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G.6. Proofs: Group actions

Proposition G.6.1. — Suppose G is a group acting on a set S and let s 2 S and
g 2 G. Then
(a) Gs is a subgroup of G.
(b) Ggs = gGsg�1.

Proof. —
(a) To show: (aa) If h1, h2 2 Gs then h1h2 2 Gs.

(ab) 1 2 Gs.
(ac) If h 2 Gs then h�1 2 Gs.

(aa) Assume h1, h2 2 Gs.
Then

(h1h2)s = h1(h2s) = h1s = s.

So h1h2 2 Gs.
(ab) Since 1s = s, 1 2 Gs.
(ac) Assume h 2 Gs.

Then
h�1s = h�1(hs) = (h�1h)s = 1s = s.

So h�1 2 Gs.

So Gs is a subgroup of G.
(b) To show: (ba) Ggs ✓ gGsg�1.

(bb) gGsg�1 ✓ Ggs.

(ba) Assume h 2 Ggs.
Then hgs = gs.
So g�1hgs = s.
So g�1hg 2 Gs.
Since h = g(g�1hg)g�1 then h 2 gGsg�1.
So Ggs ✓ gGsg�1.

(bb) Assume h 2 gGsg�1.
So there exists a 2 Gs such that h = gag�1.
Then

hgs = (gag�1)gs = gas = gs.

So h 2 Ggs.
So Ggs ✓ gGsg�1.

So Ggs = gGsg�1.

Proposition G.6.2. — Let G be a group which acts on a set S. Then the orbits partition
the set S.

Proof. —
To show: (a) If s 2 S then there exists t 2 S such that s 2 Gt.

(b) If s1, s2 2 S and Gs1 \Gs2 6= ; then Gs1 = Gs2.

(a) Assume s 2 S.
Then, since s = 1s, s 2 Gs.

(b) Assume s1, s2 2 S and that Gs1 \Gs2 6= ;.
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Let t 2 Gs1 \Gs2.
Then there exist g1, g2 2 G such that t = g1s1 and t = g2s2.
So

s1 = g�1
1 g2s2 and s2 = g�1

2 g1s1.

To show: Gs1 = Gs2.
To show: (ba) Gs1 ✓ Gs2.

(bb) Gs2 ✓ Gs1.
(ba) Let t1 2 Gs1.

So there exists h1 2 G such that t = h1s1.
Then

t1 = h1s1 = h1g
�1
1 g2s2 2 Gs2.

So Gs1 ✓ Gs2.
(bb) Let t2 2 Gss.

So there exists h2 2 G such that t2 = h2s2.
Then

t2 = h2s2 = h2g
�1
2 g1s1 2 Gs1.

So Gs2 ✓ Gs1.
So Gs1 = Gs2.

So the orbits partition S.

Corollary G.6.3. — If G is a group acting on a set S and Gsi denote the orbits of the
action of G on S then

Card(S) =
X

distinct orbits

Card(Gsi).

Proof. — By Proposition 1.2.4, S is a disjoint union of orbits.
So Card(S) is the sum of the cardinalities of the orbits.

Proposition G.6.4. — Let G be a group acting on a set S and let s 2 S. If Gs is the
orbit containing s and Gs is the stabilizer of s then

Card(G/Gs) = Card(Gs).

where G/Gs is the set of cosets of Gs in G.

Proof. — To show: There is a bijective map ' : G/Gs ! Gs.
Define

' : G/Gs ! Gs
gGs 7! gs.

To show: (a) ' is well defined. (b) ' is bijective.

(a) To show: (aa) If g 2 G then '(gGs) 2 Gs.
(ab) If g1Gs = g2Gs then '(g1Gs) = '(g2Gs).

(aa) From the definition of ', '(gGs) = gs 2 Gs.
(ab) Assume g1, g2 2 G and g1Gs = g2Gs.

Then g1 = g2h for some h 2 Gs.
To show: g1s = g2s.
Since h 2 Gs then g1s = g2hs = g2s.
So '(g1Gs) = '(g2Gs).

So ' is well defined.
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(b) To show: (ba) ' is injective.
(bb) ' is surjective.

(ba) To show: ' is injective.
If '(g1Gs) = '(g2G2) then g1Gs = g2Gs.
Assume '(g1Gs) = '(g2Gs).
Then g1s = g2s.
So s = g�1

1 g2s and g�1
2 g1s = s.

So g�1
1 g2 2 Gs and g�1

2 g1 2 Gs.
To show: g1Gs = g2Gs

To show: (baa) g1Gs ✓ g2Gs.
(bab) g2Gs ✓ g1Gs.

(baa) Let k1 2 g1Gs.
So there exists h1 2 Gs such that k1 = g1h1.
Then

k1 = g1h1 = g1g
�1
1 g2g

�1
2 g1h1 = g2(g

�1
2 g1h1) 2 g2Gs.

So g1Gs ✓ g2Gs.
(bab) Let k2 2 g2Gs.

So there exists h2 2 Gs such that k2 = g2h2.
Then

k2 = g2h2 = g2g
�1
2 g1g

�1
1 g2h2 = g1(g

�1
1 g2h2) 2 g1Gs.

So g2Gs ✓ g1Gs.
So g1Gs = g2Gs.

So ' is injective.
(bb) To show: ' is surjective.

To show: If t 2 Gs then there exists hGs 2 G/Gs such that '(hGs) = t.
Assume t 2 Gs.
Then there exists g 2 G such that t = gs.
Let h = g so that hGs = gGs.
Then '(gGs) = gs = t.
So ' is surjective.

So ' is bijective.

Corollary G.6.5. — Let G be a group acting on a set S. Let s 2 S, let Gs denote the
stabilizer of s and let Gs denote the orbit of s. Then

Card(G) = Card(Gs)Card(Gs).

Proof. — Multiply both sides of the identity in Proposition 1.2.6 by Card(Gs) and use
Corollary 1.1.5.

Proposition G.6.6. — Let H be a subgroup of G and let NH be the normalizer of H in
G. Then
(a) H is a normal subgroup of NH .
(b) If K is a subgroup of G such that H ✓ K ✓ G and H is a normal subgroup of K then
K ✓ NH .

Proof. —
(b) Assume K is a subgroup of G, H ✓ K ✓ G and H is a normal subgroup of K.
To show: K ✓ NH .
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Let k 2 K.
To show: k 2 NH .
To show: If h 2 H then khk�1 2 H.
This is true since H is normal in K.
So K ✓ NH .

(a) This is the special case of (b) when K = H.

Proposition G.6.7. — Let G be a group and let S be the set of subsets of G. Then
(a) G acts on S by

↵ : G⇥ S ! S
(g, S) 7! gSg�1 where gSg�1 = {gsg�1 | s 2 S}.

We say that G acts on S by conjugation.
(b) If S is a subset of G then NS is the stabilizer of S under the action of G on S by
conjugation.

Proof. —
(a) To show: (aa) ↵ is well defined.

(ab) ↵(1, S) = S for all S 2 S.
(ac) If g, h 2 G and S 2 S then ↵(g,↵(h, S)) = ↵(gh, S).

(aa) To show: (aaa) gSg�1 2 S.
(aab) If S = T and g = h then gSg�1 = hTh�1.

Both of these are consequences of the definitions.
(ab) Let S 2 S.

Then ↵(1, S) = 1S1�1 = S.
(ac) Let g, h 2 G and S 2 S.

Then

↵
�
g,↵(h, S)

�
= ↵(g, hSh�1) = g(hSh�1)g�1 = (gh)S(h�1g�1) = (gh)S(gh)�1 = ↵(gh, S).

(b) This follows from the definitions of NS and of stabilizer.

Proposition G.6.8. — Let G be a group. Then
(a) G acts on G by

G⇥G ! G
(g, s) 7! gsg�1.

We say that G acts on itself by conjugation.
(b) Two elements g1, g2 2 G are conjugate if and only if they are in the same orbit under
the action of G on itself by conjugation.
(c) Let g 2 G. The conjugacy class Cg is the orbit of g under the action of G on itself by
conjugation.
(d) Let g 2 G. The centralizer Zg is the stabilizer of g under the action of G on itself by
conjugation.

Proof. —
(a) The proof is exactly the same as the proof of (a) in Proposition 1.2.10.
Replace all the capital S’s by lower case s’s.
(b), (c), and (d) follow from the definitons. NOT SURE IF I LIKE THIS.

Lemma G.6.9. — Let Gs be the stabilizer of s 2 G under the action of G on itself by
conjugation. Let Z(G) be the center of G. Let S be a subset of G. Then
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(a) ZS =
\

s2S

Gs.

(b) Z(G) = ZG.
(c) s 2 Z(G) if and only if Zs = G.
(d) s 2 Z(G) if and only if Cs = {s}.

Proof. —
(a)

(aa) Assume s 2 Zs.
Then, if 2 S then sxs�1 = s.
So, if s 2 S then x 2 Gs.
So x 2

T
s2S

Gs.
So Zs ✓

T
s2S

Gs.
(ab) Assume x 2

T
s2S

Gs.
Thus, if s 2 S then xsx�1 = s.
So x 2 Zs.
So

T
s2S

Gs ✓ Zs.

(b) This follows from the definitions of ZG and Z(G).
(c) =) :

Let s 2 Z(G).
To show: Zs = G.
By definition, Zs ✓ G.
To show: G ✓ Zs.
Let g 2 G.
Then gsg�1 = s, since s 2 Z(G).
So g 2 Zs.
So G ✓ Zs.
So Zs = G.

(c) (=:

Assume Zs = G.
So, if g 2 G then gsg�1 = s.
Thus, if g 2 G then gs = sg.
So s 2 Z(G).

(d) =) :

Assume s 2 Z(G).
Then, if s 2 G then gsg�1 = s.
So Cs = {gsg�1 | g 2 G} = {s}.

(d) (=:

Assume Cs = {s}.
So, if g 2 G then gsg�1 = s.
So s 2 Z(G).

Proposition G.6.10. — (The Class Equation) Let Cgi denote the conjugacy classes in
a group G. Then

Card(G) = Card(Z(G)) +
X

Card(Cgi )>1

Card(Cgi).
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Proof. — By Corollary 1.2.5 and the fact that the Cgi are the orbits of G acting on itself
by conjugation,

Card(G) =
X

Cgi

Card(Cgi).

By Lemma 1.2.14 d),

Z(G) =
[

Card(Cgi )=1

Cgi .

So

Card(G) =
X

Card(Cgi )=1

Card(Cgi) +
X

Card(Cgi )>1

Card(Cgi)

= Card(Z(G)) +
X

Card(Cgi )>1

Card(Cgi).


