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F.2. Proofs: Vector Spaces

Proposition F.2.1. — Let V be an F-vector space and let W be a subgroup of V . Then
the cosets of W in V partition V .

Proof. —
To show: (a) If v 2 V then there exists v0 2 V such that v 2 v0 +W .

(b) If (v1 +W ) \ (v2 +W ) 6= ; then v1 +W = v2 +W .

(a) Let v 2 V .
Since 0 2 W then v = v + 0 2 v +W .
So v 2 v +W .

(b) Assume (v1 +W ) \ (v2 +W ) 6= ;.
To show: (ba) v1 +W ✓ v2 +W .

(bb) v2 +W ✓ v1 +W .
Let a 2 (v1 +W ) \ (v2 +W ).
Suppose a = v1 + w1 and a = v2 + w2 where w1, w2 2 W .
Then

v1 = v1 + w1 � w1 = a� w1 = v2 + w2 � w1 and

v2 = v2 + w2 � w2 = a� w2 = v1 + w1 � w2.

(ba) Let v 2 v1 +W .
Then there exists w 2 W such that v = v1 + w.
Since w2 � w1 + w 2 W .

v = v1 + w = v2 + w2 � w1 + w 2 v2 +W.

So v1 +W ✓ v2 +W .
(bb) Let v 2 v2 +W .

Then there exists w 2 W such that v = v2 + w.
Since w1 � w2 + w 2 W then

v = v2 + w = v1 + w1 � w2 + w 2 v1 +W.

So v2 +W ✓ v1 +W .
So v1 +W = v2 +W .

So the cosets of W in V partition V .

Theorem F.2.2. — Let W be a subgroup of an F-vector space V . Then W is a subspace
of V if and only if V/W with operations given by

(v1 +W ) + (v2 +W ) = (v1 + v2) +W and c(v +W ) = cv +W,

is an F-vector space.

Proof. —
=) : Assume W is a subspace of V .
To show: (a) (v1 +W ) + (v2 +W ) = (v1 + v2) +W is a well defined operation on V/W .

(b) The operation given by c(v +W ) = cv +W is well defined.
(c) If v1 +W, v2 +W, v3 +W 2 V/W then�

(v1 +W ) + (v2 +W )
�
+ (v3 +W ) = (v1 +W ) +

�
(v2 +W ) + (v3 +W )

�
.

(d) If v1+W, v2+W 2 V/W then (v1+W )+ (v2+W ) = (v2+W )+ (v1+W ).
(e) 0 +W = W is the zero in V/W .
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(f) �v +W is the additive inverse of v +W .
(g) If c1, c2 2 F and v +W 2 V/W , then c1

�
c2(v +W )

�
= (c1c2)(v +W ).

(h) If v +W 2 V/W then 1(v +W ) = v +W .
(i) If c 2 F and v1 +W, v2 +W 2 V/W then

c
�
(v1 +W ) + (v2 +W )

�
= c(v1 +W ) + c(v2 +W ).

(j) If c1, c2 2 F and v+W 2 V/W then (c1+c2)(v+W ) = c1(v+W )+c2(v+W ).

(a) To show:

V/W ⇥ V/W ! V/W
(v1 +W, v2 +W ) 7! (v1 + v2) +W

is a function.

Let (v1+W, v2+W ), (v3+W, v4+W ) 2 V/W ⇥V/W such that (v1+W, v2+W ) =
(v3 +W, v4 +W ).
Then v1 +W = v3 +W and v2 +W = v4 +W .
To show: (v1 + v2) +W = (v3 + v4) +W .
To show: (aa) (v1 + v2) +W ✓ (v3 + v4) +W .

(ab) (v3 + v4) +W ✓ (v1 + v2) +W .
(aa) Since v1 +W = v3 +W then v1 = v1 + 0 2 v3 +W .

So there exists w1 2 W such that v1 = v3 + w1.
Similarly there exists w2 2 W such that v2 = v4 + w2.
Let t 2 (v1 + v2) +W .
Then there exists w 2 W such that t = v1 + v2 + w.
Since addition is commutative then

t = v1 + v2 + w

= v3 + w1 + v4 + w2 + w

= v3 + v4 + w1 + w2 + w,

So t = (v3 + v4) + (w1 + w2 + w) 2 v3 + v4 +W .
So (v1 + v2) +W ✓ (v3 + v4) +W .

(ab) Since v1 +W = v3 +W then there exists w1 2 W such that v1 + w1 = v3.
Since v2 +W = v4 +W there exists w2 2 W such that v2 + w2 = v4.
Let t 2 (v3 + v4) +W .
Then there exists w 2 W such that t = v3 + v4 + w.
Since addition is commutative then

t = v3 + v4 + w

= v1 + w1 + v2 + w2 + w

= v1 + v2 + w1 + w2 + w,

So t = (v1 + v2) + (w1 + w2 + w) 2 (v1 + v2) +W .
So (v3 + v4) +W ✓ (v1 + v2) +W .

So (v1 + v2) +W = (v3 + v4) +W .
So the operation given by (v1 +W ) + (v3 +W ) = (v1 + v3) +W is a well defined
operation on V/W .

(b) To show:
F⇥ V/W ! V/W
(c, v +W ) 7! cv +W

is a function.

Let (c1, v1 +W ), (c2, v2 +W ) 2 (F⇥ V/W ) such that (c1, v1 +W ) = (c2, v2 +W ).
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Then c1 = c2 and v1 +W = v2 +W .
To show: c1v1 +W = c2v2 +W .
To show: (ba) c1v1 +W ✓ c2v2 +W .

(bb) c2v2 +W ✓ c1v1 +W .
(ba) Since v1 +W = v2 +W then there exists w1 2 W such that v1 = v2 + w1.

Let t 2 c1v1 +W .
Then there exists w 2 W such that t = c1v1 + w.
Since c1 = c2 then

t = c1v1 + w

= c2(v2 + w1) + w

= c2v2 + c2w1 + w,

Since W is a subspace then c2w1 2 W and c2w1 + w 2 W .
So t = c2v2 + c2w1 + w 2 c2v2 +W .
So c1v1 +W ✓ c2v2 +W .

(bb) Since v1 +W = v2 +W then there exists w2 2 W such that v2 = v1 + w2.
Let t 2 c2v2 +W .
Then there exists w 2 W such that t = c2v2 + w.
Since c2 = c1 then

t = c2v2 + w

= c1(v1 + w2) + w

= c1v1 + c1w2 + w,

Since W is a subspace then c1w2 2 W and c1w2 + w 2 W .
So t = c1v1 + c1w2 + w 2 c1v1 +W .
So c2v2 +W ✓ c1v1 +W .
So c1v1 +W = c2v2 +W .
So the operation is well defined.

(c) By the associativity of addition in V and the definition of the operation in V/W ,
if v1 +W, v2 +W, v3 +W 2 V/W then

�
(v1 +W ) + (v2 +W )

�
+ (v3 +W ) =

�
(v1 + v2) +W

�
+ (v3 +W )

=
�
(v1 + v2) + v3

�
+W

=
�
v1 + (v2 + v3)

�
+W

= (v1 +W ) +
�
(v2 + v3) +W

�

= (v1 +W ) +
�
(v2 +W ) + (v3 +W )

�

(d) By the commutativity of addition in V and the definition of the operation in V/W ,
if v1 +W, v2 +W 2 V/W then

(v1 +W ) + (v2 +W ) = (v1 + v2) +W = (v2 + v1) +W = (v2 +W ) + (v1 +W ).
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(e) If v +W 2 V/W then

W + (v +W ) = (0 + v) +W

= v +W

= (v + 0) +W

= (v +W ) +W.

So the coset W = 0 +W is the zero in V/W .
(f) Let v +W 2 V/W . Then

(v +W ) + (�v +W ) = v + (�v) +W

= 0 +W

= W

= (�v + v) +W

= (�v +W ) + v +W

Thus (�v) +W is the additive inverse of v +W .

(g) Assume c1, c2 2 F and v +W 2 V/W .
Then, by definition of the operation,

c1
�
c2(v +W )

�
= c1(c2v +W )

= c1(c2v) +W

= (c1c2)v +W

= (c1c2)(v +W ).

(h) Assume v +W 2 V/W .
Then, by definition of the operation,

1(v +W ) = (1v) +W

= v +W.

(i) Assume c 2 F and v1 +W, v2 +W 2 V/W .
Then

c
�
(v1 +W ) + (v2 +W )

�
= c

�
(v1 + v2) +W

�

= c(v1 + v2) +W

= (cv1 + cv2) +W

= (cv1 +W ) + (cv2 +W )

= c(v1 +W ) + c(v2 +W ).

(j) Assume c1, c2 2 F and v +W 2 V/W .
Then

(c1 + c2)(v +W ) =
�
(c1 + c2)v

�
+W

= (c1v + c2v) +W

= (c1v +W ) + (c2v +W )

= c1(v +W ) + c2(v +W ).
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So V/W is a vector space over F.

(=: Assume W is a subgroup of V and V/W is a vector space over F with action given
by c(v +W ) = cv +W .
To show: W is a subspace of V .
To show: If c 2 F and w 2 W then cw 2 W .
First we show: If w 2 W then w +W = W .
To show: (a) w +W ✓ W .

(b) W ✓ w +W .

(a) Let k 2 w +W .
Then there exists w 1 2 W such that k = w + w1.
Since W is a subgroup then w + w1 2 W .
So w +W ✓ W .

(b) Let k 2 W .
Since k � w 2 W then k = w + (k � w) 2 w +W .
So W ✓ w +W .

Now assume c 2 F and w 2 W .
Then, by definition of the operation on V/W ,

cw +W = c(w +W )

= c(0 +W )

= c · 0 +W

= 0 +W

= W.

So cw = cw + 0 2 W .
So W is a subspace of V .

Proposition F.2.3. — Let T : V ! W be a linear transformation. Let 0V and 0W be
the zeros for V and W respectively. Then

(a) T (0V ) = 0W .
(b) For any v 2 V , T (�v) = �T (v).

Proof. —

(a) Add �T (0V ) to both sides of the following equation,

T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ).

(b) Since T (v) + T (�v) = T
�
v + (�v)

�
= T (0V ) = 0W and

T (�v) + T (v) = T
�
(�v) + v

�
+ T (0V ) = 0W

then �T (v) = T (�v).

Proposition F.2.4. — Let T : V ! W be a linear transformation. Then

(a) kerT is a subspace of V .
(b) imT is a subspace of W .

Proof. — Let 0V and 0W be the zeros in V and W , respectively.
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(a) By condition (a) in the definition of linear transformation, T is a group homomor-
phism.
To show: (aa) If k1, k2 2 kerT then k1 + k2 2 kerT .

(ab) 0V 2 kerT .
(ac) If k 2 kerT then �k 2 kerT .
(ad) If c 2 F and k 2 kerT then ck 2 kerT .

(aa) Assume k1, k2 2 kerT .
Then T (k1) = 0W and T (k2) = 0W .
By condition (a) in the definition of a linear transformation,

T (k1 + k2) = T (k1) + T (k2) = 0 + 0 = 0.

So k1 + k2 2 kerT .
(ab) By Proposition F.2.1(a), T (0V ) = 0W .

So 0V 2 kerT .
(ac) Assume k 2 kerT .

By Proposition F.2.1(b), T (�k) = �T (k).
So T (�k) = �T (k) = �0W = 0W , and �0W = 0W since 0W + 0W = 0W .
So �k 2 kerT .

(ad) Assume c 2 F and k 2 kerT .
Then, by the definition of linear transformation,

T (ck) = cT (k) = c 0W = 0W , and c 0W = 0W ,

by adding �c 0W to each side of c 0W + c 0W = c(0W + 0W ) = c 0W .
So T (ck) = 0W and ck 2 kerT .

So kerT is a subspace of V .

(b) By condition (a) in the definition of linear transformation, T is a group homomor-
phism.
To show: (ba) If w1, w2 2 imT then w1 + w2 2 imT .

(bb) 0W 2 imT .
(bc) If w 2 imT then �w 2 imT .
(bd) If c 2 F and w 2 imT then ck 2 imT .

(ba) Assume w1, w2 2 imT .
Then there exist v1, v2 2 V such that T (v1) = w1 and T (v2) = w2.
By condition (a) in the definition of linear transformation,

T (v1 + v2) = T (v1) + T (v2) = w1 + w2.

So w1 + w2 2 imT .
(bb) By Proposition F.2.1(a), T (0V ) = 0W .

So 0W 2 imT .
(bc) Assume w 2 imT .

The there exists v 2 V such that T (v) = w.
By Proposition F.2.1(b), T (�v) = �T (v) = �w.
So �w 2 im T .

(bd) To show: If c 2 F and a 2 imT then ca 2 imT .
Assume c 2 F and c 2 imT .
Then there exists v 2 V such that a = T (v).
By the definition of linear transformation,

ca = cT (v) = T (cv).
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So ca 2 imT .
So imT is a subspace of W .

Proposition F.2.5. — Let T : V ! W be a linear transformation. Let 0V be the zero
in V . Then

(a) kerT = (0V ) if and only if T is injective.
(b) imT = W if and only if T is surjective.

Proof. — Let 0V and 0W be the zeros in V and W respectively.

(a) =) : Assume kerT = (0V ).
To show: If T (v1) = T (v2) then v1 = v2.
Assume T (v1) = T (v2).
Since T is a linear transformation then

0W = T (v1)� T (v2) = T (v1 � v2).

So v1 � v2 2 kerT .
Since kerT = (0V ) then v1 � v2 = 0V .
So v1 = v2.
So T is injective.

(=: Assume T is injective
To show: (aa) (0V ) ✓ kerT .

(ab) kerT ✓ (0V ).
(aa) Since T (0V ) = 0W then 0V 2 kerT .

So (0V ) ✓ kerT .
(ab) Let k 2 kerT .

Then T (k) = 0W .
So T (k) = T (0V ).
Thus, since T is injective then k = 0V .
So kerT ✓ (0V ).

So kerT = (0V ).

(b) =) : Assume imT = W .
To show: If w 2 W then there exists v 2 V such that T (v) = w.
Assume w 2 W .
Then w 2 imT .
So there exists v 2 V such that T (v) = w.
So T is surjective.

(=: Assume T is surjective.
To show: (ba) imT ✓ W .

(bb) W ✓ imT .
(ba) Let x 2 imT .

Then there exists v 2 V such that x = T (v).
By the definition of T , T (v) 2 W .
So x 2 W .
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So imT ✓ W .

(bb) Assume x 2 W .
Since T is surjective there exists v 2 V such that T (v) = x.
So x 2 imT .
So W ✓ imT .

So imT = W .

Theorem F.2.6. —

(a) Let T : V ! W be a linear transformation and let K = kerT . Define

T̂ : V/ kerT ! W
v +K 7! T (v).

Then T̂ is a well defined injective linear transformation.

(b) Let T : V ! W be a linear transformation and define

T 0 : V ! imT
v 7! T (v).

Then T 0 is a well defined surjective linear transformation.

(c) If T : V ! W is a linear transformation, then

V/ kerT ' imT

where the isomorphism is a vector space isomorphism.

Proof. —

(a) To show: (aa) T̂ is a function.
(ab) T̂ is injective.
(ac) T̂ is a linear transformation.

(aa) To show: (aaa) If v 2 V then T̂ (v +K) 2 W .
(aab) If v1 +K = v2 +K 2 V/K then T̂ (v1 +K) = T̂ (v2 +K).

(aaa) Assume v 2 V .
Then T̂ (v +K) = T (v) and T (v) 2 W , by the definition of T̂ and T .

(aab) Assume v1 +K = v2 +K.
Then there exists k 2 K such that v1 = v2 + k.
To show: T̂ (v1 +K) = T̂ (v2 +K), i.e.
To show: T (v1) = T (v2).
Since k 2 kerT then T (k) = 0 and so

T (v1) = T (v2 + k) = T (v2) + T (k) = T (v2).

So T̂ (v1 +K) = T̂ (v2 +K).
So T̂ is well defined.

(ab) To show: If T̂ (v1 +K) = T̂ (v2 +K) then v1 +K = v2 +K.
Assume T̂ (v1 +K) = T̂ (v2 +K). Then T (v1) = T (v2).
So T (v1)� T (v2) = 0.
So T (v1 � v2) = 0.
So v1 � v2 2 kerT .
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So there exists k 2 kerT such that v1 � v2 = k.
So there exists k 2 kerT such that v1 = v2 + k.
To show: (aba) v1 +K ✓ v2 +K.

(abb) v2 +K ✓ v1 +K.
(aba) Let v 2 v1 +K.

Then there exists k1 2 K such that v = v1 + k1.
Since k + k1 2 K then v = v2 + k + k1 2 v2 +K.
So v1 +K ✓ v2 +K.

(abb) Let v 2 v2 +K.
Then there exists k2 2 K such that v = v2 + k2.
Since �k + k2 2 K then v = v1 � k + k2 2 v1 +K.
So v2 +K ✓ v1 +K.
So v1 +K = v2 +K.

So T̂ is injective.

(ac) To show: (aca) If v1 + K, v2 + K 2 V/K then T̂ (v1 + K) + T̂ (v2 + K) =
T̂
�
(v1 +K) + (v2 +K)

�
.

(acb) If c 2 F and v +K 2 V/K then T̂
�
c(v +K)

�
= cT̂ (v +K).

(aca) Let v1 +K, v2 +K 2 V/K.
Since T is a homomorphism,

T̂ (v1 +K) + T̂ (v2 +K) = T (v1) + T (v2)

= T (v1 + v2)

= T̂
�
(v1 + v2) +K

�

= T̂
�
(v1 +K) + (v2 +K)

�
.

(acb) Let c 2 F and v +K 2 V/K.
Since T is a homomorphism,

T̂
�
c(v +K)

�
= T̂ (cv +K)

= T (cv)

= cT (v)

= cT̂ (v +K).

So T̂ is a linear transformation.
So T̂ is a well defined injective linear transformation.

(b) To show: (ba) T 0 is a function.
(bb) T 0 is surjective.
(bc) T 0 is a linear transformation.

(ba) By the definition of imT , if v 2 V then T (v) 2 imT .
Thus, since T is a function then T 0 is a function.

(bb) Since imT = {T (v) | v 2 V } then if w 2 imT then there exists v 2 V such
that T (v) = w.
Since T 0(v) = T (v) = w then T 0 is surjective.

(bc) To show: (bca) If v1, v2 2 V then T 0(v1 + v2) = T 0(v1) + T 0(v2).
(bcb) If c 2 F and v 2 V then T 0(cv) = cT 0(v).

(bca) Let v1, v2 2 V .
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Then, since T is a linear transformation,

T 0(v1 + v2) = T (v1 + v2) = T (v1) + T (v2) = T 0(v1) + T 0(v2).

(bcb) Let v1, v2 2 V .
Then, since T is a linear transformation,

T 0(cv) = T (cv) = cT (v) = cT 0(v).

So T 0 is a linear transformation.
So T 0 is a well defined surjective linear transformation.

(c) Let K = kerT .
By (a), the function

T̂ : V/K ! W
v +K 7! T (v)

is a well defined injective linear transformation.
By (b), the function

T̂ 0 : V/K ! imT̂
v +K 7! T̂ (v +K) = T (v)

is a well defined surjective linear transformation.
To show: (ca) im T̂ = imT .

(cb) T̂ 0 is injective.
(ca) To show: (caa) im T̂ ✓ imT .

(cab) imT ✓ imT̂ .
(caa) Let w 2 imT̂ .

Then there is some v +K 2 V/K such that T̂ (v +K) = w.
Let v0 2 v +K.
Then there exists k 2 K such that v0 = v + k.
Then, since T is a linear transformation and T (k) = 0,

T (v0) = T (v + k)

= T (v) + T (k)

= T (v)

= T̂ (v +K)

= w.

So w 2 imT .
So im T̂ ✓ imT .

(cab) Let w 2 imT .
Then there is some v 2 V such that T (v) = w.
So T̂ (v +K) = T (v) = w.
So w 2 im T̂ .
So imT ✓ im T̂ .
So imT = im T̂ .

(cb) To show: If T̂ 0(v1 +K) = T̂ 0(v2 +K) then v1 +K = v2 +K.
Assume T̂ 0(v1 +K) = T̂ 0(v2 +K).
Then T̂ (v1 +K) = T̂ (v2 +K).
Since T̂ is injective then v1 +K = v2 +K.
So T̂ 0 is injective.
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Thus,
T̂ 0 : V/K ! imT̂

v +K 7! T (v)

is a well defined bijective linear transformation.

Proposition F.2.7. — Let V be an F-vector space and let B be a subset of V . The
following are equivalent:

(a) B is a basis of V .
(b) B is a minimal element of {S ✓ V | span

F
(S) = V }.

(c) B is a maximal element of {L ✓ V | L is linearly independent}.
(In (b) and (c) the ordering is by inclusion.)

Proof. —
(b) ) (a): Let S ✓ V such that span

F
(S) = V .

To show: If S is minimal such that span
F
(V ) then S is a basis.

To show: If S is minimal such that span
F
(V ) then S is linearly independent.

Proof by contrapositive.
To show: If S is not linearly independent then S is not minimal such that
span

F
(S) = V .

Assume S is not linearly independent.
To show: There exists s 2 S such that span

F
(S � {s}) = V .

Since S is linearly independent then there exist k 2 Z>0 and s1, . . . , sk 2 S and
c1, . . . , ck 2 F and i 2 {1, . . . , k} such that c1s1 + · · ·+ cksk = 0 and ci 6= 0.
Let s = si.
Using that F is a field and ci 6= 0 then

s = si = c�1
i
(c1s1 + . . .+ ci�1si�1 + ci+1si+1 + · · ·+ skck)

= c�1
i
c1s1 + · · ·+ c�1

i
ci�1si�1 + c�1

i
ci+1si+1 + · · ·+ c�1

i
cksk.

So V = span
F
(S) = span

F
(S � {s}).

So S is not minimal such that span
F
(S) = V .

(a) ) (b): Proof by contrapositive.

To show: If B is not minimal element of {S ✓ V | span
F
(S) = V } then B is not a

basis of V .
Assume B is not minimal element of {S ✓ V | span

F
(S) = V }.

So there exists b 2 B such that span
F
(B � {b}) 6= V .

To show: (aa) B 2 {S ✓ V | span
F
(S) = V }.

(ab) If b 2 B then B � {b} 62 {S ✓ V | span
F
(S) = V }.

(aa) Since span
F
(B) = V then B 2 {S ✓ V | span

F
(S) = V }.

(ab) Assume b 2 B.
To show: B � {b} 62 {S ✓ V | span

F
(S) = V }.

To show: span
F
(B � {b}) 6= V .

Since span
F
(B) = V then there exist k 2 Z>0, b1, . . . , bk 2 B and c1, . . . , ck 2 F

such that b = c1b1 + · · · ckbk.
So 0 = c1b1 + · · ·+ ckbk + (�1)b.

(a) ) (c): Assume B is a basis of V .

Since B is linearly independent then B 2 {L ✓ V | L is linearly independent}.
To show: If v 2 V and v 62 B then B [ {v} is not linearly independent.
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Assume v 2 V and v 62 B.
Since span

F
(B) = V then there exists k 2 Z>0 and b1, . . . , bk 2 B and c1, . . . , ck 2 F

such that v = c1b1 + . . .+ ckbk.
So 0 = c1b1 + · · ·+ ckbk + (�1)v.
So B [ {v} is not linearly independent.

(c) ) (a): Assume S is a maximal element of {L ✓ V | L is linearly independent}.
To show: span

F
(S) = V .

To show: V ✓ span
F
(S).

Let v 2 V .
To show: v 2 span

F
(S).

Case 1: v 2 S. Then v 2 span
F
(S).

Case 2: v 62 S.
Then S [ {v} is not linearly independent and S is linearly independent.
So there exist k 2 Z>0 and s1, . . . , sk 2 S and c0, c1, . . . , ck 2 F such that

c0 6= 0 and c0v + c1s1 + · · ·+ cksk = 0.

Since F is a field and c0 6= 0 then

v = (�c�1
0 c1)s1 + · · ·+ (�c�1

0 ck)sk.

So v 2 span
F
(S).

So V ✓ span
F
(S) and V = span

F
(S).

So S is linearly independent and span
F
(S) = V .

So S is a basis of V .

Theorem F.2.8. — Let V be an F-vector space. Then

(a) V has a basis, and
(b) Any two bases of V have the same number of elements.

Proof. —
(a) The idea is to use Zorn’s lemma on the set {L ✓ V | L is linearly independent},

ordered by inclusion. We will not prove Zorn’s lemma, we will assume it. Zorn’s
lemma is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn’s Lemma. If S is a nonempty poset such that every chain in S has an
upper bound then S has a maximal element.

Let v 2 V such that v 6= 0.
Then L = {v} is linearly independent.
So {L ✓ V | L is linearly independent} is not empty.
To show: If · · · ✓ Sk�1 ✓ Sk ✓ Sk+1 ✓ · · · chain of linearly independent subsets of
V then there exists a linearly independent set S that contains all the Sk.
Assume · · · ✓ Sk�1 ✓ Sk ✓ Sk+1 ✓ · · · is a chain of linearly independent subsets of
V .
Let L =

S
k
Sk.

To show L is linearly independent.
Assume ` 2 Z>0 and s1, . . . , s` 2 L.
Then there exists k such that s1, . . . , s` 2 Sk.
Since Sk is linearly independent then if c1, . . . , c` 2 F and c1s1 + · · ·+ c`s` = 0 then
c1 = 0, c2 = 0, . . . , c` = 0.
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So L is linearly independent.
So, if · · · ✓ Sk�1 ✓ Sk ✓ Sk+1 ✓ · · · chain of linearly independent subsets of V
then there exists a linearly independent set B that contains all the Sk.
Thus, by Zorn’s lemma, {L ✓ V | L is linearly independent} has a maximal element
B.
By Proposition F.2.7, B is a basis of V .

(b) Let B and C be bases of V .
Case 1: V has a basis B with Card(B) < 1.

Let b 2 B.
Then there exists c 2 C such that c 62 span

F
(B � {b}).

Then B1 = (B � {b}) [ {c} is a basis with the same cardinality as B.
Since B is finite then, by repeating this process, we can, after a finite number
of steps, create a basis B0 of V such that B0 ✓ C and Card(B0) = Card(B).
Thus Card(B) = Card(B0) 6 Card(C).
A similar argument with C in place of B gives that Card(B) > Card(C).
So Card(B) = Card(C).

Case 2: V has an infinite basis B.
Let C be a basis of V .
Define Pcb 2 F for c 2 C and b 2 B by

b =
X

c2C

Pcbc, and let Sb = {c 2 C | Pcb 6= 0} for b 2 B.

If b 2 B then Sb is a finite subset of C and

C =
[

b2B

Sb, since C is a minimal spanning set.

So Card(C) 6 max{Card(Sb) | b 2 B} 6 @0Card(B).
A similar argument withB and C switched shows that Card(B) 6 @0Card(C).
So Card(C) 6 @0Card(B) = Card(B) 6 @0Card(C) = Card(C).
Since Card(C) 6 Card(B) 6 Card(C) then Card(C) = Card(B).


