisfies
(no isotropic vectors condition) If v € V' and (v,v) = 0 then v = 0.
if and only if it satsifies
(no isotropic subspaces condition) If W is a subspace of V then W N W+ = 0.

Let k € Z~( and assume that dim(W) = k. Let (wy,...,wy) be a basis of W. A dual
basis to (wy, ..., wy) is a basis (w', ..., w*) of W such that

ifi,j € {1,...,k} then (w' w;) = d;.

Proposition 1.8.3. — LetV be a vector space with a sesquilinear form (,): VxV — F.
Let W CV be a subspace of V. Assume W is finite dimensional and that (wy, ..., wy) is
a basis of W. The following are equivalent:
(a) A dual basis to (wy,...,wy) exists.
(b) The Gram matriz G of (,}: W x W — F with respect to (w1, ..., wy) is invertible.
(c) WnNWt =o.

1.8.6. Orthogonal projections. — Let F be a field and let V' be an F-vector space.
Let (,): V x V — F be a seqsuilinear form.
Let k € Z~o and let W be a subspace of V such that dim(W) =k and W N W+ = 0.

Let (wy,...,w;) be a basis of W and let (w',...,w") be the dual basis of W. The
orthogonal projection onto W is the function

Py:V =V given by Py (v) = Z(v, w;hw'.
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The following proposition shows that Py, does not depend on which choice of basis of W
is used to construct Py .

Proposition 1.8.4. — (Characterization of orthogonal projection) Let n € Z~q and let
V' be an inner product space with dim(V) = n. Let W be a subspace of V' such that

W NW+ = 0. The orthogonal projection onto W is the unique linear transformation
P:V —V such that

(1) If v € V then P(v) € W.
(2) IfveV andw € W then (v,w) = (P(v),w),

The following proposition explains how Py produces the decomposition V. =W @ W+.

Theorem 1.8.5. — Let n € Z~q and let V be an inner product space with dim(V') = n.
Let W be a subspace of V' such that W N’ W=+ = 0. Let Py be the orthogonal projection
onto W and let Py =1 — Py. Then

Py =Py, Piy.=Py., PwPy.=Py.Py=0, 1=Py+ Py,

ker(Py) = W, im(Py) =W and V=WwaoWw

1.8.7. Orthonormal bases. — Let n € Z-q and let V' be an inner product space with
dim(V') = n. An orthonormal basis of V', or self-dual basis of V', is a basis {u1, ..., u,}

such that
0. ifiti
ifi,j€{1,...,n} then (u;u;)=1"_" 1 Z#]’
1, ifi=y.

An orthogonal basis in V is a basis {by,...,b,} such that
ifi,je{l,...,n} andi#j then (b;,b;)=0.

The following theorem guarantees that, in some favourite examples, orthonormal bases
exist.

Theorem 1.8.6. — (Gram-Schmidt) Let F be a field, n € Z~q and let (p1,...,pn) be a
basis of an F-vector space V. Let (,): V xV — F be a sesquilinear form and assume that
(,) is Hermitian.

(a) Define
bl = P1, and bn-i—l = Pn+1 — <pn+1a b1>bl - <pn+17 bn>bn

Then (by,...,b,) is an orthogonal basis of V.
(b) Assume that F is a field in which square roots can be made sense of and that if v € V
and v # 0 then (v,v) # 0. Define

|v]] = V/ (v, v), forveV.
Let (by,...,b,) be an orthogonal basis of V. Define

o bl — bn
o™ bl

Then (uq, ..., u,) is an orthonormal basis of V.

Uy
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1.8.8. Adjoints of linear transformations. — Let V be an inner product space and
let f: V — V be a linear transformation.

e The adjoint of f is the linear transformation f*: V' — V determined by

if z,y € Vthen (f(),y) = (z, f*(y))-
e The linear transformation f is self adjoint if f satisfies:

if v,y €V then (f(x),y) = (z, f(y)).

e The linear transformation f is an isometry if f satisfies:
ifz,y €V then (f(z), f(y)) = (z,y).
e The linear transformation f is normal if ff* = f*f.
HW: Let V = F" with basis (ey, ..., e,) and inner product given by
0

—_

e = with 1 in the ith row and (e;, e;) = ;.

0
Let f: V — V be a linear transformation of V' and let A be the matrix of f with respect

to the basis (eq, ..., e,). Show that, with respect to the basis (ey,...,e,),

the matrix of f* is A=A

1.8.9. The Spectral theorem. — Let A € M, (C) and let V' = C" with inner product
given by

T n
xT

n yn
Let A € M, (C).
e The adjoint of A is the matrix A* € M,,(C) given by A*(i,7) = A(j,1).
e The matrix A is self adjoint if A = A*.
e The matrix A is unitary if AA* = 1.
e The matrix A is normal if AA* = A*A.

Write A* = A'. The unitary group is
Un(C)={U € M,(C) | UU* = 1}.
Theorem 1.8.7. — Let V = C" with inner product given by (1.8.1). The function

ordered orthonormal bases
{ (ug,...,u,) of C" }
| | is a bijection.

(Ury ..y up) — U= 1w - u,
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The following proposition explains the role of normal matrices.

Proposition 1.8.8. — Let V = C" with inner product given by (1.8.1). Let
A e M,(C), reC and  Vy =ker(A— A).
If AA* = A*A then
Vi is A-invariant, Vi- is A-invariant, V) is A*-invariant and Vit is A*-invariant.

Theorem 1.8.9. — (Spectral theorem)

Let n € Z~o and V = C™ with inner product given by (1.8.1).

(a) Let n € Z~y and A € M,(C) such that AA* = A*A. Then there exists a unitary
Ue M,(C) and Ny, ..., \, € C such that

UTAU = diag(\1, ..., A\n).

(b) Let f:V — V be a linear transformation such that ff* = f*f. Then there exists an
orthonormal basis (uy, . ..,u,) of V consisting of eigenvectors of f.

HW: Show that if A € M, (C) is self adjoint then its eigenvalues are real.
HW: Show that if U € M, (C) is unitary then its eigenvalues have absolute value 1.

1.8.10. Some proofs. —

Proposition 1.8.10. — A sesquilinear form (,): V x V — F satisfies
(no isotropic vectors condition) If v € V' and (v,v) =0 then v = 0.
if and only if it satsifies
(no isotropic subspaces condition) If W is a subspace of V then W N W+ = 0.

Proof. — (Sketch)
=: Assume w € W N W+, Then (w,w) =0. Sow =0. So WNW+ =0.

<: Let v € V with v # 0. Since Fv N (Fv)* = 0 then (v, v) # 0. O

Proposition 1.8.11. — Let V' be a vector space with a sesquilinear form (,): V xV —
F. Let W CV be a subspace of V. Assume W is finite dimensional and that (wy, . .., wy)
1s a basis of W. The following are equivalent:
(a) A dual basis to (wy, ..., wy) exists.
(b) The Gram matriz G of (,): W x W — F with respect to (w1, ..., wy) is invertible.
(c) WnNWt =o.

Proof. — (Sketch)
(b) & (c): Let w € WN W and write w = c;w; + - - - + cpwy. Then
0 <w17 w> C1

k
= =G since 0= (wi,w) = Z@chlwl) = ZG(ivl)C_l~

0 <wk7 w> _k =1 =1

)

)

So columns of G are linearly independent if and only if W N W+ = 0. So G is invertible
if and only if W N W+ = 0.
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(a) & (b): Define

i, Dy, forie {1,... k}.

IIMw

Then
k
(W', w;) ZG i, 1) (wy, w;) ZGil(z’,l)G(l,j) = ;.
=1
Thus the dual basis (w?, ... ,w’“) exists if and only if G is invertible. O

Proposition 1.8.12. — (Characterization of orthogonal projection) Let n € Z~o and
let V' be an inner product space with dim(V) = n. Let W be a subspace of V' such that
W NW*+ = 0. The orthogonal projection onto W is the unique linear transformation
P:V —V such that

(1) If v € V then P(v) € W.

(2) IfveV andw € W then (v,w) = (P(v),w),

Proof. — (Sketch)
Since Py (v) is a linear combination of basis elements of W then Py (v) € W. Assume
veVand weW. Let ¢q,...,c; € F such that w = c;wy + - - - 4+ cgwg. Then

(Py (v),w) = <i<v,wi>wi,icjwj> = ic?(v,wz) = (v, w).

i=1 j=1 i=1
Thus Py (v) satisfies (1) and (2).

Assume Q): V — V is a linear transformation that satisfies (1) and (2).
To show: If v € V then Q(v) = Py (v).
Assume v € V.

If w € W then, by property (2), (Q(v), w) = (v,w) = (Py(v),w).
So, if w € W then (Py(v) — Q(v ),w> = 0.

Combining this with property (1), Py (v) —

So Py (v) — Q(v) = 0.

Theorem 1.8.13. — Letn € Z~q and let V' be an inner product space with dim(V') = n.
Let W be a subspace of V' such that W N’ W+ = 0. Let Py be the orthogonal projection
onto W and let Py =1 — Py,. Then

Pi =Py, Pi.=Py., PwPy.=Py. Py=0, 1=Py+ Py,
ker(Py) =W+, im(Py)=W and V=WaoW
Proof. — (Sketch)

(a) Assume v € V. Then, by properties (1) and (2),
k k

Piy(v) =Y (Pw(v),whw; =) (v,w)w; = Pw(v).

i=1 i=1

Q(v) e W WL =o.

(b) Py =(—Py)?=1-2Py + Py =1-2Py + Pw =1~ Py = Py..
(c) PWPWL—PW(l—PW):PW—PEVZPW—PW:Oand
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PPy =(1— Py)Pw = Py — P% = Py — Py = 0.
(d) Pw + Py = Py + (1 — Py) = 1.
(e) If v € ker(Py) then (v, w) = (Pw(v),w) = (0,w) = 0.
So v € W+ and thus ker(Py) C W+,
Assume v € W+,
If w e W then (Py (v),w) = (v,w) =0 and so Py (v) € W.
By property (1), Py (v) € W and so Py (v) € WNW+ =0.
So v € ker(Py) and W+ C ker(Py).
So ker(Py ) = W.
(f) By property (1), im(Py) C W. If w € W then Py (w) = w. So im(Py) = W.
(g) fveVthenv=Pyw)+(1—Py)v) e W+W SoV =W+ W,
By assumption W N W+ =0, andso V=W @ W+,

]

Theorem 1.8.14. — (Gram-Schmidt) Let F be a field, n € Z~o and let (p1,...,p,) be
a basis of an F-vector space V.. Let (,): V xV — F be a sesquilinear form and assume
that (,) is Hermitian.

(a) Define
by = p1, and bn+1 = Pn+1 — (pn+1, b1>bl — <pn+1, bn>bn-

Then (by,...,b,) is an orthogonal basis of V.
(b) Assume that F is a field in which square roots can be made sense of and that if v € V
and v # 0 then (v,v) # 0. Define

[v]] = V/(v,v),  forveV.
Let (by,...,b,) be an orthogonal basis of V. Define

by by,
UG = =) ., Uy = :
1Bl 16
Then (uy, ..., uy,) is an orthonormal basis of V.

Proof. — (Sketch) The proof is by induction on n.
For the base case, there is only one vector b; and so there is nothing to show.

Induction step: Assume (by, ..., b,) are orthogonal.
Let j € {1,...,n}. Then
(On+1:05) = (Prt1 — Prt1,01)01 — - — (Pnt1, bn)bn, by)
<pn+17 > (pn+1, b1><b1, bj> - <pn+17 bn><bna bj)
= (Pnt1,05) = (Pns1,05)(bj, b5) = (Pns1,b5) — (Pnt1,bj) =0 and
(bj, bry1) = (0j, Prr1 — (Prs1, b1)b1 — -+ — (Png1, 0n)p)
= (bj, Prt1) — (Pnt1,01)(bj, b1) — -+ — (Pas1, bn) (b), bn)

= <bj7pn+1> - <pn+1, bj><bj7bj> = <bj7pn+1> - <pn+17bj> =0,

where the last equality follows from the assumption that (,) is Hermitian.
So (b1, ...,byy1) are orthogonal. O
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Proposition 1.8.15. — Let V = C" with inner product given by (1.8.1). Let
A e M,(C), reC and V) =ker(A— A).
If AA* = A*A then
Vy is A-invariant, Vit is A-invariant, Vi is A*-invariant and V- is A*-invariant.

Proof. —
(a) Let p € V). Then Ap = Ap € V). So V) is A invariant.
(b) Let p € V). Since A(A*p) = A*Ap = AA*p then A*p € V). So V), is A* invariant.
(c) Let z € Vit
To show Az, € Vit
To show: If u € V) then (Az,u) = 0.
Assume u € Vj.
To show: (Az,u) = 0.
By (b), A*u € V), and so (Az,u) = (z, A*u) = 0.
So Az € Vi,
So Vit is A-invariant.
(d) Let z € Vi&.
To show: If w € V) then (A*z,u) = 0.

(A*z,u) = (2, Au) =0, since Au € V.

So A*z € Vi-. So Vit is A*-invariant.

Theorem 1.8.16. — (Spectral theorem)
Let n € Z~o and V = C™ with inner product given by (1.8.1).
(a) Let n € Z~og and A € M,(C) such that AA* = A*A. Then there exists a unitary
Ue M,(C) and Ay, ..., N\, € C such that
U AU = diag( A1, ..., An).

(b) Let f:V — V be a linear transformation such that ff* = f*f. Then there exists an

orthonormal basis (uy,...,u,) of V consisting of eigenvectors of f.
Proof. — The two statements are equivalent via the relation between A and f given by
f: Vv — VvV
v — Av.

The proof is by induction on n.

The base case is when dim(V) = 1. In this case A € M;(C) is diagonal.

The induction step:

For 1 € Clet V,, = ker(p — f), the p-eigenspace of f.

Since C is algebraically closed, there exists A € C which is a root of the characteristic
polynomial det(z — A).

So there exists A € C such that det(A — A) = 0.

So there exists A € C such that V) = ker(A — A) # 0.

Let k = dim(Vy) and let (p1,...,px) be a basis of Vj.

Use Gram-Schmidt to convert (pi,...,px) to an orthogonal basis (uy, ..., ux) of Vj.

By definition of V), the basis vectors (uq,...,u;) are all eigenvectors of f (of eigenvalue
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A
By Theorem 1.8.5 (orthogonal decomposition) and Proposition 1.8.8,

V=V,®(Vy)* and Vi' is A-invariant and A*-invariant.

Let
and %
v = Av v = A%
Then g1 = f7 and f1f] = fi /1.
Thus, by induction, there exists an orthonormal basis (ug;1, - .., u,) of Vi& consisting of

eigenvectors of f.
By definition of f;, eigenvectors of f; are eigenvectors of f.
SO (Upy .-y Uy U1, - - -, Up) 1S an orthonormal basis of eigenvectors of f. ]



