
CHAPTER 2

SETS, RELATIONS, ORDERS AND FIELDS

2.1. Sets and functions

2.1.1. Sets. — A set is a collection of objects which are called elements.

Write

s 2 S if s is an element of the set S.

• The empty set ; is the set with no elements.
• A subset T of a set S is a set T such that if t 2 T then t 2 S.

Write

T ✓ S if T is a subset of S, and

T = S if the set T is equal to the set S.

Let S and T be sets.

• The union of S and T is the set S [ T of all u such that u 2 S or u 2 T ,

S [ T = {u | u 2 S or u 2 T}.

• The intersection of S and T is the set S [ T of all u such that u 2 S and u 2 T ,

S \ T = {u | u 2 S and u 2 T}.

• The product S and T is the set S ⇥ T of all ordered pairs (s, t) where s 2 S and
t 2 T ,

S ⇥ T = {(s, t) | s 2 S and t 2 T}.

The sets S and T are disjoint if S \ T = ;.
The set S is a proper subset of T if S ✓ T and S 6= T .

2.1.2. Functions. — Functions are for comparing sets.

Let S and T be sets. A function from S to T is a subset �f ✓ S ⇥ T such that

if s 2 S then there exists a unique t 2 T such that (s, t) 2 �f .

Write

�f = {(s, f(s)) | s 2 S}

Notes of Arun Ram 5 August 2020
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so that the function �f can be expressed as

an “assignment”
f : S ! T

s 7! f(s)

which must satisfy

(a) If s 2 S then f(s) 2 T , and
(b) If s1, s2 2 S and s1 = s2 then f(s1) = f(s2).

Let S and T be sets.

• Two functions f : S ! T and g : S ! T are equal if they satisfy

if s 2 S then f(s) = g(s).

• A function f : S ! T is injective if f satisfies the condition

if s1, s2 2 S and f(s1) = f(s2) then s1 = s2.

• A function f : S ! T is surjective if f satisfies the condition

if t 2 T then there exists s 2 S such that f(s) = t.

• A function f : S ! T is bijective if f is both injective and surjective.

Examples. It is useful to visualize a function f : S ! T as a graph with edges (s, f(s))
connecting elements s 2 S and f(s) 2 T . With this in mind the following are examples

(a) a function (b) not a function (c) not a function

(c) an injective function (d) a surjective function (e) a bijective function

In these pictures the elements of the left column are the elements of the set S and the
elements of the right column are the elements of the set T . In order to be a function the
graph must have exactly one edge adjacent to each point in S. The function is injective if
there is at most one edge adjacent to each point in T . The function is surjective if there
is at least one edge adjacent to each point in T .

2.1.3. Composition of functions. — Let f : S ! T and g : T ! U be functions. The
composition of f and g is the function

g � f given by
g � f : S ! U

s 7! g(f(s))

Let S be a set. The identity map on S is the function given by

idS : S ! S

s 7! s
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Let f : S ! T be a function. The inverse function to f is a function

f
�1 : T ! S such that f � f

�1 = idT and f
�1

� f = idS.

Theorem 2.1.1. — Let f : S ! T be a function. An inverse function to f exists if and
only if f is bijective.

Representing functions as graphs, the identity function idS looks like

(a) the identity function idS

In the pictures below, if the left graph is a pictorial representation of a function f : S ! T

then the inverse function to f , f�1 : T ! S, is represented by the graph on the right; the
graph for f�1 is the mirror-image of the graph for f .

(b) the function f (c) the function f
�1

Graph (d) below, represents a function g : S ! T which is not bijective. The inverse
function to g does not exist in this case: the graph (e) of a possible candidate, is not the
graph of a function.

(d) the function g (e) not a function

2.1.4. Cardinality. — Let S and T be sets. The sets S and T are isomorphic, or have
the same cardinality

if there is a bijective function ' : S ! T .

Write Card(S) = Card(T ) if S and T have the same cardinality.

Notation: Let S be a set. Write

Card(S) =

8
><

>:

0, if S = ;,

n, if Card(S) = Card({1, 2, . . . , n}),

1, otherwise.

Note that even in the cases where Card(S) = 1 and Card(T ) = 1 it may be that
Card(S) 6= Card(T ).

Let S be a set.

• The set S is finite if Card(S) 6= 1.
• The set S is infinite if Card(S) is not finite.
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• The set S is countable if Card(S) = Card(Z>0).

Let Set be the set of sets. Define a relation ⇠ on Set by

X ⇠ Y if there exists a bijection f : X ! Y .

The relation ⇠ is an equivalence relation and Card(X) is the equivalence class of X. The
set of ordinals is the set of equivalence classes of ⇠,

Ord = {Card(X) | X 2 Set}.

Theorem 2.1.2. — Define a relation � on Set by

X � Y if there exists an injection f : X ! Y .

(a) The relation � on Set gives a well defined relation 6 on Ord,

Card(X) 6 Card(Y ) if there exists an injection f : X ! Y ,

where X 2 Card(X) and Y 2 Card(Y ).
(b) The relation 6 is a partial order on Ord.

2.2. Relations, equivalence relations and partitions

Let S be a set.

• A relation ⇠ on S is a subset R⇠ of S ⇥ S. Write s1 ⇠ s2 if the pair (s1, s2) is in
the subset R⇠ so that

R⇠ = {(s1, s2) 2 S ⇥ S | s1 ⇠ s2}.

• An equivalence relation on S is a relation ⇠ on S such that
(a) if s 2 S then s ⇠ s,
(b) if s1, s2 2 S and s1 ⇠ s2 then s2 ⇠ s1,
(c) if s1, s2, s3 2 S and s1 ⇠ s2 and s2 ⇠ s3 then s1 ⇠ s3.

Let ⇠ be an equivalence relation on a set S and let s 2 S. The equivalence class of s is
the set

[s] = {t 2 S | t ⇠ s}.

A partition of a set S is a collection P of subsets of S such that

(a) If s 2 S then there exists P 2 P such that s 2 P , and
(b) If P1, P2 2 P and P1 \ P2 6= ; then P1 = P2.

Theorem 2.2.1. —
(a) If S is a set and let ⇠ be an equivalence relation on S then

the set of equivalence classes of ⇠ is a partition of S.

(b) If S is a set and P is a partition of S then

the relation defined by s ⇠ t if s and t are in the same P 2 P

is an equivalence relation on S.



2.3. PARTIALLY ORDERED SETS 35

2.3. Partially ordered sets

Let S be a set.

• A partial order on S is a relation 6 on S such that
(a) If x 2 A then x 6 x,
(b) If x, y, z 2 S and x 6 y and y 6 z then x 6 z, and
(c) If x, y 2 S and x 6 y and y 6 x then x = y.

• A total order on S is a partial order 6 such that
(d) If x, y 2 S then x 6 y or y 6 x.

• A partially ordered set, or poset, is a set S with a partial order 6 on S.
• A totally ordered set is a set S with a total order 6 on S.

The poset of subsets of {↵, �, �} with inclusion as 6
Let S be a poset. Write

x < y if x 6 y and x 6= y.

• The Hasse diagram of S is the graph with vertices S and directed edges given by

x ! y if x 6 y.

• A lower order ideal of S is a subset E of S such that

if y 2 E and x 2 S and x 6 y then x 2 E.

• The intervals in S are the sets

S[a,b] = {x 2 S | a 6 x 6 b} S(a,b) = {x 2 S | a < x < b}

S[a,b) = {x 2 S | a 6 x < b} S(a,b] = {x 2 S | a < x 6 b}

S(�1,b] = {x 2 S | x 6 b} S[a,1) = {x 2 S | a 6 x}

S(�1,b) = {x 2 S | x < b} S(a,1) = {x 2 S | a < x}

for a, b 2 S.

2.3.1. Upper and lower bounds, sup and inf. — Let S be a poset and let E be a
subset of S.

• An upper bound of E in S is an element b 2 S such that if y 2 E then y 6 b.
• A lower bound of E in S is an element l 2 S such that if y 2 E then l 6 y.
• A greatest lower bound of E in S is an element inf(E) 2 S such that

(a) inf(E) is a lower bound of E in S, and
(b) If l 2 S is a lower bound of E in S then l 6 inf(E).

• A least upper bound of E in S is an element sup(E) 2 S such that
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(a) sup(E) is a upper bound of E in S, and
(b) If b 2 S is a upper bound of E in S then sup(E) 6 b.

• The set E is bounded in S if E has both an upper bound and a lower bound in S.

Proposition 2.3.1. — Let S be a poset and let E be a subset of S. If sup(E) exists
then sup(E) is unique.

2.4. Fields and ordered fields

A field is a set F with functions

F⇥ F �! F
(a, b) 7�! a+ b

and
F⇥ F �! F
(a, b) 7�! ab

such that

(Fa) If a, b, c 2 F then (a+ b) + c = a+ (b+ c),
(Fb) If a, b 2 F then a+ b = b+ a,
(Fc) There exists 0 2 F such that

if a 2 F then 0 + a = a and a+ 0 = a,

(Fd) If a 2 F then there exists �a 2 F such that a+ (�a) = 0 and (�a) + a = 0,
(Fe) If a, b, c 2 F then (ab)c = a(bc),
(Ff) If a, b, c 2 F then

(a+ b)c = ac+ bc and c(a+ b) = ca+ cb,

(Fg) There exists 1 2 F such that

if a 2 F then 1 · a = a and a · 1 = a,

(Fh) If a 2 F and a 6= 0 then there exists a�1
2 F such that aa�1 = 1 and a

�1
a = 1,

(Fi) If a, b 2 F then ab = ba.

Proposition 2.4.1. — Let F be a field.
(a) If a 2 F then a · 0 = 0.
(b) If a 2 F then �(�a) = a.
(c) If a 2 F and a 6= 0 then (a�1)�1 = a.
(d) If a 2 F then a(�1) = �a.
(e) If a, b 2 F then (�a)b = �ab.
(f) If a, b 2 F then (�a)(�b) = ab.

2.4.1. Ordered fields. — An ordered field is a field F with a total order 6 such that

(OFa) If a, b, c 2 F and a 6 b then a+ c 6 b+ c,
(OFb) If a, b 2 F and a > 0 and b > 0 then ab > 0.

Proposition 2.4.2. — Let F be an ordered field.
(a) If a 2 F and a > 0 then �a < 0.
(b) If a 2 F and a 6= 0 then a

2
> 0.

(c) 1 > 0.
(d) If a 2 F and a > 0 then a

�1
> 0.

(e) If a, b 2 F and a > 0 and b > 0 then a+ b > 0.
(f) If a, b 2 F and 0 < a < b then b

�1
< a

�1.
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Proposition 2.4.3. — Let F be an ordered field. Let x, y 2 F with x > 0 and y > 0.
Then

x 6 y if and only if x
2 6 y

2
.

2.5. The binomial theorem and the exponential function

Let k 2 Z>0. Define k factorial by

0! = 1 and k! = k · (k � 1) · · · 3 · 2 · 1 if k 2 Z>0.

Let n, k 2 Z>0 with k 6 n. Define

✓
n

k

◆
=

n!

k!(n� k)!
.

Theorem 2.5.1. — Let n, k 2 Z>0 with k 6 n.
(a) Let S be a set with cardinality n. Then

�
n

k

�
is the number of subsets of S with

cardinality k.
(b)

�
n

k

�
is the coe�cient of xn�k

y
k in (x+ y)n.

(c) If k 2 {1, . . . , n� 1} then

✓
n

k

◆
=

✓
n� 1

k � 1

◆
+

✓
n� 1

k

◆
, and

✓
n

0

◆
= 1 and

✓
n

n

◆
= 1.

This theorem says that the table of numbers

�
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�
1
0

� �
1
1
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2
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2
1
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2
2

�
�
3
0
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3
1
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3
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3
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�
�
4
0
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4
1

� �
4
2

� �
4
3

� �
4
4

�
�
5
0

� �
5
1

� �
5
2

� �
5
3

� �
5
4

� �
5
5

�

. . .
.
.
.

. . .

are the numbers in Pascal’s triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1
. . .

.

.

.
. . .
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and that
(x+ y)0 = 1,
(x+ y)1 = x+ y,

(x+ y)2 = x
2 + 2xy + y

2
,

(x+ y)3 = x
3 + 3x2

y + 3xy2 + y
3
,

(x+ y)4 = x
4 + 4x3

y + 6x2
y
2 + 4xy3 + y

4
,

(x+ y)5 = x
5 + 5x4

y + 10x3
y
2 + 10x2

y
3 + 5xy4 + y

5
,

.

.

.
.
.
.

2.5.1. The exponential function. — The exponential function is the element ex

of Q[[x]] given by

e
x =

X

k2Z>0

x
k

k!
= 1 + x+

x
2

2!
+

x
3

3!
+ · · · .

Theorem 2.5.2. — As an element of Q[[x, y] (which has xy = yx),

e
x+y = e

x
e
y
.

HW: Show that e0 = 1.

HW: Show that e�x = 1
ex
.

The logarithm is

log(1 + x) =
X

k2Z>0

(�1)k�1x
k

k
= x�

x
2

2
+

x
3

3
�

x
4

4
+ · · · .

Theorem 2.5.3. — Let

G = {p(x) 2 F[[x]] | p(0) = 1} and g = {p(x) 2 Q[[x]] | p(0) = 0}

Then
(a) log(1 + (ex � 1)) = e

log(1+x)
� 1 = x.

(b) G is a commutative group under multiplication, g is a commutative group under ad-
dition and

G �! g
p 7�! e

p
� 1

is an isomorphism of groups.

2.5.2. Notes and references. — The binomial theorem and ‘Pascals triangle’ are
useful computational tools for multiplying out algebraic expressions. The exponential
function “is the most important function in mathematics” [Ru, Prologue]. The theorems
showing that the exponential function is a homomorphism and that the formal inverse to
the exponential function is log are found in [Bou, Alg. Ch. IV §4 no. 10].

2.6. Notes and references

Almost everything in mathematics is built from sets and functions. Groups, rings,
fields, vector spaces ... are all sets endowed with additional functions which have special
properties. In the society of mathematics, sets and functions are the individuals and the
fascination is the way that the individuals, each one di↵erent from the others, interact.
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Functions are the morphisms in the category Set of sets and products are products
in the category Set of all sets. The set of sets Set may or may not make sense to you:
there are good reasons – study Russell’s paradox, the Zermelo-Frenkel axioms and small
categories to learn more.

Fundamental definitions and properties of partially ordered sets are treated thoroughly
in [Bou, Ens Ch. III]. The exposition of Stanley [St, Ch. 3] has an inspiring point of view
and a wealth of information on the subject of posets. The definition of partially ordered
set di↵ers slightly depending on the author: Bourbaki replace axiom (a) in the definition
by: If x, y 2 S and x 6 y then x 6 x and y 6 y. Bourbaki defines a preorder to be a
partial order except without the axiom (b).

The set of subsets of a set S forms a partially ordered set under inclusion ✓. This
is the favorite example of a partial order which is not a total order. The union [ and
intersection \ make the set of subsets of S into a Boolean algebra. References for Boolean
algebras are Birkho↵ [Brk, Chapt X] and Stanley [St, §3.4]; in particular, the conditions
for the finite Boolean algebra Bn are found in Stanley [St, p. 107-108].

The orders on the number systems Z, Q, R are indispensible for ordinary daily mea-
surements. Perhaps surprisingly, there is no partial order on C which makes C an ordered
field.

The definitions of left filtered and right filtered are used in the theory of inverse and
direct limits. The definitions and examples of upper and lower bounds, suprema and
infima, maxima and minima, and largest and smallest element, are a natural way to
introduce students to analyses and proofs of existence and uniqueness. Directed sets
are the generalization of sequences used to define nets which, in turn, provide a general
method for formaliing the notion of a limit (see notes of Arun Ram on filters and nets).

2.7. Proofs

2.7.1. An inverse function to f exists if and only if f is bijective.—

Theorem 2.7.1. — Let f : S ! T be a function. The inverse function to f exists if and
only if f is bijective.

Proof. —

): Assume f : S ! T has an inverse function f
�1 : T ! S.

To show: (a) f is injective.
(b) f is surjective.

(a) Assume s1, s2 2 S and f(s1) = f(s2).
To show: s1 = s2.

s1 = f
�1
f(s1)) = f

�1
f(s2)) = s2.

So f is injective.
(b) Let t 2 T .

To show: There exists s 2 S such that f(s) = t.
Let s = f

�1(t).
Then

f(s) = f(f�1(t)) = t.

So f is surjective.
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So f is bijective.
(: Assume f : S ! T is bijective.

To show: f has an inverse function.
We need to define a function ' : T ! S.
Let t 2 T .
Since f is surjective there eists s 2 S such that f(s) = t.
Define '(t) = s.
To show: (a) ' is well defined.

(b) ' is an inverse function to f .
(a) To show: (aa) If t 2 T then '(t) 2 S.

(ab) If t1, t2 2 T and t1 = t2 then '(t1) = '(t2).
(aa) This follows from the definition of '.
(ab) Assume t1, t2 2 T and t1 = t2.

Let s1, s2 2 S such that f(s1) = t1 and f(s2) = t2.
Since t1 = t2 then f(s1) = f(s2).
Since f is injective this implies that s1 = s2.
So '(t1) = s1 = s2 = '(t2).

So ' is well defined.
(b) To show: (ba) If s 2 S then '(f(s)) = s.

(bb) If t 2 T then f('(t)) = t.
(ba) This follows from the definition of '.
(bb) Assume t 2 T .

Let s 2 S be such that f(s) = t.
Then

f('(t)) = f(s) = t.

So ' � f and f � ' are the identity functions on S and T , respectively.
So ' is an inverse function to f .

2.7.2. An equivalence relation on S and a partition of S are the same data.—

Theorem 2.7.2. —
(a) If S is a set and let ⇠ be an equivalence relation on S then

the set of equivalence classes of ⇠ is a partition of S.

(b) If S is a set and P is a partition of S then

the relation defined by s ⇠ t if s and t are in the same P 2 P

is an equivalence relation on S.

Proof. —

(a) To show: (aa) If s 2 S then s is in some equivalence class.
(ab) If [s] \ [t] 6= ; then [s] = [t].

(aa) Let s 2 S.
Since s ⇠ s then s 2 [s].

(ab) Assume [s] \ [t] 6= ;.
To show: [s] = [t].
Since [s] \ [t] 6= ; then there is an r 2 [s] \ [t].
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So s ⇠ r and r ⇠ t.
By transitivity, s ⇠ t.
To show: (aba) [s] ✓ [t].

(abb) [t] ✓ [s].
(aba) Assume u 2 [s].

Then u ⇠ s.
We know s ⇠ t.
So, by transitivity, u ⇠ t.
Therefore u 2 [t].

So [s] ✓ [t].
(aba) Assume v 2 [t].

Then v ⇠ t.
We know t ⇠ s.
So, by transitivity, v ⇠ s.
Therefore v 2 [s].

So [t] ✓ [s].
So [s] = [t].

So the equivalence classes partition S.
(b) To show: ⇠ is an equivalence relation, i.e. that ⇠ is reflexive, symmetric and

transitive.
To show: (ba) If s 2 S then s ⇠ s.

(bb) If s ⇠ t then t ⇠ s.
(bc) If s ⇠ t and t ⇠ u then s ⇠ u.

(ba) Since s and s are in the same S↵ then s ⇠ s.
(bb) Assume s ⇠ t.

Then s and t are in the same S↵.
So t ⇠ s.

(bb) Assume s ⇠ t and t ⇠ u.
Then s and t are in the same S↵ and t and u are in the same S↵.

So s ⇠ u.
So ⇠ is an equivalence relation.

2.7.3. Identities in a field. —

Proposition 2.7.3. — Let F be a field.
(a) If a 2 F then a · 0 = 0.
(b) If a 2 F then �(�a) = a.
(c) If a 2 F and a 6= 0 then (a�1)�1 = a.
(d) If a 2 F then a(�1) = �a.
(e) If a, b 2 F then (�a)b = �ab.
(f) If a, b 2 F then (�a)(�b) = ab.

Proof. —
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(a) Assume a 2 F.
a · 0 = a · (0 + 0), by (Fc),

= a · 0 + a · 0, by (Ff).

Add �a · 0 to each side and use (Fd) to get 0 = a · 0.
(b) Assume a 2 F.

By (Fd),
�(�a) + (�a) = 0 = a+ (�a).

Add �a to each side and use (Fd) to get �(�a) = a.
(c) Assume a 2 F and a 6= 0.

By (Fh),
(a�1)�1

· a
�1 = 1 = a · a

�1
.

Multiply each side by a and use (Fh) and (Fg) to get (a�1)�1 = a.
(d) Assume a 2 F.

By (Ff),
a(�1) + a · 1 = a(�1 + 1) = a · 0 = 0,

where the last equality follows from part (a).
So, by (Fg), a(�1) + a = 0.
Add �a to each side and use (Fd) and (Fc) to get a(�1) = �a.

(e) Assume a, b 2 F.
(�a)b+ ab = (�a+ a)b, by (Ff),

= 0 · b, by (Fd),

= 0, by part (a).

Add �ab to each side and use (Fd) and (Fc) to get (�a)b = �ab.
(f) Assume a, b 2 F.

(�a)(�b) = �(a(�b)), by (e),

= �(�ab), by (e),

= ab, by part (b).

2.7.4. Identities in an ordered field. —

Proposition 2.7.4. — Let F be an ordered field.
(a) If a 2 F and a > 0 then �a < 0.
(b) If a 2 F and a 6= 0 then a

2
> 0.

(c) 1 > 0.
(d) If a 2 F and a > 0 then a

�1
> 0.

(e) If a, b 2 F and a > 0 and b > 0 then a+ b > 0.
(f) If a, b 2 F and 0 < a < b then b

�1
< a

�1.

Proof. —

(a) Assume a 2 F and a > 0.
Then a+ (�a) > 0 + (�a), by (OFb).
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So 0 > �a, by (Fd) and (Fc).
(b) Assume a 2 F and a 6= 0.

Case 1 : a > 0.
Then a · a > a · 0, by (OFb).
So a

2
> 0, by part (a).

Case 2 : a < 0.
Then �a > 0, by part (a).
Then (�a)2 > 0, by Case 1.
So a

2
> 0, by Proposition 13.4.3 (f).

(c) To show: 1 > 0.
1 = 12 > 0, by part (b).

(d) Assume a 2 F and a > 0.
By part (b), a�2 = (a�1)2 > 0.
So a(a�1)2 > a · 0, by (OFb).
So a

�1
> 0, by (Fh) and Proposition 13.4.3 (a).

(e) Assume a, b 2 F and a > 0 and b > 0.

a+ b > 0 + b, by (OFa),

> 0 + 0, by (OFa),

= 0, by (Fc).

(f) Assume a, b 2 F and 0 < a < b.
So a > 0 and b > 0.
Then, by part (d), a�1

> 0 and b
�1

> 0.
Thus, by (OFb), a�1

b
�1

> 0.
Since a < b, then b� a > 0, by (OFa).
So, by (OFb), a

�1
b
�1(b� a) > 0.

So, by (Fh), a
�1

� b
�1

> 0.
So, by (OFa), a�1

> y
�1.

2.7.5. The binomial theorem. —

Theorem 2.7.5. — Let n, k 2 Z>0 with k 2 {0, 1, . . . , n}. Assume xy = yx.
(a) If k 2 {1, . . . , n� 1} then

✓
n

k

◆
=

✓
n� 1

k � 1

◆
+

✓
n� 1

k

◆
, and

✓
n

0

◆
= 1 and

✓
n

n

◆
= 1.

(b)
�
n

k

�
is the coe�cient of xn�k

y
k in (x+ y)n.

(c) Let S be a set with cardinality n.
Then

�
n

k

�
is the number of subsets of S with cardinality k.

(d) e(x+y) = e
x
e
y.
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Proof. — (a)
�
n

0

�
= n!

0!(n�0)! =
n!
1·n! = 1 and

�
n

n

�
= n!

n!(n�n)! =
n!
n!0! =

n!
n!·1 = 1.

If k 2 {1, . . . , n� 1} then

✓
n� 1

k � 1

◆
+

✓
n� 1

k � 1

◆
=

(n� 1)!

(k � 1)!(n� 1� (k � 1))!
+

(n� 1)!

k!(n� 1� k)!

=
(n� 1)!

(k � 1)!(n� 1� k)!

⇣ 1

n� k
+

1

k

⌘

=
(n� 1)!

(k � 1)!(n� 1� k)!

n

k(n� k)
=

n!

k!(n� k)!
=

✓
n

k

◆
.

(b) The base cases are (x+ y)0 = 1 =
�
0
0

�
x
0
y
0 and (x+ y)1 = x+ y =

�
1
0

�
x
1
y
0 +

�
1
1

�
x
1
y
0.

Then, by induction,

(x+ y)n = (x+ y)n�1(x+ y)

=
⇣✓

n� 1

0

◆
x
n�1

y
0 +

✓
n� 1

1

◆
x
n�2

y
1 + · · ·+

✓
n� 1

n� 2

◆
x
1
y
n�2 +

✓
n� 1

n� 1

◆
x
0
y
n�1

⌘
(x+ y)

=

✓
n� 1

0

◆
x
n
y
0 +

✓
n� 1

1

◆
x
n�1

y
1 + · · ·+

✓
n� 1

n� 2

◆
x
2
y
n�2 +

✓
n� 1

n� 1

◆
x
1
y
n�1

+

✓
n� 1

0

◆
x
n�1

y
1 + · · ·+

✓
n� 1

n� 2

◆
x
1
y
n�1 +

✓
n� 1

n� 1

◆
x
0
y
n

=

✓
n

0

◆
x
n
y
0 +

✓
n

1

◆
x
n�1

y
1 + · · ·+

✓
n

n� 1

◆
x
1
y
n�1 +

✓
n

n

◆
x
0
y
n
,

where the last equality follows from part (a).

(c) Since

(x+ y)n = (x+ y) · · · (x+ y)| {z }
n factors

=
nX

k=0

X

J✓{1,...,n}
Card(J)=k

⇣ Y

i2{1,...,n}
i 62J

x

⌘⇣ Y

j2{1,...,n}
j2J

y

⌘

=
nX

k=0

Card({J ✓ {1, . . . , n} | Card(J) = k}) xn�k
y
k
,

the coe�cient of x
n�k

y
k is the number of ways of choosing k factors (each of which

comtributes a y to x
n�k

y
k) from the n factors in (x+ y) · · · (x+ y) = (x+ y)n.
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(d)

e
(x+y) = 1 + (x+ y) +

1

2!
(x+ y)2 +

1

3!
(x+ y)3 + · · ·

=

1
+(x+ y)

+ 1
2!(x

2 + 2xy + y
2)

+ 1
3!(x

3 + 3x2
y + 3xy2 + y

3)
+ 1

4!(x
4 + 4x3

y + 6x2
y
2 + 4xy3 + y

4)
+ 1

5!(x
5 + 5x4

y + 10x3
y
2 + 10x2

y
3 + 5xy4 + y

5)
.
.
.

=

1
+x+ y

+ 1
2!x

2 + xy + 1
2!y

2

+ 1
3!x

3 + 1
2!x

2
y + x

1
2!y

2 + 1
3!y

3

+ 1
4!x

4 + 1
3!x

3
y + 1

2!x
2 1
2!y

2 + x
1
3!y

3 + 1
4!y

4

+ 1
5!x

5 + 1
4!x

4
y + 1

3!x
3 1
2!y

2 + 1
2!x

2 1
3!y

3 + x
1
4!y

4 + 1
5!y

5

.

.

.

= e
x + e

x
y + e

x
1

2!
y
2 + e

x
1

3!
y
3 + · · · = e

x
e
y
,

where the next to last equality follows by adding up the diagonals.

2.8. Exercises


