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F.2. Proofs: Vector Spaces

Proposition F.2.1. — Let V be an F-vector space and let W be a subgroup of V. Then
the cosets of W in V' partition V.

Proof. —
To show: (a) If v € V then there exists v' € V such that v € v + W.
(b) If (v + W) N (vg+ W) # D then vy + W = vy + W.
(a) Let v € V.
Since 0 € W thenv=v+0€v+W.
Sovev+W.
(b) Assume (v; + W) N (vy + W) # 0.
To show: (ba) vy + W C vy + W.
(bb) U2+WQU1—|—W.
Let a € (1)1 + W) N (UQ +W)
Suppose a = v; + w; and a = vy + we Where wq, wy € W.
Then

V=V +wW — W, =a—w; =Uy+wy—w; and
Vg = Vg + Wy — Wy = @ — Wy = V1 + W1 — Wa.
(ba) Let v € vy + W.

Then there exists w € W such that v = v; + w.
Since wy — wy +w € W.

V=0 +W=vy+wy —w; +w E vy + W.

Sovy +W Cuwuy+W.

(bb) Let v € vy + W.
Then there exists w € W such that v = vy + w.
Since w; — we +w € W then

vV=vytw=v+w —wy+w € v+ W.
SO’UQ‘FWQUl—i—W.
Sovi +W =wvy+W.
So the cosets of W in V' partition V. O

Theorem F.2.2. — Let W be a subgroup of an F-vector space V.. Then W is a subspace
of V if and only if V/W with operations given by

(i +W)+ (v +W)=(vi+v)+W and clv+W)=co+W,
15 an F-vector space.

Proof. —

—: Assume W is a subspace of V.

To show: (a) (v1 + W)+ (ve + W) = (v1 + v2) + W is a well defined operation on V/W.
(b) The operation given by c¢(v + W) = cv + W is well defined.
(c) If vy + W vy + W,vg + W € V/W then

(01 + W) + (v + W) + (v3+ W) = (v1 + W) + ((v2 + W) + (v3 + W)).

(d) If vy + W,ve+W € V/W then (v; + W)+ (va+ W) = (vg+ W) + (v + W).
(e) 04+ W = W is the zero in V/W.
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(f) —v + W is the additive inverse of v + W.
(g) If c1,00 € Fand v+ W € V/W, then ¢; (c2(v + W)) = (c1c2) (v + W).
(h) fv+W € V/W then 1(v+ W) =v+ W.
(i) If ce F and vy + W vy + W € V/W then
(v + W) + (vg + W) = (v + W) + c(vy + W).
(j) ey, € Fand v+ W € V/W then (¢1+co)(v+W) = c1(v+W)+co(v+W).
(a) To show:

VIW X VIW VW
(1]1 +W,UQ+W) — (Ul +U2)+W

Let (v + W, 0o+ W), (v3+W,va+W) € V/W x V/W such that (v; +W,va+W) =

(U3 + W, V4 + W)

Then vi + W =vs+W and vo + W = vy + W.

To show: (Ul + Uz) + W = (’03 + ’U4) + W.

To show: (aa) (vy +v2) + W C (vs +va) + W.
(ab) (vs +v4) + W C (v1 +v2) + W.

(aa) Since vy + W = v+ W then v; =v; +0 € vz + W.
So there exists w; € W such that v; = v3 + w.
Similarly there exists wy € W such that vy = vy + ws.
Let t € (v +v2) + W.

Then there exists w € W such that ¢t = vy + vy + w.
Since addition is commutative then

t:U1+’U2+w

=v3+w +v4+wy+w

is a function.

= Uz + Uy + w1 + w2 +w,

Sot = (v +vy) + (w1 +wy +w) € vg+ vy + W.
So (U1+UQ)+WQ(U3+’U4)+W.

(ab) Since vy + W = vz + W then there exists wy € W such that v; + w; = vs.
Since vy + W = vy + W there exists wy € W such that vy + wy = v4.
Let t € (vs+vq) + W,
Then there exists w € W such that ¢t = v3 + vy + w.
Since addition is commutative then

t = Vs + vy +wW
=v1+w +v+wyt+w
=1 + V2 +w; + w2 + W,
So t = (v1 +v2) + (w1 +wy +w) € (v1 +v2) + W.
So (U3+U4)+W Q (U1+U2)+W.
So (U1+U2)+W: (U3+U4)+W.
So the operation given by (v; + W) + (v3 + W) = (v1 + v3) + W is a well defined
operation on V/W.

(b) To show:
FxV/W — V/W
(ccv+W) = co+W

Let (¢1,v1 + W), (co,va + W) € (F x V/W) such that (¢1,v1 + W) = (co,v2 + W).

is a function.
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Then ¢y = cy and vy + W = vy + W.
To show: civ1 + W = covg + W.
To show: (ba) cjv; + W C coug + W.
(bb) CoVg + w - c1v1 + wW.
(ba) Since vy + W = vy + W then there exists wy € W such that vy = vy + wy.
Let t € c;u1 + W.
Then there exists w € W such that ¢t = cjv; + w.
Since ¢; = ¢9 then

t=cv+w
= co(vg +wy) +w

= CoUg + Cow7 + W,

Since W is a subspace then cow; € W and cow; +w € W.
SO t = Uy + cowy + W € cve + W
So civy + W C coug + W.

(bb) Since v; + W = vy + W then there exists wy € W such that ve = v + ws.
Let t € CoUg + wW.
Then there exists w € W such that t = covy + w.
Since ¢y = ¢; then

t = covy +w
=c1(v +wy) +w

= V1 + cqws + w,

Since W is a subspace then ciws € W and ciwy +w € W.
Sot=cv; +ciwy +w € cyv; + W.
So Col2 + w g c1v1 + W.
So civ; + W = v + W.
So the operation is well defined.
(c) By the associativity of addition in V' and the definition of the operation in V/W,
ifor + Wiog+W, o3+ W € V/W then

(1 4+ W)+ (v24+ W) + (v3+ W) = ((1 +v2) + W) + (v3 + W)
= (1 4+ v2) +v3) + W
(vl—i— ?}2+U3)+W

= (v1 + W) + ((v2 + v3) + W)
(

= U1+W)+((U2+W)+(U3+W))

(d) By the commutativity of addition in V' and the definition of the operation in V/W,
if v3 + W, vo+W € V/W then

(V1 +W)+ (0o + W)= (1 +v)+W = (va+v1)+ W = (vg+ W)+ (v; + W).
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(e) f v+ W € V/W then
WH+@w+W)=0+v)+W
=v+W
=(w+0)+W
=@+ W)+ W
So the coset W = 0+ W is the zero in V/W.
(f) Let v+ W € V/W. Then
(+W)+(—v+W)=v+(—v)+ W
=0+W
=W
=(—v4uv)+W
=(—v+W)+v+W

Thus (—v) + W is the additive inverse of v + W.

(g) Assume ¢i,co € Fand v+ W € V/W.
Then, by definition of the operation,
c1 (02(0 + W)) =c1(cu+ W)
= ci(cv) + W
= (qe)v+ W
= (c1c9) (v + W).

(h) Assume v+ W € V/W.
Then, by definition of the operation,

Hlo+W)=(lv)+ W

(i) Assume c € F and vy + W, + W € V/W.
Then
c((v1 + W)+ (va + W)) = c((v1 4+ v2) + W)
c(vg +vy)+ W
= (cvy +cvy) + W
= (cor + W) + (cvg + W)
c(vy + W)+ c(va + W).

(j) Assume ¢q,¢0 € Fand v+ W € V/W.
Then
(c1+ )0+ W) = ((c1 + c2)v) + W
= (v + )+ W
= (v + W)+ (cu+ W)
=c(v+W)+c(v+W).
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So V/W is a vector space over F.

<=: Assume W is a subgroup of V and V/W is a vector space over F with action given
by c(v+ W) =cv+ W.
To show: W is a subspace of V.
To show: If c € F and w € W then cw € W.
First we show: If w € W then w+ W =W.
To show: (a) w+ W CW.
(b) W Cw+W.
(a) Let ke w+ W.
Then there exists w_1 € W such that k = w + wy.
Since W is a subgroup then w + w; € W.
Sow+ W CW.

(b) Let k € W.
Since k —w € W then k = w+ (k —w) € w+ W.
SoW Cw+ W.
Now assume ¢ € F and w € W.
Then, by definition of the operation on V/W,

cw+ W =clw+W)

=c(0+ W)
=c-0+W
=0+W
=W.
Socw=cw—+0€eW.
So W is a subspace of V. O

Proposition F.2.3. — Let T:V — W be a linear transformation. Let Oy and Oy be
the zeros for V- and W respectively. Then

(a) T(0y) = O .
(b) For anyv eV, T(—v) =—-T(v).

Proof. —

(a) Add —T'(0y) to both sides of the following equation,
T(Ov) =T(0v +0v) =T(0v) +T(0v).
(b) Since T'(v) + T(—v) = T'(v + (—v)) = T(0y) = Ow and
T(—v) +T(v) =T((—v) +v) + T(0y) = Ow
then —T'(v) = T(—v).

Proposition F.2.4. — Let T:V — W be a linear transformation. Then

(a) ker T is a subspace of V.
(b) imT is a subspace of W.

Proof. — Let Oy and Oy, be the zeros in V' and W respectively.
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(a) By condition (a) in the definition of linear transformation, 7" is a group homomor-
phism.
To show: (aa) If ki, ko € ker T then ky + ko € ker 7.
(ab) Oy € ker T'.
(ac) If k € ker T' then —k € ker T..
(ad) If c € F and k € ker T then ck € ker T
(aa) Assume ky, ky € ker T
Then T(k’l) = OW and T(]{?Q) = OW
By condition (a) in the definition of a linear transformation,

So ki + kg € ker T'.
(ab) By Proposition F.2.1(a), T'(0y) = Oy .
So 0y € kerT.
(ac) Assume k € ker T
By Proposition F.2.1(b), T'(—k) = =T'(k).
So T'(—k) = =T(k) = —0w = Oy, and —0y = Oy since Oy + Oy = Oyy.
So —k € kerT.
(ad) Assume c € F and k € ker T
Then, by the definition of linear transformation,

T(ck) = cT'(k) = cOw = Ow, and ¢Opy = Ow,

by adding —c Oy to each side of ¢Ow + cOy = ¢(Ow + Oy ) = ¢ Oy
So T'(ck) = Oy and ck € ker T
So kerT' is a subspace of V.

(b) By condition (a) in the definition of linear transformation, 7" is a group homomor-
phism.
To show: (ba) If wy,wy € im T then wy + wy € im T,
(be) If w € imT then —w € im T
(bd) If c€ F and w € im T then ck € imT.
(ba) Assume wy,wy € im 7.
Then there exist vy, vy € V such that T'(v) = w; and T'(vy) = ws.
By condition (a) in the definition of linear transformation,

T(vy 4+ vy) =T (v1) + T (ve) = wy + ws.

So wy +wy € iIm T

(bb) By Proposition F.2.1(a), T'(0y) = Ow.
So Oy € im 7.

(bc) Assume w € imT.
The there exists v € V such that T'(v) = w.
By Proposition F.2.1(b), T'(—v) = =T'(v) = —w.
So —w € im T.

(bd) To show: If ¢ € F and @ € im T then ca € im T
Assume c € F and c € im 7.
Then there exists v € V such that a = T'(v).
By the definition of linear transformation,

ca = cl'(v) =T (cv).
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So ca € imT.
So im T is a subspace of W.
O
Proposition F.2.5. — Let T:V — W be a linear transformation. Let Oy be the zero
Then

n V.

(a) ker T' = (Oy) if and only if T' is injective.
(b) imT =W if and only if T is surjective.

Proof. — Let 0y and Oy, be the zeros in V' and W respectively.

(a)

= Assume ker 7" = (Oy).

To show: If T'(vy) = T'(vq) then vy = vy.
Assume T'(vq) = T'(v2).

Since 7' is a linear transformation then

Ow = T'(v1) — T'(v2) = T'(v1 — v2).

So vy —wvy € kerT'.

Since ker T' = (0y) then v; — vy = Oy.
So V1 = V2.

So T'is injective.

<—=: Assume T is injective
To show: (aa) (0y) C kerT.
(ab) ker T" C (0y).
(aa) Since T'(0y) = Oy then Oy € ker T
So (Ov) - kerT'.
(ab) Let k € ker T
So T'(k) =T(0y).
Thus, since T is injective then k = 0y .
So ker T' C (Oy).
So ker T' = (Oy).

—>: Assume im7T =W,

To show: If w € W then there exists v € V' such that T'(v) = w.
Assume w € W.

Then w € imT.

So there exists v € V such that T'(v) = w.

So T' is surjective.

<=: Assume T is surjective.
To show: (ba) im7" C W.
(bb) W CimT.
(ba) Let x € imT.
Then there exists v € V such that = = T'(v).
By the definition of T, T'(v) € W.
Sox e W.
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Soim7 C W.

(bb) Assume z € W.

Since T is surjective there exists v € V' such that T'(v) = z.
Sox €imT.
SoW CimT.

Soim7T =W.

Theorem F.2.6. —
(a) Let T:V — W be a linear transformation and let K = kerT. Define

T: V/keeT — W
v+ K — T(v).

Then T is a well defined injective linear transformation.
(b) Let T:V — W be a linear transformation and define
T: V — imT
v = T(v).
Then T" is a well defined surjective linear transformation.
(c) If T:V — W is a linear transformation, then
V/ker T ~imT
where the isomorphism is a vector space isomorphism.
Proof. —

(a) To show: (aa) T is a function.
(ab) T is injective.
(ac) T is a linear transformation.
(aa) To show: (aaa) If v € V then T'(v + K) € W.
(aab) If v; + K = vy + K € V/K then T'(v; + K) = T(vy + K).
(aaa) Assume v € V.

Then T(v 4+ K) = T(v) and T'(v) € W, by the definition of 7" and T

(aab) Assume vy + K = vy + K.
Then there exists k € K such that v; = vy + k.
To show: T(vy + K) = T'(vy + K), i.e.
To show: T'(vy) = T'(v3).
Since k € ker T then T'(k) = 0 and so
T(vy) =T(ve+ k) =T(ve) +T(k) =T(va).
So T'(vy + K) = T'(vy + K).
So T'is well defined.

(ab) To show: If T(vy + K) = T'(vy + K) then v; + K = v, + K.
Assume T'(vy + K) = T'(vy + K). Then T'(v;) = T'(vy).
So T(’Ul) - T(Ug) = 0.

So T'(vy —vy) = 0.
So vy — vy € ker T'.
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So there exists k € ker T such that v; — vy = k.
So there exists k£ € ker T such that v; = vy + k.
To show: (aba) v; + K C vy + K.
(abb) v + K C vy + K.
(aba) Let v € vy + K.
Then there exists k1 € K such that v = vy + ky.
Since k+ ki € K thenv=vy+k+k €vy;+ K.
Sovi + K Cuy+ K.
(abb) Let v € vy + K.
Then there exists ky € K such that v = vy + ko.
Since —k+ ky € K thenv=v;, —k+ky € v; + K.
So UQ"‘Kg/Ul—‘FK.
ASO U1+K:U2+K.
So T is injective.

37

(ac) To show: (aca) If v; + K,v, + K € V/K then T(v; + K) 4+ T(vy + K) =

T((v1 + K) + (02 + K)).

~

(acb) If c € F and v + K € V/K then T(C(U+K)) = (v+ K).

(aca) Let v + K,y + K € V/K.
Since 7' is a homomorphism,

T(vy + K) 4 T(vy + K) = T(vy) + T(vs)

T (v + vy)
=T((v1 + v2) + K)
=T((v1 + K) + (vs + K)).

(acb) Let ce Fand v+ K € V/K.
Since 7" is a homomorphism,

T(c(w+K)) =T

= T'(v+ K).

K So T is a linear transformation.
So T is a well defined injective linear transformation.

(b) To show: (ba) T” is a function.
(bb) T" is surjective.
(bc) T" is a linear transformation.
(ba) By the definition of im 7', if v € V then T'(v) € im T
Thus, since T is a function then 7" is a function.

(bb) Since imT = {T'(v) | v € V'} then if w € im T then there exists v € V such

that T'(v) =
Since T"(v) = T'(v) = w then T” is surjective.
(bc) To show: (bca) If vy, vy € V then T'(vy 4+ vo) = T"(v1) + T"(va).
(beb) If c € F and v € V then T"(cv) = 1" (v).
(bca) Let vy,vy € V.
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Then, since T' is a linear transformation,

T'(vy +v9) = T(vy +v9) = T(vy) + T (v2) =T'(v1) + T (v2).

(beb)

SoT"is a

Let v1,v, € V.
Then, since T is a linear transformation,

T'(cv) =T(cw) = T'(v) = T (v).

So T" is a linear transformation.
well defined surjective linear transformation.

(c) Let K =kerT.
By (a), the function

T: VK — W
v+ K — T(v)

is a well defined injective linear transformation.
By (b), the function

T V/IK — im7’
v+ K — Tw+K) =T(v)

is a well defined surjective linear transformation.

To show:

(ca) imT = im T
(cb) T” is injective.

(ca) To show: (caa) im7 CimT.

(caa)

(cab)

(cab) im T C imT".
Let w € im7.
Then there is some v + K € V/IK such that T'(v + K) = w.
Let v € v + K.
Then there exists k € K such that v" = v + k.
Then, since T is a linear transformation and 7'(k) = 0,

T(v') = T(v + k)

=T(v)+ T(k)
=T(v)
=T(v+ K)
= w.

So w €imT.

SoimT CimT7.

Let w € imT.

Then there is some v € V such that T'(v) = w.
SoT(v+K)=T(v) =w.

Sow € imT. R
SoimT CimT.

So imT = im7T.

(cb) To show: If T"(vy + K) = T"(vs + K) then vy + K = vy + K.
Assume T"(vy + K) = T"(vy + K).
Then T(vl + K) = T(vg + K).
Since 7' is injective then v; + K = vy + K.
So 1" is injective.
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Thus,
T: V/K — imT
v+ K — T(v)
is a well defined bijective linear transformation.
O

Proposition F.2.7. — Let V be an F-vector space and let B be a subset of V. The
following are equivalent:

(a) B is a basis of V.

(b) B is a minimal element of {S C V| spang(S) = V'}.

(¢c) B is a mazximal element of {L CV | L is linearly independent}.
(In (b) and (c) the ordering is by inclusion.)

Proof. —
(b) = (a): Let S C V such that spang(S) =V.
To show: If S is minimal such that spang(V') then S is a basis.
To show: If S is minimal such that spany(V') then S is linearly independent.
Proof by contrapositive.
To show: If S is not linearly independent then S is not minimal such that
spang(S) = V.
Assume S is not linearly independent.
To show: There exists s € S such that spang(S — {s}) =V.

Since S is linearly independent then there exist k& € Z<g and s1,...,s, € S and
c1,...,cx €EFand i€ {1,... k} such that ¢;81 + -+ + ¢xsp = 0 and ¢; # 0.
Let s = s;.

Using that I is a field and ¢; # 0 then
s=5;=0¢ (c151+ ...+ Ci1Si1 + Cip1Sip1 + -+ + SkCr)
=c;leisi+ e e + ¢ i Sig + o o tersy

So V = spang(S) = spang(S — {s}).
So S is not minimal such that spang(S) = V.
(a) = (b): Proof by contrapositive.
To show: If B is not minimal element of {S C V' | spang(S) = V} then B is not a
basis of V.
Assume B is not minimal element of {S C V' | spang(S) = V'}.
So there exists b € B such that spang(B — {b}) # V.
To show: (aa) B € {S CV | spang(S) =V}.
(ab) If b € B then B — {b} ¢ {S C V| spang(S) = V}.
(aa) Since spang(B) =V then B € {S CV | spang(S) = V}.
(ab) Assume b € B.
To show: B — {b} ¢ {S CV | spany(S) = V'}.
To show: spang(B — {b}) # V.
Since spang(B) = V then there exist k € Z~g, by,...,br € B and c¢,...,¢, € F
such that b = ¢1by + - - - ¢by.
So 0 = c1by + -+ - + cpby + (—=1)b.
(a) = (c): Assume B is a basis of V.

Since B is linearly independent then B € {L C V' | L is linearly independent}.
To show: If v € V and v ¢ B then B U {v} is not linearly independent.
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Assume v € V and v ¢ B.
Since spang(B) = V then there exists k € Z~g and by, ..., by € Band ¢q,...,¢c, € F
such that v = ¢1by + ... + ciby.
So 0 = Clbl + -+ Ckbk + (—1)1}.
So B U{v} is not linearly independent.
(¢) = (a): Assume S is a maximal element of {L C V' | L is linearly independent}.
To show: spany(S) = V.
To show: V' C spang(.5).
Let v e V.
To show: v € spang(.S).
Case 1: v € S. Then v € spang(S).

Case 2: v &€ S.
Then S U {v} is not linearly independent and S is linearly independent.
So there exist k € Z~g and s1,...,5; € S and ¢y, cq, ..., ¢, € F such that

co# 0 and CcoV + 181+ - + s = 0.
Since I is a field and ¢y # 0 then
v=(—ciles + -+ (il
So v € spang(95).
So V' C spang(S) and V' = spang(95).

So S is linearly independent and spany(S) = V.
So S'is a basis of V.

Theorem F.2.8. — Let V be an F-vector space. Then
(a) V' has a basis, and

(b) Any two bases of V' have the same number of elements.

Proof. —
(a) The idea is to use Zorn’s lemma on the set {L C V' | L is linearly independent},
ordered by inclusion. We will not prove Zorn’s lemma, we will assume it. Zorn’s
lemma is equivalent to the axiom of choice. For a proof see Isaacs book [Isa, §11D].

Zorn’s Lemma. If S is a nonempty poset such that every chain in S has an
upper bound then S has a maximal element.

Let v € V such that v # 0.

Then L = {v} is linearly independent.

So {L C V| L is linearly independent} is not empty.

To show: If --- C Sx_1 € S C Skiq C -+ chain of linearly independent subsets of
V' then there exists a linearly independent set S that contains all the S;.

Assume --- C S 1 € S, C Siiq C -+ is a chain of linearly independent subsets of
V.

Let L =J, Sk

To show L is linearly independent.

Assume ¢ € Z~y and sq,...,5; € L.

Then there exists k£ such that sq,...,s, € Si.

Since Sy is linearly independent then if ¢1,..., ¢, € F and ¢;81 + - -+ ¢4s, = 0 then
c1=0,c=0,...,¢c,=0.
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So L is linearly independent.

So, if -+ C Si_1 € Sk C Sgy1 C -+ chain of linearly independent subsets of V'
then there exists a linearly independent set B that contains all the 5.

Thus, by Zorn’s lemma, {L. C V' | L is linearly independent} has a maximal element

B

By Proposition F.2.7, B is a basis of V.
(b) Let B and C be bases of V.

Case 1:

Case 2:

V has a basis B with Card(B) < oc.

Let b € B.

Then there exists ¢ € C' such that ¢ € spang(B — {b}).

Then By = (B — {b}) U {c} is a basis with the same cardinality as B.

Since B is finite then, by repeating this process, we can, after a finite number
of steps, create a basis B’ of V such that B’ C C' and Card(B’) = Card(B).
Thus Card(B) = Card(B’) < Card(C).

A similar argument with C' in place of B gives that Card(B) > Card(C).
So Card(B) = Card(C).

V' has an infinite basis B.

Let C' be a basis of V.

Define P, € F for ¢ € C' and b € B by

b= Pyc, andlet Sy={ceC|Py#0} forbeB.
ceC
If b € B then S} is a finite subset of C and

C = U S, since C' is a minimal spanning set.
beB
So Card(C') < max{Card(S;) | b € B} < RoCard(B).
A similar argument with B and C' switched shows that Card(B) < RoCard(C).
So Card(C) < NyCard(B) = Card(B) < NgCard(C) = Card(C).
Since Card(C') < Card(B) < Card(C) then Card(C) = Card(B).
[



