CHAPTER 1

GTLA

1.1. Matrices and operations

Let F be a field. Let m,n € Z+,.

e An m X n matrix with entries in F is a table of elements of F with m rows and n
columns. More precisely, an m x n matrix with entries in I is a function

A:{Ll,....m} x{l,...,n} — F.

o A column vector of length n is an n x 1 matrix.
e A row vector of length n is an 1 X n matrix.
e The (i,7) entry of a matriz A is the element A(7, j) in row i and column j of A.

AL A(L2) - A(Lm)
a2y A2 - A@m)
A, 1) A(n,2) - A(n,m)

Let M,,«n(F) be the set of m x n matrices with entries in F.

e The sum of m x n matrices A and B is the m x n matrix A + B given by
(A4 B)(i,7) = A(i,j) + B(1, ), fori e {1,...,m} and 7 € {1,...,n}.

e The scalar multiplication of an element ¢ € F with an m x n matrix A is the m xn
matrix ¢ - A given by

(c-A)(i,j) =c-A(i,7), fori € {1,...,m}and 5 € {1,...,n}.
e The product of an m x n matrix A and an n X p matrix B is the m X p matrix AB

given by

(AB)(i, k) = ZA(@}J')B(J} k)

= A(i,)B(1,k) + A(i,2)B(2,k) + - - - + A(i,n) B(n, k),
fori e {1,...,m} and k € {1,...,p}.

The zero matriz is the m x n matrix 0 € M, (F) given by

0(i,7) =0, forie {1,...,m} and j € {1,...,n}.
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The negative of a matrix A € M, (F) is the matrix —A € M,,,(F) given by
(—A)(4,j) = —A(1i,9), forie{l,...,m}and j € {1,...,n}.
The following proposition says that M,,x,(F) is an F-vector space.

Proposition 1.1.1. — Let m,n € Z~qo and let My,«,(F) be the set of m x n matrices
with entries in IF.

a) If A, B,C € My,xn(F) then A+ (B+C)=(A+ B)+C.

b) If A, B € M,xn(F) then A+ B =B+ A.

c) If A€ Myn(F) then 0+ A=A and A+ 0= A.

d) If A € Myxn(F) then (—A)+ A =0 and A+ (—A) =0.

) If A€ Myun(F) and c1,c0 € F then ¢y - (c2- A) = (c1¢2) - A.

) If A€ Myxn(F) and 1 € F is the identity in F then 1- A = A.

= D

The Kronecker delta is given by
5 {1, ifi =)
0, otherwise.
The identity matriz is the n x n matrix 1 € M, «,(F) given by
1(, j) = 045, forie{l,...,m}and j € {1,...,n}.
The following proposition says that M, (F) is a ring (usually noncommutative).

Proposition 1.1.2. — Letn € Z~y and let M, (F) be the set of n X n matrices in F.
(a) If A,B,C € M,(F) then A+ (B+C)=(A+ B)+C.

(b) If A,B € M,(F) then A+ B= B+ A.

(c) If Ae M,(F) then0+ A=A and A+ 0= A.

(d) If A€ M,(F) then (—A)+ A=0 and A+ (—A) = 0.

(e) If A,B,C € M, (F) then A(BC) = (AB)C.

(f) If A, B,C € M, (F) then (A+ B)C' = AC + BC and C(A+ B) =CA+ CB.
(g) If A€ M, (F) then 1A= A and Al = A.

The transpose of an m x n matrix A is the n x m matrix A! given by
A(i, ) = A(j,19), fori e {1,...,n}and j € {1,...,m}.
The following proposition says that transpose is an antiautomorphism of the ring M, (IF).

Proposition 1.1.3. — Let m,n € Z~q, let M,,x,(IF) be the set of m x n matrices with
entries in F, and let M,,(F) be the set of n x n matrices in F.

a) If A, B € Myyxn(F) then (A+ B)t = A' + B,

b) If A € Mpxn(F) and ¢ € F then (c- A)t =c¢- A,

c) If A, B € M,(F) then (AB)" = B'A".

d

(
E
(d) If A € M, (F) then (A') = A.
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1.2. Vector spaces and linear transformations

Let F be a field. A F-vector space is a set V with functions

VxV — V d KxV — V
(v1,v2) = v+ Vg an (c,v) = cv
(addition and scalar multiplication) such that

(a) If v, v9,v3 € V then (v; + v9) + v3 = v1 + (vg + v3),

(b) There exists 0 € V such that if v € V then 0 +v =v and v+ 0 = v,

(c) If v € V then there exists —v € V' such that v + (—v) = 0 and (—v) +v =0,
(d) If vy, vy € V then vy + vy = vg + vy,

(e) If c € F and vy, vy € V then c(v; 4+ va) = cvy + cvg,

(f) If ¢1,c0 € F and v € V then (¢1 + c2)v = c1v + cov,

(g) If ¢1,¢0 € F and v € V then ¢i(cov) = (c102)v,
(h) If v € V then 1lv = v.

Linear transformations are for comparing vector spaces.

Let F be a field and let V and W be F-vector spaces. A linear transformation from V to
W is a function f: V — W such that

(a) If v1,v2 € V then f(v1 +v2) = f(v1) + f(v2),
(b) If c€e F and v € V then f(cv) = cf(v).

One vector space can be a subspace of another.

Let V' be an F-vector space. A subspace of V' is a subset W C V such that

(a) If wy, wy € W then wy + wy € W,
(b) 0 e W,

(c) If we W then —w € W,

(d) If we W and ¢ € F then cw € W.

The tiniest vector space is the zero space.

The zero space, (0), is the set containing only 0 with the operations 0 +0 = 0 and ¢ - 0,
for c e F.

1.3. Kernels and images

The kernel, or null space, of a linear transformation f: V — W is the set
ker(f) = {v € V | f(v) = 0}.
The image of a linear transformation f: V' — W is the set
im(f) ={f(v) |veV}
Proposition 1.3.1. — Let f: V — W be a linear transformation. Then

(a) ker f is a subspace of V', and
(b) im f is a subspace of W.
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Let S and T be sets and let f: S — T be a function.
The function f: S — T is injective if f satisfies:
if 51,50 € S and f(s1) = f(s2) then s; = so.
The function f: .S — T is surjective if f satisfies:

if t € T then there exists s € S such that f(s) = t.

Proposition 1.3.2. — Let f: V — W be a linear transformation. Then
(a) ker f = {0} if and only if [ is injective, and
(b) im f = W if and only if [ is surjective.

The rank of a linear transformation f: V' — W is the dimension of the image of f and
the nullity of a linear transformation f is the dimension of the kernel of f,

rank(f) = dim(im(f)) and nullity (f) = dim(ker(f)).

1.4. Bases and dimension

Let F be a field and let V' be a vector space over F. Let {vy,vs,...,vx} be a subset of
V.

e The span of the set {vy, ..., vx} is

span{vy, ..., v} = {c1v1 + covg + - - + vk | €1, o, .., 0 € F}
e A linear combination of vy, vy, ..., vy is an element of span{vy,..., vg}.
e The set {vy,..., v} is linearly independent if it satisfies:
ifcy,....,cp € Fand civ; 4+ -+ vy =0 then ¢, =0, co0=0, ..., ¢ =0.

e A basis of V is a subset B C V such that
(a) span(B) =V,
(b) B is linearly independent.
e The dimension of V' is the cardinality (number of elements) of a basis of V.

Theorem 1.4.1. — (Characterization of a basis) Let V' be a vector space and let B be
a subset of V.. The following are equivalent:
(a) B is a basis of V;
(b) B is a minimal element of {S CV | span(S) = V'}, ordered by inclusion,
(¢) B is a mazimal element of {L CV | L is linearly independent}, ordered by inclusion.

Theorem 1.4.2. — (Euxistence of a basis) Let V' be a vector space over a field F. Then
(a) V' has a basis, and
(b) Any two bases of V' have the same number of elements.
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1.5. Addition, scalar multiplication and composition of linear transformations

The sum of two linear transformations fi: V. — W and fo: V. — W is the linear
transformation (f1 + f2): V. — W.

(fi+ f2)(v) = fi(v) + falv), forveV.

Let f: V — W be a linear transformation and let ¢ € F. The scalar multiplication of f
by ¢ is the linear transformation (cf): V — W given by

(cf)(v) =c- f(v), forveV.

The composition of a linear transformation fo: V' — W and a linear transformation
fi: W — Z is the linear transformation (f; o fo): V' — Z given by

(fio f2)(v) = fi(f2(v)), forveV.

1.6. Matrices of linear transformations and change of basis matrices

Let V and W be F-vector spaces. Let B be a basis of V' and let C' be a basis of W.
Let f: V — W be a linear transformation. The matriz of f: V — W with respect to the
bases B and C' is the matrix

fos € Mowp(F)  givenby  f(b) = fep(e,b)e forbe B
ceC

(here we view matrices in Meyp(F) as functions A: C' x B — F so that the (¢,b) entry
of the matrix A is the value A(c,b)).

Proposition 1.6.1. — Let V and W and Z be F-vector spaces with bases B, C' and D,
respectively. Let

V=W, g V-osW  hW—Z belinear transformations
and let c € F. Then

(cf)es=c- fo, fes+9c8=(f+9)cs and (hog)ps = hpcges.

Let V' be an F-vector space and let B and C' be bases of V. The change of basis matrix
from B to C is the matrix Pop € Moy p(F) given by

(1.6.1) b= Z Pep(c,b)e, for b € B.
ceC

Proposition 1.6.2. — Let g: V — W and f: V — V be linear transformations. Let
By and By be bases of V', and let Cy and Cy be bases of W,

and let Pp, g, and Pc,c, be the change of basis matrices defined as in (1.6.1). Then
9c.B, = Peyc 9018, Py B, and [B:B, = PgllBnglBl Pp,p,.

Proposition 1.6.3. — Let P € M,(F). The matriz P is invertible if and only if the
columns of P are linearly independent in F".
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1.6.1. Minimal and characteristic polynomials (annihilators of F|z]-modules).
— Let A € M,(F). Let

VA Fx] — M, (F)
cotar+--+er’ = ctcaA+-c AT

The kernel of @4 is
ker(pa) = {p(z) € Flz] | pa(p(z)) = 0.}

Proposition 1.6.4. — There exists a unique monic polynomial m(zx) € Flz] such that
ker(¢a) = m(x)F|x].

Let A € M,(F).

e The minimal polynomial of A is the monic polynomial m(z) € F[z] such that
ker p4 = m(x)F[z].
e The matrix t — A € M, (F[z]). The characteristic polynomial of A is det(z— A).

Proposition 1.6.5. — (Cayley-Hamlton theorem) Let A € M, (F) and let m(x) be the
manimal polynomial of A. Then

det(z — A) € m(z)F[z].

1.6.2. Diagonalization (simple and semisimple F[x]-modules). — Let F be a field
and let A € M, (F).

e A subspace U C F" is A-invariant, or U is an A-submodule of F™, if U satisfies:
if uw € U then Au € U.
o Let A € F. An eigenvector of A of eigenvalue X is p € F" such that p # 0 and
Ap = Ap.

e The matrix A is diagonalizable if there exist P € GL,(F) and Ay,..., A, € F such
that

PrAP = diag(\1, ..., \n).

HW: Show that p is an eigenvector of A if and only if Fp is A-invariant.
HW: Show that p is an eigenvector of A if and only if p € ker(A — \).
HW: Show that if D = diag()\y,...,\,) and P"'AP = D then

det(A) =X+ A, and det(z—A)=(z—\) - (x— ).
Proposition 1.6.6. — Let IF be a field and let A € M, (F).
(a) If p1,...,px are eigenvectors of A with eigenvalues Ay, ..., A\ and Ay, ..., A\, are all
distinct then pq,...,pr are linearly independent.
(b) Let A € M, (F). Then A is diagonalizable if and only if there exist n linearly indepen-

dent eigenvectors of A.
(c) If F is algebraically closed then A has an eigenvector.
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1.6.3. Some proofs. —

Proposition 1.6.7. — Let V and W and Z be F-vector spaces with bases B, C and D,
respectively. Let

V=W g VW h:W—Z belinear transformations
and let c € F. Then
(cf)os = c- fes, fep+g9ec=(f+9ecp  and  (hog)pp = hpcycs-
Proof. — Let b € B and ¢ € C. Taking the coefficient of ¢’ on each side of

> (@f)enle;b)e = (@f)(b) =a- fb) =a- (3 feple.b)e) =3 afes(e.b)e

ceC ceC ceC

gives (af)op(d,b) = a - fep(d,b).
So (af)ep = - fos.
Let b € B and ¢ € C. Taking the coefficient of ¢’ on each side of

Y (FHgesleb)e=(f+9)(b) = f(b) +9(b) = Y (fen(e,b)e+ Y gop(e,b)e

ceC ceC ceC
= “(fesle.b)e+ geple,b)e = (feple.b) + gople,b))e
ceC ceC

gives (fop + gos)(c,b) = fes(c,b) + ges(d,b).
So fes +ges = (f + 9)cs-
Let b € B and d’ € D. Taking the coefficient of d’ on each side of

> (ho g)ps(d.b)d = (o 9)(b) = h(g(b) = h( D genle,b)e)

deD ceC
—chgcb ZZgCBcthcdc)d
ceC ceC deD
gives (hog)ps(d,b) =Y > hpe(d/e)ges(c,b) = (hpcges)(d,b).
ceC deD
So (hog)ps = (hpcygen). L

Proposition 1.6.8. — Let g: V — W and f: V — V be linear transformations. Let
By and By be bases of V', and let Cy and Cy be bases of W,

and let Pp, g, and Pe,c, be the change of basis matrices defined as in (1.6.1). Then
9o,B, = Peyoy 90,8, P, B, and  fp,B, = Pgp, /5.8, Pp.Bs-

Proof. — Let (3, " € By. Comparing coefficients of 5’ on each side of

= Ppp,(b,8)b= > Pa,p,(b,8) Y Pp,p (8,0

be B be B, B'€B2
- Z Z PB2B1 PBlBQ 5 Z Z PBzB1PB1BQ 6 5)6
beB;y B'€B2 beB1 B'€B2

gives

(Pp,5, Pp,B,)(B', B) = 08
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SO P3231 = P§1132.
Let 8 € By and ¢ € B,. Taking the coefficient of & on each side of

f(C) = Z fBsz(c/v C>cl = Z fBsz (Clv C>PBIB2 (b/7 Cl)b/

c'€Bsg b'eBy
and
1@ = (D Pouna(b.0) = 3 Pouab.0)f(0) = D Poua(b.c) Y fium (0, 0)Y
beB; beB; beB1 b'eB;
gives
(Ppy5,[B28:)(B,0) = (fB15, PB1B,) (B, D).
So

— _ —1
PBlefB2Bz - fBlBlpBle and thus fBQB2 - PBlBnglBlpBlB2'

Let 4" € C5 and € By. Taking the coefficient of v on each side of

Z ngBz<77 5)7 = g(ﬁ) = g(z PB1Bz(b7 ﬁ)b> = Z PBle(b’ 5)g(b)

’YGCQ be By be By

= > Po(b.8) Y geusm (e, D)e

be By ceCy

= Z PBlBQ (b7 ﬁ) Z gciy (C, b) Z PC?Cl (/7’ 0)7

beBy ceCq yeCso

= Y Poe,(1.0)90,8,(c,b) Py, s, (b, B)y

beB1,ceC1,7eC>

= (P, 9cum Pos) (1, 81

v€C2
gives 9o, 5,(7, B) = (Pewey 9B P, ) (Y, B). S0 geun, = Peycugo, B, Poy s, - [

Proposition 1.6.9. — Let P € M,(F). The matriz P is invertible if and only if the
columns of P are linearly independent in F".

Proof. —

=-: Assume P is invertible. Let py,...,p, be the columns of P.

To show: {pi,...,pn} is linearly independent.

Assume ¢q,...,¢c, € Fand cip1 + -+ cup, = 0.

Let ¢ = (¢1,...,¢,)t € F™

Since ¢1p1 + -+ + ¢pn, = 0 then Pc = 0.

Soc= P 'Pc= P10 =0.

Soc; =0,...,¢, =0.

<: Assume the columns of P are linearly independent.

To show: There exists ) € M, (F) such that QP = 1.

Let p1,...,p, be the columns of P.

Since B = {p1,...,pn} is linearly independent and dim(F") = n then B is a maximal
linearly independent set.

Thus, by Theorem 1.4.1, B is a basis.

Let S ={ei,...,en)} where e; has 1 in the ith spot and 0 elsewhere.
Then P = Ppgg, the change of basis matrix from S to B.
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Let @) = Psp, the change of basis matrix from B to S.
Then QP = PSBPBS = PSS = 1.
So P is invertible. m

Proposition 1.6.10. — There ezists a unique monic polynomial m(x) € Flx] such that
ker(pa) = m(x)F[z].

Proof. —
Let r = min{deg(p) | p € ker(p4)} and let p(x) € ker(p,) with deg(p) = r and let
1
m(x) = —p(x), where p(x) = arfET + -+ a1x + ag.
a?"

To show: (a) ker(p,)
To show: (b) ker(p4)

(a) Assume f € ker(pa).
Then there exist ¢(x), g(x) € F[z] with deg(g(x)) < r such that

f(x) = q(x)m(z) + g(z).

Since f(x) € ker(pa) and g(z)m(z) € ker(p4) then g(z) € ker(pa).
Since deg(g(z)) < r then g(z) = 0.
So f(x) = q(z)m(z).
So f(z) € m(z)F[z].
(b) Let f(x) € m(z)F|x].
To show: f(z) € ker(pa).
Since f(z) € m(z)F[x] there exists ¢(x) € F[x] such that f(z) = q(z)m(z).
So f(A) = g(A)m(A) = g(4) -0 = 0.
So f(A) € ker(pa).

So ker(pa) = m(z)F[z]. O

Proposition 1.6.11. — (Cayley-Hamlton theorem) Let A € M, (F) and let m(x) be the
minimal polynomial of A. Then

det(z — A) € m(x)F[z].
Proof. — Let p = det(x — A). BY CRAMER’S RULE,

(x — A)adj(z — A) = det(x — A)1,, where 1,, is the n x n identity matrix.
Evaluating both sides at A gives that p(A) = 0. So p € ker(pa). O
Proposition 1.6.12. — Let F be a field and let A € M, (F).

(a) If p1,...,px are eigenvectors of A with eigenvalues Ay, ..., A\ and Ay, ..., A\, are all
distinct then pq,...,pr are linearly independent.
(b) Let A € M, (F). Then A is diagonalizable if and only if there exist n linearly indepen-

dent eigenvectors of A.
(c) If F is algebraically closed then A has an eigenvector.
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Proof. — (a) Assume ¢1p; + - -+ + ¢,p, = 0.
To show: If j € {1,...,n} then ¢; = 0.
Assume j € {1,...,n}.

Then

0=(A—-dy) - (A—dj—1))(A—djr1) - (A—dp)(cap1 + -+ + capn)

= Cj(dj - dl) e (dj - dj*1>(dj B dj+1) T (dj - dn)pj'
So ¢;p; = 0. So ¢; = 0.
(b) Let p1,...,p, be the columns of P. Then AP = PD gives that py,...,p, are eigen-
vectors of A.
Rewriting this equation as
AP = PD, where D = diag(\i,...,\),
the eigenvectors of A are the columns of P. By Proposition 1.6.3, P being invertible is
equivalent to its n columns being linearly independent.
(c) Since F is algebraically closed m(x) factors: there exists aq,...,a, € F such that

m(x)=(r—ay) - (r — ap).

Since (A—as) - - - (A—a,) # 0 there exists w € V such that v = (A—ay) - -+ (A—a,)w # 0.
Then (A —ay)(v) = m(A)(w) = 0. So A(v) = ayv. O



