
CHAPTER L

GROUPS OF LOW ORDER

In this chapter we shall give tables which give explicit information about several in-
teresting examples of groups which have order less than 100. For the most part we shall
not prove the results given in these tables. We strongly suggest that, in each individual
case, the reader do the appropriate computations to check the information in these tables,
for it is exactly in the computations in examples such as these that the subject of group
theory “comes alive”.
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Let us begin with a list of the di↵erent groups of order 6 15. The reader should think
about extending this table to include all groups of order, say, 6 100. The following
beautiful book may be very helpful for such a project:

H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups,
Series Ergebnisse der Mathematik und ihrer Grenzgebiete 14, Springer-Verlag,
Berlin 1984.

Note also that the finite abelian groups are completely determined by the Fundamental
Theorem of Abelian groups, Theorem (?????). In the following table:

Q denotes the quaternion group.
Z/kZ denotes the cyclic group of order k.
Dk denotes the dihedral group of order 2k.
Sk denotes the symmetric group on k letters.
Ak denotes the alternating group on k letters.

Group Order Abelian

(1) 1 Yes
Z/2Z 2 Yes
Z/3Z 3 Yes
Z/4Z 4 Yes
Z/2Z⇥ Z/2Z 4 Yes
Z/5Z 5 Yes
Z/6Z ' Z/2Z⇥ Z/3Z 6 Yes
S3 ' D3 6 No
Z/7Z 7 Yes
Z/8Z 8 Yes
Z/4Z⇥ Z/2Z 8 Yes
Z/2Z⇥ Z/2Z⇥ Z/2Z 8 Yes
D4 8 No
Q 8 No
Z/9Z 9 Yes
Z/3Z⇥ Z/3Z 9 Yes
Z/10Z ' Z/5Z⇥ Z/2Z 10 Yes
D5 10 No
Z/11Z 11 Yes
Z/12Z ' Z/4Z⇥ Z/3Z 12 Yes
Z/3Z⇥ Z/2Z⇥ Z/2Z 12 Yes
D6 ' Z/2Z⇥D3 12 No
A4 12 No
hS, T | S3 = T 2 = (ST )2i 12 No
Z/13Z 13 Yes
Z/14Z ' Z/7Z⇥ Z/2Z 14 Yes
D7 14 No
Z/15Z ' Z/5Z⇥ Z/3Z 15 Yes
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L.1. The cyclic group Z/2Z of order 2, the 2-clock

There are at least two natural ways of defining the 2-clock. The isomorphism which
shows that these two definitions are the same is given in the rightmost column of the
following table.
Set Operation Multiplication Table

µ2 = {1,�1}
= {±1}

ordinary multiplication
of integers

⇥ 1 -1
1 1 -1
-1 -1 1

Z/2Z = {0, 1} addition modulo 2

+ 0 1
0 0 1
1 1 0

The isomorphism is
' : Z/2Z ! µ2

0 7! 1
1 7! �1

Elements

Element g Order o(g) Centralizer Zg

1 1 Z2

�1 2 Z2

Generators and relations

Generators Relations

g g2 = 1

Some Homomorphisms

Homomorphism Kernel Image

�0 : Z2 ! {1}
1 7! 1
�1 7! 1

ker�0 = µ2 im�0 = {1}

�1 : µ2 ! µ2

1 7! 1
�1 7! �1

ker�1 = {1} im�1 = µ2
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Center, conjugacy class and subgroups

Center Abelian Conjugacy classes Subgroups

Z(µ2) = µ2 Yes C1 = {1} H0 = µ2

C�1 = {�1} H1 = {1}

Subgroup lattice

Subgroups Hi Structure Index Normal Quotient Group

H0 = µ2 H0 = µ2 Card(µ2/µ2) = 1 Yes µ2/H0 ' {1}

H1 = {1} H1 = {1} Card(µ2/{1}) = 2 Yes µ2/{1} ' µ2

Subgroup Hi Normalizer Centralizer

H0 = µ2 N(H0) = µ2 Zµ2(H1) = µ2

H1 = (1) N(H1) = µ2 Zµ2(H1) = µ2

Subgroups Cosets Right Cosets

H0 = µ2 µ2 = {1,�1} µ2 = {1,�1}

H1 = {1} H1 = {1} H1 = {1}
(�1)H1 = {�1} H1(�1) = {�1}
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L.2. The Klein 4-group G = µ2 ⇥ µ2

Let us make some shorter notations for the following matrices.

(1, 1) =

✓
1 0
0 1

◆
, (�1, 1) =

✓
�1 0
0 1

◆
, (1,�1) =

✓
1 0
0 �1

◆
, (�1,�1) =

✓
�1 0
0 �1

◆
.

The Klein 4-group is the group of order 4 defined as in the following table.

Set Operation

µ2 ⇥ µ2 =

⇢✓
±1 0
0 ±1

◆�
matrix multiplication

The complete multiplication table for this group is as follows.

Multiplication Table

(1, 1) (1,�1) (�1, 1) (�1,�1)
(1, 1) (1, 1) (1,�1) (�1, 1) (�1,�1)

(1,�1) (�1, 1) (1, 1) (�1,�1) (1,�1)
(�1, 1) (1,�1) (�1,�1) (1, 1) (�1, 1)

(�1,�1) (�1,�1) (1,�1) (�1, 1) (1, 1)

HW: Show that this group, as defined above, is isomorphic to the direct product of a
cyclic group of order 2, µ2, with another cyclic group of order 2, µ2.

Center Abelian Conjugacy Classes Subgroups

Z(G) = µ2 ⇥ µ2 Yes C(1,1) = {(1, 1)} H0 = µ2 ⇥ µ2

C(1,�1) = {(1,�1)} H1 = {(1, 1), (1,�1)}
C(1,�1) = {(1,�1)} H3 = {(1, 1), (�1,�1)}
C(1,�1) = {(1,�1)} H4 = {(1, 1)}

Elements

Element g Order o(g) Centralizer Z(g) Conjugacy Class Cg

(1, 1) 1 µ2 ⇥ µ2 C(1,1)
(1,�1) 2 µ2 ⇥ µ2 C(1,�1)

(�1, 1) 2 µ2 ⇥ µ2 C(�1,1)

(�1,�1) 2 µ2 ⇥ µ2 C(�1,�1)



148 CHAPTER L. GROUPS OF LOW ORDER

Generators and relations

Generators Relations

x, y x2 = 1
y2 = 1
xy = yx

Subgroups

Subgroups Hi Structure Size Index Quotient Group

H0 = µ2 ⇥ µ2 µ2 ⇥ µ2 4 1 (Z2 ⇥ Z2)/H0 ' (1)

H1 = {(1, 1), (1,�1)} µ2 2 2 (Z2 ⇥ µ2)/H1 ' µ2

H2 = {(1, 1), (�1, 1)} µ2 2 2 (µ2 ⇥ µ2)/H2 ' µ2

H3 = {(1, 1), (�1,�1)} µ2 2 2 (µ2 ⇥ µ2)/H3 ' µ2

H4 = {(1, 1)} (1) 1 4 (µ2 ⇥ µ2)/H4 ' µ2 ⇥ µ2

All of the subgroups H0, H1, H2, H3, H4 are normal in G = µ2 ⇥ µ2.

Subgroup Hi Normalizer N(Hi) Centralizer ZG(Hi)

H0 H0 H0

H1 H0 H0

H2 H0 H0

H3 H0 H0

H4 H0 H0
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Subgroups Cosets Right Cosets

H0 H0 = {(±1,±1)} H0 = {±1,±1}

H1 H1 = {(1, 1), (1,�1)} H1 = {(1, 1), (1,�1)}
(�1, 1)H1 = {(�1, 1), (�1,�1)} H1(�1, 1) = {(�1, 1), (�1,�1)}

H2 H2 = {(1, 1), (�1, 1)} H2 = {(1, 1), (�1, 1)}
(1,�1)H2 = {(1,�1), (�1,�1)} H2(1,�1) = {(1,�1), (�1,�1)}

H3 H3 = {(1, 1), (�1,�1)} H3 = {(1, 1), (�1,�1)}
(1,�1)H3 = {(1,�1), (�1, 1)} H3(1,�1) = {(1,�1), (�1, 1)}

H4 H4 = {(1, 1)} H4 = {(1, 1)}
(�1, 1)H4 = {(�1, 1)} H4(�1, 1) = {(�1, 1)}
(1,�1)H4 = {(1,�1)} H4(1,�1) = {(1,�1)}
(�1,�1)H4 = {(�1,�1)} H4(�1,�1) = {(�1,�1)}

Some Homomorphisms

Homomorphism Kernel Image

�0 : µ2 ⇥ µ2 ! {1}
(�1, 1) 7! 1
(1,�1) 7! 1

ker�0 = µ2 ⇥ µ2 im�0 = {1}

�1 : µ2 ⇥ µ2 ! µ2

(�1, 1) 7! �1
(1,�1) 7! 1

ker�1 = H1 im�1 = µ2

�2 : µ2 ⇥ µ2 ! µ2

(�1, 1) 7! 1
(1,�1) 7! �1

ker�2 = H2 im�2 = µ2

�3 : µ2 ⇥ µ2 ! µ2

(�1, 1) 7! �1
(1,�1) 7! �1

ker�3 = H3 im�3 = µ2
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L.3. S3 ' D3, the nonabelian group of order 6

Let

1 =

0

@
1 0 0
0 1 0
0 0 1

1

A , (12) =

0

@
0 1 0
1 0 0
0 0 1

1

A (23) =

0

@
1 0 0
0 0 1
0 1 0

1

A

(13) =

0

@
0 0 1
0 1 0
1 0 0

1

A , (132) =

0

@
0 1 0
0 0 1
1 0 0

1

A (123) =

0

@
0 0 1
1 0 0
0 1 0

1

A

The groups S3 and D3 are as in the following table.

Set Operation

S3 = {1, (12), (23), (13), (132), (123)} matrix multiplication

D3 = {1, x, x2, y, xy, x2y} xiyjxkyl = x(i�k) mod 3y(j+l) mod 2

The complete multiplication tables for these groups are as follows.

Multiplication Tables

S3 1 (12) (23) (13) (132) (123)
1 1 (12) (23) (13) (132) (123)

(12) (12) 1 (123) (132) (13) (23)
(23) (23) (132) 1 (123) (12) (13)
(13) (13) (123) (132) 1 (23) (12)
(132) (132) (23) (13) (12) (123) 1
(123) (123) (13) (12) (23) 1 (132)

D3 1 y x2y xy x2 x
1 1 y x2y xy x2 x
y y 1 x x2 xy x2y

x2y x2y x2 1 x y xy
xy xy x x2 1 x2y y
x2 x2 x2y xy y x 1
x x xy y x2y 1 x2

HW: Prove that the group homorphism given as in the following table is an isomorphism.

Isomorphism

� : D3 ! S3

x 7! (123)
y 7! (12)



L.3. S3 ' D3, THE NONABELIAN GROUP OF ORDER 6 151

Center Abelian Conjugacy Classes Subgroups

Z(S3) = {1} No C(13) = {1} H0 = S3

C(21) = {(12), (23), (13)} H1 = {1, (132), (123)}
C(3) = {(123), (132)} H2 = {1, (12)}

H3 = {1, (13)}
H4 = {1, (23)}
H5 = {1}

Elements

Element g Order o(g) Centralizer Zg Conjugacy Class Cg

1 1 S3 C(13)
(12) 2 H2 C(21)
(23) 2 H4 C(21)
(13) 2 H3 C(21)
(132) 3 H1 C(3)
(123) 3 H1 C(3)

Generators and relations

Generators Relations Realization

D3 x, y x3 = y2 = 1 x = (123)
(xy)2 = 1 y = (12)

S3 s1, s2 s21 = s22 = 1 s1 = y = (12)
s1s2s1 = s2s1s2 s2 = x2y = (23)
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Subgroups

Subgroups Structure Normal

H0 = S3 H0 = S3 Yes

H1 = {1, (132), (123)} H1 ' µ3 ' A3 Yes

H2 = {1, (12)} H2 ' µ2 No

H3 = {1, (13)} H3 ' µ2 No

H4 = {1, (23)} H4 ' µ2 No

H5 = {1} H5 = {1} Yes

Normal Subgroup Index Quotient Group

H0 = S3 Card(S3/S3) = 1 S3/H0 ' (1)

H1 = {1, (132), (123)} Card(S3/H1) = 2 S3/H1 ' Z/2Z

H5 = {1} Card(S3/H5) = 6 S3/{1} ' S3

Subgroup Hi Normalizer NHi
Centralizer ZHi

H0 = S3 H0 = S3 H5 = {1}
H1 = {1, (132), (123)} H0 = S3 H1 = {1, (132), (123)}
H2 = {1, (12)} H2 = {1, (12)} H2 = {1, (12)}
H3 = {1, (13)} H3 = {1, (13)} H3 = {1, (13)}
H4 = {1, (23)} H4 = {1, (23)} H4 = {1, (23)}
H5 = {1} H0 = S3 H0 = S3
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Subgroups Cosets Right Cosets

H0 = S3 S3 S3

H1 = {1, (132), (123)} H1 = {1, (132), (123)} H1 = {1, (132), (123)}
(12)H1 = {(12), (13), (23)} H1(12) = {(12), (13), (23)}

H2 = {1, (12)} H2 = {1, (12)} H2 = {1, (12)}
(23)H2 = {(23), (132)} H2(23) = {(23), (123)}
(13)H2 = {(13), (123)} H2(13) = {(13), (132)}

H3 = {1, (13)} H3 = {1, (13)} H3 = {1, (13)}
(23)H3 = {(23), (123)} H3(23) = {(23), (132)}
(12)H3 = {(12), (132)} H3(12) = {(12), (123)}

H4 = {1, (23)} H4 = {1, (23)} H4 = {1, (23)}
(12)H4 = {(12), (123)} H4(12) = {(12), (132)}
(13)H4 = {(13), (132)} H4(13) = {(13), (123)}

H5 = {1} H5 = {1} H5 = {1}
(12)H5 = {(12)} (12)H5 = {(12)}
(23)H5 = {(23)} (23)H5 = {(23)}
(13)H5 = {(13)} (13)H5 = {(13)}
(132)H5 = {(132)} (132)H5 = {(132)}
(123)H5 = {(123)} (123)H5 = {(123)}
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Some Homomorphisms

Homomorphism Kernel Image

'0 : S3 ! {1}
s1 7! 1
s2 7! 1

ker'0 = S3 im'0 = {1}

✏ : S3 ! µ2

s1 7! �1
s2 7! �1

ker ✏ = A3 im ✏ = µ2

'2 : S3 ! O(3)

(12) 7!

0

@
0 1 0
1 0 0
0 0 1

1

A

(23) 7!

0

@
1 0 0
0 0 1
0 1 0

1

A

ker'2 = {1}

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

0

@
1 0 0
0 1 0
0 0 1

1

A ,

0

@
0 1 0
1 0 0
0 0 1

1

A ,

0

@
1 0 0
0 0 1
0 1 0

1

A ,

0

@
0 1 0
0 0 1
1 0 0

1

A ,

0

@
0 0 1
0 1 0
1 0 0

1

A ,

0

@
0 0 1
1 0 0
0 1 0

1

A

9
>>>>>>>>>>>>=

>>>>>>>>>>>>;

'3 : S3 ! O(2)

(12) 7!
✓
�1 0
0 1

◆

(23) 7!
✓
1/2 1/2
3/2 �1/2

◆ ker'3 = {1}

8
>>>>>><

>>>>>>:

✓
1 0
0 1

◆
,

✓
�1 0
0 1

◆
,

✓
1/2 1/2
3/2 �1/2

◆
,

✓
�1/2 �1/2
3/2 �1/2

◆
,

✓
�1/2 1/2
�3/2 �1/2

◆
,

✓
�1/2 �1/2
�3/2 �1/2

◆

9
>>>>>>=

>>>>>>;

'4 : S3 ! D3

(12) 7! y
(132) 7! x

ker'4 = {1} im'4 = D3
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The group action of D3 as rotations and reflections of an equilateral triangle

D3 is the group of rotations and reflections of an equilateral triangle. Denote the vertices
by vi, the edge connecting vertex i to vertex j by eij, i < j, and the face f012. Let pij,
for i, j 2 {0, 1, 2}, denote the point on the edge connecting vi to vj which is a third of the
way from vi to vj.

Let x be the ⇡

3 counterclockwise rotation about the center taking

v0 ! v1 ! v2 ! v0.

Let y be the reflection about the line connecting vertex v0 with the midpoint of the edge
e12, taking

v1 ! v2 and fixing v0.

Note that x3 = 1, y2 = 1, and yx = x�1y.
Let

P = {p01, p10, p12, p21, p02, p20},
V = {v0, v1, v2},
E = {e01, e12, e02}, and

F = {f012},
denote the sets of points, vertices, edges, and faces, respectively. Since D3 acts on the
equilateral triangle, D3 acts on each of these sets.
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Size of Size of
Stabilizer Stabilizer Orbit Orbit

(D3)pij = (1) 1 D3pij = P 6

(D3)v0 = {1, y} = H 2 D3v0 = V 3
(D3)v1 = {1, x2y} = xHx�1 2 D3v1 = V 3
(D3)v2 = {1, xy} = x2Hx�2 2 D3v2 = V 3

(D3)e01 = {1, xy} = x2Hx�2 2 D3e01 = E 3
(D3)e12 = {1, y} = H 2 D3e12 = E 3
(D3)e02 = {1, x2y} = xHx�1 2 D3e02 = E 3

(D3)f012 = D3 6 D3f012 = F 1
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L.4. The dihedral group D4 of order 8

The group D4 is as in the following table.

Set Operation

D4 = {1, x, x2, x3, y, xy, x2y, x3y} xiyjxkyl = x(i�k) mod 4y(j+l) mod 2

The complete multiplication table for D4 is as follows.

Multiplication Table

1 x x2 x3 y xy x2y x3y
1 1 x x2 x3 y xy x2y x3y
x x x2 x3 1 xy x2y x3y y
x2 x2 x3 1 x x2y x3y y xy
x3 x3 1 x x2 x3y y xy x2y
y y x3y x2y xy 1 x3 x2 x

xy xy y x3y x2y x 1 x3 x2

x2y x2y xy y x3y x2 x 1 x3

x3y x3y x2y xy y x3 x2 x 1

Center Abelian Conjugacy Classes Subgroups

Z(D4) = {1, x2} No C1 = {1} H0 = D4

Cx2 = {x2} H1 = {1, x, x2, x3}
Cy = {y, x2y} H2 = {1, x2, y, x2y}
Cxy = {xy, x3y} H3 = {1, x2, xy, x3y}
Cx = {x, x3} H4 = {1, x2}

H5 = {1, y}
H6 = {1, xy}
H7 = {1, x2y}
H8 = {1, x3y}
H9 = {1}

Elements

Element g Order o(g) Centralizer Zg Conjugacy Class Cg

1 1 D4 C1
x 4 H1 Cx
x2 2 D4 Cx2

x3 4 H1 Cx
y 2 H2 Cy
xy 2 H3 Cxy
x2y 2 H2 Cy
x3y 2 H3 Cxy
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Subgroups

Subgroup Lattice

Subgroups Structure Normal

H0 = D4 H0 = D4 Yes

H1 = {1, x, x2, x3} H1 ' µ4 Yes

H2 = {1, x2, y, x2y} H2 ' µ2 ⇥ µ2 Yes

H3 = {1, x2, y, x2y} H3 ' µ2 ⇥ µ2 Yes

H4 = {1, x2} H4 ' µ2 Yes

H5 = {1, y} H5 ' µ2 No

H6 = {1, xy} H6 ' µ2 No

H7 = {1, x2y} H7 ' µ2 No

H8 = {1, x3y} H8 ' µ2 No

H9 = {1} H9 = {1} Yes
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Normal Subgroup Index Quotient Group

H0 = D4 Card(D4/D4) = 1 D4/H0 ' {1}

H1 = {1, x, x2, x3} Card(D4/H1) = 2 D4/H0 ' µ2

H2 = {1, x2, y, x2y} Card(D4/H2) = 2 D4/H2 ' µ2

H3 = {1, x2, y, x2y} Card(D4/H3) = 2 D4/H3 ' µ2

H4 = {1, x2} Card(D4/H4) = 4 D4/H4 ' µ2 ⇥ µ2

H9 = {1} Card(D4/{1}) = 8 D4/{1} ' D4

Subgroup Hi Normalizer N(Hi) Centralizer ZG(Hi)

H0 = D4 D4 Z(D4) = H4 = hx2i
H1 = hxi D4 H1 = hxi
H2 = hx2, yi D4 H2 = hx2, yi
H3 = hx2, xyi D4 H3 = hx2, xyi
H4 = hx2i D4 D4

H5 = hyi H2 = hx2, yi H2 = hx2, yi
H6 = hxyi H3 = hx2, xyi H3 = hx2, xyi
H7 = hx2yi H2 = hx2, yi H2 = hx2, yi
H8 = hx3yi H3 = hx2, xyi H3 = hx2, xyi
H9 = (1) D4 D4
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Subgroups Cosets Right Cosets

H0 = D4 D4 = xD4 = x3D4 = yD4 D4 = D4x = D4x2 = D4x3

= xyD4 = x2yD4 = x3yD4 = D4y = D4xy = D4x2y = D4x3y

H1 = {1, x, x2, x3} H1 = xH1 = x2H1 = x3H1 H1 = H1x = H1x2 = H1x3

= {1, x, x2, x3} = {1, x, x2, x3}
yH1 = xyH1 = x2yH1 = x3yH1 H1y = H1xy = H1x2y = H1x3y
= {y, xy, x2y, x3y} = {y, xy, x2y, x3y}

H2 = {1, x2, y, x2y} H2 = x2H2 = yH2 = x2yH2 H2 = H2x2 = H2y = H2x2y
= {1, x2, y, x2y} = {1, x2, y, x2y}
xH2 = x3H2 = xyH2 = x3yH2 H2x = H2x3 = H2xy = H2x3y
= {x, x3, xy, x3y} = {x, x3, xy, x3y}

H3 = {1, x2, xy, x3y} H3 = x2H3 = xyH3 = x3yH3 H3 = H3x2 = H3xy = H3x3y
= {1, x2, xy, x3y} = {1, x2, xy, x3y}
xH3 = x3H3 = yH3 = x2yH3 H3x = H3x3 = H3y = H3x2y
= {x, x3, y, x2y} = {x, x3, y, x2y}

H4 = {1, x2} H4 = x2H4 = {1, x2} H4 = H4x2 = {1, x2}
xH4 = x3H4 = {x, x3} H4x = H4x3 = {x, x3}
yH4 = x2yH4 = {y, x2y} H4y = H4x2y = {y, x2y}
xyH4 = x3yH4 = {xy, x3y} H4xy = H4x3y = {xy, x3y}

H5 = {1, y} H5 = yH5 = {1, y} H5 = H5y = {1, y}
xH5 = xyH5 = {x, xy} H5x = H5x3y = {x, x3y}
x2H5 = x2yH5 = {x2, x2y} H5x2 = H5x2y = {x2, x2y}
x3H5 = x3yH5 = {x3, x3y} H5x3 = H5xy = {x3, xy}

H6 = {1, xy} H6 = xyH6 = {1, xy} H6 = H6xy = {1, xy}
xH6 = x2yH6 = {x, x2y} H6x = H6x2y = {x, y}
x2H6 = x3yH6 = {x2, x3y} H6x2 = H6x3y = {x2, x3y}
x3H6 = yH6 = {x3, y} H6x3 = H6x2y = {x3, x2y}

H7 = {1, x2y} H7 = x2yH7 = {1, x2y} H7 = H7x2y = {1, x2y}
xH7 = x3yH7 = {x, x3y} H7x = H7xy = {x, xy}
x2H7 = yH7 = {x2, y} H7x2 = H7y = {x2, y}
x3H7 = xyH7 = {x3, xy} H7x3 = H7x3y = {x3, x3y}

H8 = {1, x3y} H8 = x3yH8 = {1, x3y} H8 = H8x3y = {1, x3y}
xH8 = yH8 = {x, y} H8x = H8x2y = {x, x2y}
x2H8 = xyH8 = {x2, xy} H8x2 = H8xy = {x2, xy}
x3H8 = x2yH8 = {x3, x2y} H8x3 = H8y = {x3, y}

H9 = {1} H9 = {1}, xH9 = {x}, H9 = {1}, H9x = {x},
x2H9 = {x2}, x3H9 = {x3} H9x2 = {x2}, H9x3 = {x3}
yH9 = {y}, xyH9 = {xy}, H9y = {y}, H9xy = {xy},
x2yH9 = {x2y}, x3yH9 = {x3y} H9x2y = {x2y}, H9x3y = {x3y}
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Some Homomorphisms

Homomorphism Kernel Image

'0 : D4 ! {1}
x 7! 1
y 7! 1

ker'0 = D4 im'0 = {1}

'1 : D4 ! µ2

x 7! 1
y 7! �1

ker'1 = H1 im'1 = µ2

'2 : D4 ! µ2

x 7! �1
y 7! 1

ker'2 = {1, x2, y, x2y} = H2 im'2 = µ2

'3 : D4 ! µ2

x 7! �1
y 7! �1

ker'3 = {1, x2, xy, x3y} = H3 im'3 = µ2

'4 : D4 ! µ2 ⇥ µ2

x 7! (�1, 1)
y 7! (1,�1)

ker'4 = {1, x2} = H4 im'4 = µ2 ⇥ µ2

'9 : D4 ! D4

x 7! x
y 7! y

ker'9 = {1} = H9 im'9 = D4

Generators and relations

Generators Relations

x, y x4 = y2 = 1
yx = x�1y
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The group action of D4 as rotations and reflections of a square

D4 is the group of rotations and reflections of the square. We shall denote the vertices by
vi, the edge connecting vertex i to vertex j by eij, i < j, and the face f0123. For all vi and
vj connected by an edge, let pij denote the point on the edge connecting vi to vj which is
a third of the way from vi to vj.

Let x be the ⇡

2 counterclockwise rotation about the center taking

v0 ! v1 ! v2 ! v3 ! v0.

Let y be the reflection about the line connecting vertex v0 with vertex v2, taking

v1 ! v3 and fixing v0 and v2.

Note that x4 = 1, y2 = 1, and yx = x�1y.
Let

P = {p01, p10, p12, p21, p23, p32, p03, p30},
V = {v0, v1, v2, v3},
E = {e01, e12, e23, e03}, and

F = {f0123},

denote the sets of points, vertices, edges, and faces, respectively. Since D4 acts on the
square, D4 acts on each of these sets.



L.4. THE DIHEDRAL GROUP D4 OF ORDER 8 163

Size of Size of
Stabilizer Stabilizer Orbit Orbit

(D4)pij = (1) 1 D4pij = P 8

(D4)v0 = {1, y} = H 2 D4v0 = V 4
(D4)v1 = {1, x2y} = xHx�1 2 D4v1 = V 4
(D4)v2 = {1, y} = H 2 D4v2 = V 4
(D4)v3 = {1, x2y} = xHx�1 2 D4v3 = V 4

(D4)e01 = {1, xy} = J 2 D4e01 = E 4
(D4)e23 = {1, xy} = J 2 D4e23 = E 4
(D4)e12 = {1, x3y} = xJx�1 2 D4e12 = E 4
(D4)e03 = {1, x3y} = xJx�1 2 D4e03 = E 4

(D4)f0123 = D4 8 D4f0123 = F 1
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L.5. The quaternion group Q

The quaternion group Q is as in the following table. The element �1 acts like �1 in the
complex numbers, it takes everything to its negative, and the negative of a negative is a
positive.

Set Operation

Q = {1,�1, i,�i, j,�j, k,�k} i2 = j2 = k2 = ijk = �1

The complete multiplication table for Q is as follows.

Multiplication Table

1 �1 i �i j �j k �k
1 1 �1 i �i j �j k �k
-1 �1 1 �i i �j j �k k
i i �i �1 1 k �k �j j

�i �i i 1 �1 �k k j �j
j j �j �k k �1 1 i �i

�j �j j k �k 1 �1 �i i
k k �k j �j �i i �1 1

�k �k k �j j i �i 1 �1

Center Abelian Conjugacy Classes Subgroups

Z(Q) = {1,�1} No C1 = {1} H0 = Q
C�1 = {�1} H1 = {±1,±i}
Ci = {±i} H2 = {±1,±j}
Cj = {±j} H3 = {±1,±k}
Ck = {±k} H4 = {±1}

H5 = {1}

Elements

Element g Order o(g) Centralizer ZQ(g) Conjugacy Class Cg

1 1 Q C1
�1 2 Q C�1

i 4 H1 Ci
�i 4 H1 Ci
j 4 H2 Cj

�j 4 H2 Cj
k 4 H3 Ck

�k 4 H3 Ck



L.5. THE QUATERNION GROUP Q 165

Subgroups

Subgroups Structure Index Normal Quotient Group

H0 = Q H0 = Q Card(Q/Q) = 1 Yes Q/H0 ' (1)

H1 = {±1,±i} H1 ' µ4 Card(Q/H1) = 2 Yes Q/H1 ' Z2

H2 = {±1,±j} H2 ' µ4 Card(Q/H2) = 2 Yes Q/H2 ' µ2

H3 = {±1,±k} H3 ' µ4 Card(Q/H3) = 2 Yes Q/H3 ' µ2

H4 = {±1} H4 ' µ2 Card(Q/H4) = 4 Yes Q/H4 ' µ2 ⇥ µ2

H5 = {1} H5 = {1} Card(Q/H5) = 8 Yes Q/(1) ' Q

Subgroup Lattice

Subgroup Hi Normalizer N(Hi) Centralizer ZG(Hi)

H0 = Q Q H4 = {±1}
H1 = hii Q H1 = hii
H2 = hji Q H2 = hji
H3 = hki Q H3 = hki
H4 = {±1} Q Q
H5 = (1) Q Q
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Subgroups Cosets Right Cosets

H0 = Q Q Q

H1 = {±1,±i} H1 = {±1,±i} H1 = {±1,±i}
jH1 = {±j,±k} H1j = {±j,±k}

H2 = {±1,±j} H2 = {±1,±j} H2 = {±1,±j}
iH2 = {±i,±k} H2i = {±i,±k}

H3 = {±1,±k} H3 = {±1,±k} H3 = {±1,±k}
iH3 = {±i,±j} H3i = {±i,±j}

H4 = {±1} H4 = {±1} H4 = {±1}
iH4 = {±i} H4i = {±i}
jH4 = {±j} H4j = {±j}
kH4 = {±k} H4k = {±k}

H5 = {1} H5 = {1} H5 = {1}
(�1)H5 = {�1} H5(�1) = {�1}
iH5 = {i} H5i = {i}
�iH5 = {�i} H5(�i) = {�i}
jH5 = {j} H5j = {j}
�jH5 = {�j} H5(�j) = {�j}
kH5 = {k} H5k = {k}
�kH5 = {�k} H5(�k) = {�k}

Generators and relations

Generators Relations Realization

S, T S2 = T 2 = (ST )2 S = i, T = j, ST = k
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Some Homomorphisms

Homomorphism Kernel Image

'0 : Q ! (1)
i 7! 1
j 7! 1

ker'0 = Q im'0 = (1)

'1 : Q ! Z2

i 7! 1
j 7! �1

ker'1 = H1 = {±1,±i} im'1 = Z2

'2 : Q ! Z2

i 7! �1
j 7! 1

ker'2 = H2 = {±1,±j} im '2 = Z2

'3 : Q ! Z2

i 7! �1
j 7! �1

ker'3 = H3 = {±1,±k} im'3 = Z2

'4 : Q ! Gl2(C)

i 7!
✓
i 0
0 �i

◆

j 7!
✓

0 1
�1 0

◆

k 7!
✓
0 i
i 0

◆
ker'4 = H5 = (1) im '4 =

8
>><

>>:

✓
±1 0
0 ±1

◆
,

✓
±i 0
0 ⌥i

◆
,

✓
0 ±1
⌥1 0

◆
,

✓
0 ±i
±i 0

◆

9
>>=

>>;

'5 : Q ! Z2 ⇥ Z2

i 7! (�1, 1)
j 7! (1,�1)

ker'5 = H4 = {±1} im '5 = Z2 ⇥ Z2
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L.6. The tetrahedral group A4

The group A4 can be given in at least two natural ways. In the following tables we shall
use one-line notation to represent the permutations in A4.

Set Operation

even permutations in S4 composition of permutations
rotations preserving a tetrahedron composition of rotations

Center Abelian Conjugacy Classes

Z(A4) = {(1234)} No C(14) = {(1234)}
C(22) = {(2143), (3412), (4321)}
C(31)+ = {(3124), (4213), (2431), (1342)}
C(31)� = {(2314), (3241), (4132), (1423)}

Elements

Element g Order o(g) Centralizer Z(g) Conjugacy Class Cg

(1234) 1 A4 C(14)
(2143) 2 H1 C22
(3412) 2 H1 C22
(4321) 2 H1 C22
(3124) 3 H2 C(31)+
(4213) 3 H4 C(31)+
(2431) 3 H3 C(31)+
(1342) 3 H5 C(31)+
(2314) 3 H2 C(31)�
(3241) 3 H4 C(31)�
(4132) 3 H3 C(31)�
(1423) 3 H5 C(31)�

Generators and relations

Generators Relations Realization

S, T S3 = T 2 = (ST )3 = 1 S = (2314), T = (2143)
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Subgroups

Subgroups Structure Index Normal

H0 = A4 H0 = A4 Card(A4/A4) = 1 Yes

H1 = {(1234), (2143), (3412), (4321)} H1 ' µ2 ⇥ µ2 Card(A4/H1) = 3 Yes

H2 = {(1234), (3124), (2314)} H2 ' µ3 Card(A4/H2) = 4 No

H3 = {(1234), (4132), (2431)} H3 ' µ3 Card(A4/H3) = 4 No

H4 = {(1234), (4213), (3241)} H4 ' µ3 Card(A4/H4) = 4 No

H5 = {(1234), (1423), (1342)} H5 ' µ3 Card(A4/H5) = 4 No

H6 = {(1234), (3412)} H6 ' µ2 Card(A4/H6) = 6 No

H7 = {(1234), (2143)} H7 ' µ2 Card(A4/H7) = 6 No

H8 = {(1234), (4321)} H8 ' µ2 Card(A4/H8) = 6 No

H9 = {(1234)} H9 ' (1) [A4 : H9] = 12 Yes

Subgroup Lattice
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Normal Subgroup Index Quotient Group

H0 = A4 Card(A4/A4) = 1 A4/A4 ' {1}

H1 = {(1234), (2143), (3412), (4321)} Card(A4/H1) = 3 A4/H1 ' µ3

H9 = {(1234)} Card(A4/H9) = 12 A4/{1} ' A4

Some Homomorphisms

Let ⇠ be the primitive cube root of 1 given by ⇠ = e2⇡i/3 2 C.

Homomorphism Kernel

'0 : A4 ! (1)
S 7! 1
T 7! 1

ker'0 = A4

'1 : A4 ! µ3

S 7! ⇠
T 7! 1

ker'1 = H1

'2 : A4 ! µ3

S 7! ⇠2

T 7! 1
ker'2 = H1

'3 : A4 ! GL(3)

S 7!

0

@
1 0 0
0 �1/2 �3/2
0 1/2 �1/2

1

A

r T 7!

0

@
�1/3 �4/3 0
�2/3 1/3 0
0 0 �1

1

A

ker'3 = (1)
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The group action of A4 as rotations of a tetrahedron

A4 is the group of rotations of the tetrahedron. We shall denote the vertices by vi, the
edge connecting vertex i to vertex j by eij, i < j, and the face adjacent to the three
vertices vi, vj, vk, by fijk, i < j < k. Let r1234 denote the region determined by the inside
of the tetrahedron. Let pij, 1 6 i, j 6 4 denote the point on the edge connecting vi to vj
which is a third of the way from vi to vj.

Let S be the 60� rotation about the bottom face taking

v1 ! v2 ! v3 ! v1 and fixing v4.

Let T be the 180� rotation about the line connecting the midpoint of edge e34 with the
midpoint of edge e12, taking

v1 ! v2 and v3 ! v4.

Note that S3 = 1, T 2 = 1, and (ST )3 = 1.
Let

P = {pij | 1 6 i, j 6 4},
V = {v1, v2, v3, v4},
E = {e12, e13, e14, e23, e24, e34},
F = {f123, f124, f134, f234}, and

R = {r1234},
denote the sets of points, vertices, edges, faces, and regions, respectively. Since A4 acts
on the tetrahedron, A4 acts on each of these sets.
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Size of Size of
Stabilizer Stabilizer Orbit Orbit

(A4)pij = (1) 1 A4pij = P 12

(A4)v4 = {1, S, S2} = H 3 A4v4 = V 4
(A4)v3 = {1, TST�1, TS2T�1} = THT�1 3 A4v3 = V 4
(A4)v1 = {1, TS, S2T} = (ST )H(ST )�1 3 A4v1 = V 4
(A4)v2 = {1, ST, (ST )2} = (S2T )H(S2T )�1 3 A4v2 = V 4

(A4)e12 = {1, T} 2 A4e12 = E 6
(A4)e34 = {1, T} 2 A4e34 = E 6
(A4)e14 = {1, STS�1} 2 A4e14 = E 6
(A4)e23 = {1, STS�1} 2 A4e23 = E 6
(A4)e13 = {1, S2TS�2} 2 A4e13 = E 6
(A4)e24 = {1, S2TS�2} 2 A4e24 = E 6

(A4)f123 = {1, S, S2} 3 A4f123 = F 4
(A4)f124 = {1, TST�1, TS2T�1} 3 A4f124 = F 4
(A4)f234 = {1, (ST )S(ST )�1, (ST )S2(ST )�1} 3 A4f234 = F 4
(A4)f134 = {1, (S2T )S(S2T )�1, (S2T )S2(S2T )�1} 3 A4f134 = F 4

(A4)r1234 = A4 12 A4r1234 = R 1
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L.7. The octahedral group S4

The group S4 can be represented in several di↵erent ways. Some of these are given in the
following table.

Set Operation

permutations of 4 elements composition of permutations
rotations preserving a cube composition of rotations
rotations preserving an octahedron composition of rotations

The complete multiplication table for S4 is a 24 ⇥ 24 matrix. This matrix is too big to
include here.

In the following tables we shall use one-line notation to represent the permutations in S4.

Center Conjugacy classes

Z(S4) = {1,�1} C(14) = {(1234)}
C(212) = {(2134), (3214), (4231)(1324), (1432), (1243)}
C(22) = {(2143), (3412), (4321)}
C(31) = {(3124), (4132), (4213), (1423)(2314), (2431), (3241), (1342)}
C(4) = {(4123), (3142), (2413), (4312), (2341), (3421)}

Subgroups

There are more than 30 subgroups of the group S4. We shall not give a list of all of the
subgroups and we shall not give a subgroup lattice here. The following table lists only
the normal subgroups of S4.

Normal subgroup Structure Quotient Group

N0 = S4 N0 = S4 S4/S4 ' (1)

N1 = A4 N1 = A4 S4/A4 ' µ2

N2 =

⇢
(1234), (2143),
(3412), (4321)

�
N2 ' µ2 ⇥ µ2 S4/N2 ' S3

N3 = {(1234)} N3 ' {1} S4/{1} ' S4
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Generators and relations

The following table gives two useful presentations of the octahedral group S4.

Generators Relations Realization

S, T S4 = T 2 = (ST )3 = 1 S = (4123), T = 4231

s1, s2, s3 s21 = s22 = s23 = 1 s1 = (2134)
s1s2s1 = s2s1s2 s2 = (1324)
s2s3s2 = s3s2s3 s3 = (1243)

Some Homomorphisms

In the following table s1 = (2134), s2 = (1324), s3 = (1243) denote the simple trans-
positions in the group S4. These simple transpositions generate S4. Note also that the
homomorphism labeled �(14) is the sign homomorphism " of the symmetric group S4.
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Homomorphism Kernel

' : S4 ! S3

s1 7! (213)
s2 7! (132)
s3 7! (213)

ker' = N2

'(4) : S4 ! (1)
s1 7! 1
s2 7! 1
s3 7! 1

ker'(4) = S4

'(14) : S4 ! Z2

s1 7! �1
s2 7! �1
s3 7! �1

ker'(14) = A4

'(212) : S4 ! GL3

s1 7!

0

@
�1 0 0
0 �1 0
0 0 1

1

A

s2 7!

0

@
�1 0 0
0 1/2 3/2
0 1/2 �1/2

1

A

s3 7!

0

@
1/3 4/3 0
2/3 �1/3 0
0 0 �1

1

A

ker'(212) = (1)

'31 : S4 ! GL3

s1 7!

0

@
�1 0 0
0 1 0
0 0 1

1

A

s2 7!

0

@
1/2 3/2 0
1/2 �1/2 0
0 0 1

1

A

s3 7!

0

@
1 0 0
0 1/3 4/3
0 2/3 �1/3

1

A

ker'(31) = (1)

'(22) : S4 ! GL(2)

s1 7!
✓
�1 0
0 1

◆

s2 7!
✓
1/2 3/2
1/2 �1/2

◆

s3 7!
✓
�1 0
0 1

◆
ker'(22) = N2
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The group action of S4 as rotations of a cube

S4 is the group of rotations of the cube. We shall denote the vertices by vi, the edge
connecting vertex i to vertex j by eij, i < j, and the face adjacent to the four vertices vi,
vj, vk, vl, by fijkl, i < j < k < l. Let r12345678 denote the region determined by the inside
of the cube. For all vi and vj connected by an edge, let pij, denote the point on the edge
connecting vi to vj which is a third of the way from vi to vj.

Let S be the 90� rotation about the top face taking

v1 ! v2 ! v3 ! v4 ! v1 and v5 ! v6 ! v7 ! v8 ! v5.

Let T be the rotation 90� about the right face taking

v4 ! v1 ! v5 ! v8 and v3 ! v2 ! v6 ! v7.

Let

P = {pij | 1 6 i, j 6 8},
V = {v1, v2, v3, v4, v5, v6, v7, v8},
E = {e12, e23, e34, e14, e15, e48, e26, e37, e56, e67, e78, e58},
F = {f1234, f5678, f1256, f3478, f1458, f2367}, and

R = {r12345678},
denote the sets of points, vertices, edges, faces, and regions, respectively. Since S4 acts
on the cube, S4 acts on each of these sets.
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Size of Size of
Stabilizer Stabilizer Orbit Orbit

(S4)pij = (1) 1 S4pij = P 24

(S4)v1 = {1, T 3S, TS3} = H 3 S4v1 = V 8
(S4)v7 = {1, T 3S, TS3} = H 3 S4v7 = V 8
(S4)v2 = {1, S3T 3, TS} = SHS�1 3 S4v2 = V 8
(S4)v8 = {1, S3T 3, TS} = SHS�1 3 S4v8 = V 8
(S4)v3 = {1, ST, S2TS} = S2HS�2 3 S4v3 = V 8
(S4)v5 = {1, ST, S2TS} = S2HS�2 3 S4v5 = V 8
(S4)v4 = {1, S3T, S2TS3} = S3HS�3 3 S4v4 = V 8
(S4)v6 = {1, S3T, S2TS3} = S3HS�3 3 S4v6 = V 8

(S4)e12 = {1, TS2} = J 2 S4e12 = E 12
(S4)e78 = {1, TS2} = J 2 S4e78 = E 12
(S4)e23 = {1, STS} = SJS�1 2 S4e23 = E 12
(S4)e58 = {1, STS} = SJS�1 2 S4e58 = E 12
(S4)e34 = {1, S2T} = S2JS�2 2 S4e34 = E 12
(S4)e56 = {1, S2T} = S2JS�2 2 S4e56 = E 12
(S4)e14 = {1, S3TS3} = S3JS�3 2 S4e14 = E 12
(S4)e67 = {1, S3TS3} = S3JS�3 2 S4e67 = E 12
(S4)e15 = {1, ST 2} = (ST 3)J(ST 3)�1 2 S4e15 = E 12
(S4)e37 = {1, ST 2} = (ST 3)J(ST 3)�1 2 S4e37 = E 12
(S4)e48 = {1, S3T 2} = (S3TS)J(S3TS)�1 2 S4e48 = E 12
(S4)e26 = {1, S3T 2} = (S3TS)J(S3TS)�1 2 S4e26 = E 12

(S4)f1234 = {1, S, S2, S3} = K 4 S4f1234 = F 6
(S4)f5678 = {1, S, S2, S3} = K 4 S4f5678 = F 6
(S4)f1256 = {1, S2T 2, S3TS, STS3} = TKT�1 4 S4f1256 = F 6
(S4)f3478 = {1, S2T 2, S3TS, STS3} = TKT�1 4 S4f3478 = F 6
(S4)f1458 = {1, T, T 2, T 3} = (ST 3)K(ST 3)�1 4 S4f1458 = F 6
(S4)f2367 = {1, T, T 2, T 3} = (ST 3)K(ST 3)�1 4 S4f2367 = F 6

(S4)r12345678 = S4 24 S4r12345678 = R 1





CHAPTER C

COMMUTATIVE RINGS

C.1. Euclidean Domains, PIDs and UFDs

C.1.1. R is a Euclidean domain =) R is a PID. —

Definition C.1.1. — Let Z>0 = {0, 1, 2, . . .} be the set of nonnegative integers.

• A Euclidean domain is an integral domain R with a function

� : R� {0} ! Z>0, a size function

such that if a, b 2 R and a 6= 0 then there exist q, r 2 R such that

b = aq + r, where either r = 0 or �(r) < �(a).

• Let R be a commutative ring. A principal ideal is an ideal generated by a single
element.

• A principal ideal domain (or PID) is an integral domain for which every ideal
is principal.

Theorem C.1.1. — A Euclidean domain is a principal ideal domain.

C.1.2. R is a PID =) R is a UFD. —

Definition C.1.2. — Let R be an integral domain.

• A unit is an element a 2 R such that there exists an element b 2 R such that
ab = 1.

• Let p, q 2 R. The element p divides q if there exists a 2 R such that q = ap.

• Let p, q 2 R. The element p is a proper divisor of q if p is not a unit and there
exists a nonunit a 2 R such that q = ap.

• Let p, q 2 R. The elements p and q are associates if there exists a unit a 2 R such
that p = aq.

• An element p 2 R is irreducible if
(a) p 6= 0,
(b) p is not a unit, and
(c) p has no proper divisor.

The following proposition shows that every property of divisors can be written in terms
of containments of ideals and vice versa.
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Proposition C.1.2. — Let p, q 2 R and let (p) and (q) denote the ideals generated by
the elements p and q respectively. Then

(a) p is a unit () (p) = R.

(b) p divides q () (q) ✓ (p).

(c) p is a proper divisor of q () (q) ( (p) ( R.

[d) p is an associate of q () (p) = (q).

(e)
p is irreducible () (p) 6= 0 and (p) 6= R and

if (q) 2 R and (q) ) (p) then (q) = R.

HW: Show that if R is a PID and p 2 R then p is irreduicible if and only if (p) is a
maximal ideal.

Definition C.1.3. —
• A unique factorization domain (or UFD) is an integral domain R such that

(a) If x 2 R then there exist irreducible p1, . . . , pn 2 R such that x = p1 · · · pn .
(b) If x 2 R and x = p1 · · · pn = uq1 · · · qm where u 2 R is a unit and p1, . . . , pn, q1, . . . , qm 2

R are irreducible then m = n and there exists a permutation � : {1, 2, . . . , n} !
{1, 2, . . . , n} and units u1, . . . , un 2 R such that

if i 2 {1, . . . , n} then qi = uip�(i).

The following theorem says that PID =) UFD.

Theorem C.1.3. — A principal ideal domain is a unique factorization domain.

The proof of Theorem C.1.3 will require the following lemmas.

Lemma C.1.4. — If R is a principal ideal domain and p 2 R is an irreducible element
of R then (p) is a prime ideal. REALLY? IS THIS NOT TRIVIAL??

The following Proposition says that a PID is Noetherian or, synonymically, satisfies the
ascending chain condition (ACC).?????.

Proposition C.1.5. — Let R be a principal ideal domain. There does not exist an
infinite sequence of elements a1, a2, . . . 2 R such that

(0) ( (a1) ( (a2) ( · · · .

C.1.3. Greatest common divisors. —

Definition C.1.4. — Let R be a unique factorization domain.
• Let a0, a1, . . . , an 2 R. A greatest common divisor, gcd(a0, a1, . . . , an), of
a0, a1, . . . , an is an element d 2 R such that

(a) d divides ai for all i = 0, 1, . . . , n,
(b) If d0 divides ai for all i = 0, 1, . . . , n then d0 2 R divides d.

Proposition C.1.6. — Let R be a unique factorization domain and let a0, a1, . . . , an 2
R. Then
(a) gcd(a0, a1, . . . , an) exists.
(b) gcd(a0, a1, . . . , an) is unique up to multiplication by a unit.
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C.2. Fields, Integral Domains, Fields of Fractions

C.2.1. R/M is a field () M is a maximal ideal.—

Definition C.2.1. —

• A field is a commutative ring F such that if x 2 F and x 6= 0 then there exists an
element x�1 2 F such that xx�1 = 1.

• A proper ideal is an ideal of R that is not the zero ideal (0) and not the whole
ring R.

• A maximal ideal is an ideal M of a ring R such that
(a) M 6= R,
(b) If M 0 is an ideal of R and M ✓ M 0 6= R then M = M 0.

Lemma C.2.1. — Let F be a commutative ring. Then F is a field if and only if the
only ideals of F are (0) and F .

Theorem C.2.2. — Let R be a commutative ring and let M be an ideal of R. Then

R/M is a field if and only if M is a maximal ideal.

C.2.2. R/P is an integral domain () P is a prime ideal.—

Definition C.2.2. —

• An integral domain is a commutative ring R such that if a, b 2 R and ab = 0
then either a = 0 or b = 0.

• A zero divisor in a ring R is an element a 2 R such that there exists b 2 R with
6= 0 and ab = 0.

• A prime ideal is an ideal P in a commutative ring R such that if a, b 2 R and
ab 2 P then either a 2 P or b 2 P .

HW: Show that an integral domain is a commutative ring with no zero divisors except 0.

Proposition C.2.3. — (Cancellation Law) Let R be an integral domain. If a, b, c 2 R
and c 6= 0 and ac = bc then a = b.

Theorem C.2.4. — Let R be a commutative ring and let P be an ideal of R. Then

R/P is an integral domain if and only if P is a prime ideal.

C.2.3. Fields of fractions. —

Definition C.2.3. — Let R be an integral domain.

• A fraction is an expression
a

b
with a 2 R, b 2 R and b 6= 0.

Proposition C.2.5. — Let R be an integral domain. Let FR =
na
b
| a, b 2 R, b 6= 0

o
be

the set of fractions. Define two fractions a

b
, c

d
to be equal if ad = bc, i.e.

a

b
=

c

d
if ad = bc.

Then equality of fractions is an equivalence relation on FR.
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Proposition C.2.6. — Let R be an integral domain. Let FR =
na
b
| a, b 2 R, b 6= 0

o
be

its set of fractions with equality of fractions be as defined in Proposition C.2.5. Then the
operations +: FR ⇥ FR ! F and ⇥ : FR ⇥ FR ! FR given by

a

b
+

c

d
=

ad+ bc

bd
and

a

b
· c
d
=

ac

bd
are well defined.

Theorem C.2.7. — Let R be an integral domain and let FR =
na
b
| a 2 R, b 2 R� {0}

o

be the set of fractions with equality of fractions be as defined in Proposition C.2.5 and let
operations +: FR ⇥ FR ! FR and ⇥ : FR ⇥ FR ! FR be as given in Proposition C.2.6.
Then FR is a field.

Definition C.2.4. — Let R be an integral domain.

• The field of fractions of R is the set FR =
�m
n

| m,n 2 R, n 6= 0
 

of fractions

with equality of fractions defined by
m

n
=

p

q
if mq = np

and operations of addition +: FR⇥FR ! FR and multiplication ⇥ : FR⇥FR !
FR defined by

m

n
+

p

q
=

mq + np

pq
and

m

n
· p
q
=

mp

nq
.

HW: Give an example of an integral domain R and its field of fractions.

Proposition C.2.8. — Let R be an integral domain with identity 1 and let FR be its
field of fractions. Then the map ' : R ! FR given by

' : R ! FR

r 7! r

1

is an injective ring homomorphism.
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C.3. Polynomial Rings

Definition C.3.1. — Let R be a commutative ring and for i 2 Z>0 let xi be a formal
symbol.

• A polynomial with coe�cients in R is an expression of the form

f(x) = r0 + r1x+ r2x
2 + · · ·

such that
(a) if i 2 Z>0 then ri 2 R,
(b) There exists N 2 Z>0 such that if i 2 Z>N then ri = 0.

• Polynomials f(x) = r0 + r1x + r2x2 + · · · and g(x) = s0 + s1x + s2x2 + · · · with
coe�cients in R are

equal if ri = si for i 2 Z>0.

• The zero polynomial is the polynomial 0 = 0 + 0x+ 0x2 + · · · .
• The degree deg

�
f(x)

�
of a polynomial f(x) = r0+r1x+r2x2+· · · with coe�cients

in R is

the smallest N 2 Z>0 such that rN 6= 0 and rk = 0 for k 2 Z>N .

If f(x) = 0 + 0x+ 0x2 + · · · then define deg
�
f(x)

�
= 0.

• Let R be a commutative ring. The ring of polynomials with coe�cients in R
is the set R[x] of polynomials with coe�cients in R with the operations of addition
and multiplication defined as follows:
If f(x), g(x) 2 R[x] with

f(x) = r0 + r1x+ r2x
2 + · · · and g(x) = s0 + s1x+ s2x

2 + · · · ,
then

f(x) + g(x) = (r0 + s0) + (r1 + s1)x+ (r2 + s2)x
2 + · · · , and

f(x)g(x) = c0 + c1x+ c2x
2 + · · · , where ck =

X

i+j=k

risj.

Proposition C.3.1. — Let R be a commutative ring. Then R[x] is a commutative ring.

Proposition C.3.2. — Let R be an integral domain. Then R[x] is an integral domain.

Theorem C.3.3. — Let R be a unique factorization domain. Then R[x] is a unique
factorization domain.

Theorem C.3.4. — Let F be a field. Then F[x] with size function

deg : F [x]� {0} �! Z>0

f(x) 7�! deg
�
f(x)

� is a Euclidean domain.

Corollary C.3.5. — Let F be a field. Then F[x] is a principal ideal domain.

HW: Show that Z is a PID and Z[x] is not a PID.

The following Proposition says that the process of constructing the polynomial ring is
“functorial”.
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Proposition C.3.6. — Let R, S be commutative rings and let ' : R ! S be a ring
homomorphism. Then the function

 : R[x] �! S[x]
r0 + r1x+ r2x2 + · · · 7�! '(r0) + '(r1)x+ '(r2)x2 + · · ·

is a ring homomorphism.

C.3.1. Adjoining elements to R, the rings R[↵]. —

Definition C.3.2. — Let S be a commutative ring and let ↵ 2 S.

• The evaluation homomorphism is the function

eva : S[x] ! S
f(x) 7! f(↵)

where if f(x) = s0 + s1x+ s2x2 + · · · then f(↵) = s0 + s1↵ + s2↵2 + · · · .

Proposition C.3.7. — Let S be a commutative ring and let ↵ 2 S. Then the evaluation
homomorphism ev↵ : S[x] ! S is a ring homomorphism.

Definition C.3.3. — Let S be a commutative ring.
Let R ✓ S be a subring and let ↵ 2 S.

• The ring R adjoined ↵ is the subring R[↵] of S given by
(THIS IS CLUMSY WITH THE DEPENDENCE ON S)

R[↵] = ev↵
�
R[x]

�
, where

ev↵ : S[x] ! S
f(x) 7! f(↵).

HW: Prove that R[↵] = ev↵
�
R[x]

�
is a subring of S.

HW: Let S be a commutative ring. Let R ✓ S be a subring and let ↵ 2 S. Show that

R[↵] = {r0 + r1↵ + r2↵
2 + · · ·+ rd↵

d 2 S | d 2 Z>0 and ri 2 R}.

C.3.2. Executing the proof of Theorem C.3.3. —

Definition C.3.4. — Let R be a unique factorization domain.

• A polynomial f(x) = c0 + c1x + · · · + ckxk 2 R[x] is primitive if there does not
exist p 2 R such that c0, c1, . . . , ck 2 Rp.

Lemma C.3.8. — (Gauss’ Lemma) Let R be a unique factorization domain. Let
f(x), g(x) 2 R[x] be primitive polynomials. Then f(x)g(x) is a primitive polynomial.

Proposition C.3.9. — Let R be a unique factorization domain. Let F be the field of
fractions of R and let f(x) 2 F[x]. Then

(a) There exists c 2 F and a primitive polynomial g(x) 2 R[x] such that

f(x) = cg(x).

(b) The factors c and g(x) are unique up to multiplication by a unit (A UNIT IN
WHAT???).

(c) f(x) is irreducible in F[x] if and only if g(x) is irreducible in R[x].

Theorem C.3.10. — Let R be a unique factorization domain. Then R[x] is a unique
factorization domain.
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C.4. Proofs: Polynomial Rings

Proposition C.4.1. — Let R be a commutative ring. Then R[x] is a commutative ring.

Proof. —
To show: (a) If f(x), g(x) 2 R[x] then f(x) + g(x) = g(x) + f(x).

(b) If f(x), g(x), h(x) 2 R[x] then
�
f(x)+g(x)

�
+h(x) = f(x)+

�
g(x)+h(x)

�
.

(c) 0 2 R[x] such that if f(x) 2 R[x] then 0 + f(x) = f(x).
(d) If f(x) 2 R[x] then there exists �f(x) 2 R[x] such that f(x)+

�
�f(x)

�
= 0.

(e) If f(x), g(x), h(x) 2 R[x] then
�
f(x)g(x)

�
h(x) = f(x)

�
g(x)h(x)

�
.

(f) There exists 1 2 R[x] such that 1 · f(x) = f(x) · 1 = f(x).
(g) If f(x), g(x), h(x) 2 R[x] then f(x)

�
g(x) + h(x)

�
= f(x)g(x) + f(x)h(x)

and
�
g(x) + h(x)

�
f(x) = g(x)f(x) + h(x)f(x).

(h) If f(x), g(x) 2 R[x] then f(x)g(x) = g(x)f(x).

(a) Let f(x), g(x) 2 R[x] such that f(x) = r0 + r1x+ r2x2 + · · · and g(x) = s0 + s1x+
s2x2 + · · · .
Then

f(x) + g(x) = (r0 + s0) + (r1 + s1)x+ (r2 + s2)x
2 + · · · and

g(x) + f(x) = (s0 + r0) + (s1 + r1)x+ (s2 + r2)x
2 + · · · .

Since addition in R is a commutative operation then

ri + si = si + ri for i 2 Z>0.

So f(x) + g(x) = g(x) + f(x).
(b) Let f(x), g(x), h(x) 2 R[x] and let f(x) = r0 + r1x+ r2x2 + · · · , g(x) = s0 + s1x+

s2x2 + · · · , and h(x) = t0 + t1x+ t2x2 + · · · .
Then

�
f(x) + g(x)

�
+ h(x) =

�
(r0 + s0) + t0

�
+
�
(r1 + s1) + t1

�
x+

�
(r2 + s2) + t2

�
x2 + · · · and

f(x) +
�
g(x) + h(x)

�
=
�
r0 + (s0 + t0)

�
+
�
r1 + (s1 + t1)

�
x+

�
r2 + (s2 + t2)

�
x2 + · · · .

Since addition in R is an associative operation then

(ri + si) + ti = ri + (si + ti) for i 2 Z>0.

So
�
f(x) + g(x)

�
+ h(x) = f(x) +

�
g(x) + h(x)

�
.

(c) Let 0 denote the polynomial

0 = 0 + 0x+ 0x2 + · · · .
Let f(x) 2 R[x] and let

f(x) = r0 + r1x+ r2x
2 + · · · .

Then
0 + f(x) = (0 + r0) + (0 + r1)x+ (0 + r2)x

2 + · · · .
If i 2 Z>0 then 0 + ri = ri, and so

0 + f(x) = f(x).

Since addition of polynomials is commutative by (a) then f(x)+0 = 0+f(x) = f(x).
(d) Let f(x) 2 R[x] such that f(x) = r0 + r1x+ r2x2 + · · · .

Then let �f(x) = �r0 + (�r1)x+ (�r2)x2 + · · · .
If i 2 Z>0 then ri 2 R and so �ri 2 R and �f(x) 2 R[x].
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Then

f(x) +
�
� f(x)

�
= (r0 � r0) + (r1 � r1)x+ (r2 � r2)x

2 + · · · .
So

f(x) +
�
� f(x)

�
= 0 + 0x+ 0x2 + · · · = 0.

Since addition of polynomials is commutative by (a), f(x) +
�
� f(x)

�
= �f(x) +

f(x) = 0.
(e) Let f(x), g(x), h(x) 2 R[x] and f(x) = r0 + r1x + r2x2 + · · · , g(x) = s0 + s1x +

s2x2 + · · · , and h(x) = t0 + t1x+ t2x2 + · · · .
Then

f(x)g(x) = c0 + c1x+ c2x
2 + · · · , where ck =

X

i+j=k

risj, and

�
f(x)g(x)

��
h(x)

�
= d0 + d1x+ d2x

2 + · · · , where dn =
X

k+l=n

cktl.

So, by the distributive law in R,

dn =
X

k+l=n

⇣ X

i+j=k

risj
⌘
tl =

X

i+j+l=n

risjtl,

Also

g(x)h(x) = e0 + e1x+ e2x
2 + · · · , where eq =

X

a+b=q

satb, and

�
f(x)

��
g(x)h(x)

�
= d00 + d01x+ d02x

2 + · · · , where d0
n
=

X

p+q=n

rpeq.

Then, by the distributive law in R,

d0
n
=

X

p+q=n

rp
⇣ X

a+b=q

satb
⌘
=

X

p+a+b=n

rpsatb,

So, if n 2 Z>0 then dn = d0
n
.

So
�
f(x)g(x)

��
h(x)

�
=
�
f(x)

��
g(x)h(x)

�
.

(h) Let f(x), g(x) 2 R[x] and let f(x) = r0 + r1x + r2x2 + · · · and g(x) = s0 + s1x +
s2x2 + · · · .
Then

f(x)g(x) = c0 + c1x+ c2x
2 + · · · , where ck =

X

i+j=k

risj, and

g(x)f(x) = c00 + c01x+ c02x
2 + · · · , where c0

k
=

X

i+j=k

sjri.

Since R is a commutative ring then

ck =
X

i+j=k

risj =
X

i+j=k

sjri = c0
k

for k 2 Z>0.

So f(x)g(x) = g(x)f(x).
(f) Let 1 2 R[x] be the polynomial given by

1 = 1 + 0x+ 0x2 + · · · .
Let f(x) 2 R[x] and f(x) = r0 + r1x+ r2x2 + · · · .
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Then

1 · f(x) = c0 + c1x+ c2x
2 + · · · , where ck =

X

i+j=k

airj, and

a0 = 1 and ai = 0 for i 2 Z>1.

So ck = a0rk + 0 + 0 + · · ·+ 0 = rk for k 2 Z>0.
So 1 · f(x) = f(x).
Since multiplication in R[x] is commutative by (h) then 1 · f(x) = f(x) · 1 = f(x).

(g) Let f(x), g(x), h(x) 2 R[x] and suppose f(x) = r0 + r1x + r2x2 + · · · , g(x) =
s0 + s1x+ s2x2 + · · · and h(x) = t0 + t1x+ t2x2 + · · · .
Then

f(x)
�
g(x)h(x)

�
= c0 + c1x+ c2x

2 + · · · where ck =
X

i+j=k

ri(sj + tj).

By the distributive law in R, ck =
P

i+j=k
risj + ritj.

Also f(x)g(x) + f(x)h(x) = c00 + c01x+ c02x
2 + · · · , where

c0
k
=

X

m+n=k

rmsn +
X

m+n=k

rmtn =
X

m+n=k

rmsn + rmtn.

So ck = c0
k
for k 2 Z>0.

Thus
f(x)

�
g(x)h(x)

�
= f(x)g(x) + f(x)h(x).

Since multiplication in R[x] is commutative by (h),
�
g(x) + h(x)

�
f(x) = f(x)

�
g(x) + h(x)

�

= f(x)g(x) + f(x)h(x)

= g(x)f(x) + h(x)f(x).

So R[x] is a commutative ring.

Proposition C.4.2. — Let R be an integral domain. Then R[x] is an integral domain.

Proof. —
To show: If a(x), b(x) 2 R[x] and a(x)b(x) = 0 then either a(x) = 0 or b(x) = 0.
Let a(x) = a0 + a1x+ a2x2 + · · · and let b(x) = b0 + b1x+ b2x2 + · · · .
Let c(x) = a(x)b(x) = c0 + c1x+ c2x2 + · · · .
Assume a(x) 6= 0.
Then there exists i 2 Z>0 such that al 6= 0.
Let k be the smallest k 2 Z>0 such that ak 6= 0.
To show: b(x) = 0.
To show: if n 2 Z>0 then bN = 0.
Proof by induction on N .

Base case: N = 0.
Since c(x) = a(x)b(x) = 0 then ck = 0 for k 2 Z>0.
So X

i+j=k

aibj = 0.

If i 2 {0, . . . , k � 1} then ai = 0 so that

0 =
X

i+j=k

aibj = akb0.
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Since R is an integral domain and ak, b0 2 R and ak 6= 0, then b0 = 0.

Induction assumption: Assume if n 2 Z[0,N) then bn = 0.
Since c(x) = a(x)b(x) = 0 then ck+N = 0,
So X

i+j=k+N

aibj = 0.

Since ai = 0 for i 2 {0, . . . , k} and bn = 0 for n 2 {0, . . . , N} then

0 =
X

i+j=k+N

aibj = akbN .

Since R is an integral domain and ak, bN 2 R and ak 6= 0, then bN = 0.

So bN = 0 for N 2 Z>0.
So b(x) = 0.
So R[x] is an integral domain.

Theorem C.4.3. — Let F be a field. The ring F[x] is a Euclidean domain with size
function

deg : F [x]� {0} ! Z>0

f(x) 7! deg
�
f(x)

�
.

Proof. — To show: If a(x), b(x) 2 F [x] and a(x) 6= 0 then there exist q(x), r(x) 2 F [x]
such that

b(x) = a(x)q(x) + r(x)

where either r(x) = 0 or deg
�
r(x)

�
< deg

�
a(x)

�
.

Assume a(x), b(x) 2 F [x] and a(x) 6= 0.

Case 1: b(x) = 0.
Then b(x) = a(x) · 0 + 0.
So q(x) = 0 and r(x) = 0 satisfies the condition.

Case 2: deg
�
b(x)

�
< deg

�
a(x)

�
.

Then, since

b(x) = a(x) · 0 + b(x) and deg
�
b(x)

�
< deg

�
a(x)

�

then q(x) = 0 and r(x) = b(x) satisfies the condition.
Case 3: deg

�
b(x)

�
> deg

�
a(x)

�
.

Let a(x) = a0 + a1x+ a2x2 + · · ·+ asxs and let b(x) = b0 + b1x+ b2x2 + · · ·+ btxt,
where as, bt 2 F, as 6= 0 and bt 6= 0.
Proof by induction on deg

�
b(x)

�
.

Base case: deg
�
b(x)

�
= 0.

Then deg
�
a(x)

�
= 0, since deg

�
a(x)

�
6 deg

�
b(x)

�
.

So b(x) = b0 2 F and a(x) = a0.

So b(x) =
⇣

b0
a0

⌘
· a(x) + 0.

So q(x) = b0a
�1
0 and r(x) = 0 satisfies the condition.

Induction assumption: Assume that if b1(x) 2 F[x] and deg
�
b1(x)

�
< t

then there exist q1(x), r1(x) 2 F [x] such that

b1(x) = q1(x)a(x) + r1(x)

where either r1(x) = 0 or deg
�
r1(x)

�
< deg

�
a(x)

�
.
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(a) Assume that deg
�
b(x)

�
= t.

Let b1(x) = b(x)� (bta�1
s
xt�s)a(x).

Then deg
�
b1(x)

�
6 deg

�
b(x)

�
.

Note that the coe�cient of xt in b1(x) is �bt + bt = 0.
So deg

�
b1(x)

�
< t = deg

�
b(x)

�
.

Thus, by the induction assumption, there exist q1(x), r1(x) 2 F [x] such that

b1(x) = q1(x)a(x) + r1(x)

where either r1(x) = 0 or deg
�
r1(x)

�
< deg

�
a(x)

�
.

Then

b(x) = b1(x)� (bta
�1
s
xs�t)a(x)

= q1(x)a(x) + r1(x)� (bta
�1
s
xs�t)a(x)

=
�
q1(x)� bta

�1
s
xs�t

�
a(x) + r1(x).

So, if q(x) = q1(x)� bta�1
s
xs�t and r(x) = r1(x) then

b(x) = q(x)a(x) + r(x)

and either r(x) = 0 or deg
�
r(x)

�
< deg

�
a(x)

�
.

So F[x] with size function given by deg is a Euclidean domain.

Proposition C.4.4. — Let R, S be commutative rings and let ' : R ! S be a ring
homomorphism. Then the map

 : R[x] �! S[x]
r0 + r1x+ r2x2 + · · · 7�! '(r0) + '(r1)x+ '(r2)x2 + · · ·

is a ring homomorphism.

Proof. —
To show: (a) If f(x), g(x) 2 R[x] then  

�
f(x) + g(x)

�
=  

�
f(x)

�
+  

�
g(x)

�
.

(b) If f(x), g(x) 2 R[x] then  
�
f(x)g(x)

�
=  

�
f(x)

�
 
�
g(x)

�
.

(c)  (1R) = 1S where 1R and 1S are the identities in R and S respectively.

(a) Let f(x), g(x) 2 R[x] and let f(x) = r0 + r1x + r2x2 + · · · and g(x) = r00 + r01x +
r02x

2 + · · · .
Then

 
�
f(x) + g(x)

�
=  

�
(r0 + r00) + (r1 + r01)x+ (r2 + r02)x

2 + · · ·
�

= '(r0 + r00) + '(r1 + r01)x+ '(r2 + r02)x
2 + · · · .

Since ' is a homomorphism,

 
�
f(x) + g(x)

�
=
�
'(r0) + '(r00)

�
+
�
'(r1) + '(r01)

�
x+

�
'(r2) + '(r02)

�
x2 + · · ·

=
�
'(r0) + '(r1)x+ '(r2)x

2 + · · ·
�
+
�
'(r00) + '(r01)x+ '(r02)x

2 + · · ·
�

=  
�
f(x)

�
+  

�
g(x)

�
.

(b) Let f(x), g(x) 2 R[x] and let f(x) = r0 + r1x + r2x2 + · · · and g(x) = r00 + r01x +
r02x

2 + · · · .
Then

 
�
f(x)g(x)

�
=  (c0 + c1x+ c2x

2 + · · · ), where ck =
X

i+j=k

rir
0

j
.

So  
�
f(x)g(x)

�
= '(c0) + '(c1)x+ '(c2)x2 + · · · .
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Since ' is a homomorphism,

'(ck) = '
⇣ X

i+j=k

rir
0

j

⌘
=

X

i+j=k

'(rir
0

j
) =

X

i+j=k

'(ri)'(r
0

j
).

So

 
�
f(x)g(x)

�
= d0 + d1x+ d2x

2 + · · · , where dk =
X

i+j=k

'(ri)'(r
0

j
).

So, by the distributive law in S,

 
�
f(x)g(x)

�
=
�
'(r0) + '(r1)x+ '(r2)x

2 + · · ·
��
'(r00) + '(r01)x+ '(r02)x

2 + · · ·
�

= '
�
f(x)

�
'(g(x)

�
.

(c) Let 1R be the identity in R.

 (1R) =  (1R + 0Rx+ 0Rx
2 + · · · )

= '(1R) + '(0R)x+ '(0R)x
2 + · · · .

Since ' is a homomorphism then '(1R) = 1S and '(0R) = 0S.
So  (1R) = 1S + 0Sx+ 0Sx2 + · · · = 1S.

So  is a homomorphism.

Proposition C.4.5. — Let R be a commutative ring and let ↵ 2 R. Then the evaluation
homomorphism ev↵ : R[x] ! R is a ring homomorphism.

Proof. —
To show: (a) If f(x), g(x) 2 R[x] then ev↵

�
f(x) + g(x)

�
= ev↵

�
f(x)

�
+ ev↵

�
g(x)

�
.

(b) If f(x), g(x) 2 R[x] then ev↵
�
f(x)g(x)

�
= ev↵

�
f(x)

�
ev↵

�
g(x)

�
.

(c) ev↵(1R) = 1R, where 1R is the identity in R.

(a) Let f(x), g(x) 2 R[x] and let f(x) = r0 + r1x + r2x2 + · · · and g(x) = s0 + s1x +
s2x2 + · · · .
Then

ev↵
�
f(x) + g(x)

�
= ev↵

�
(r0 + s0) + (r1 + s1)x+ (r2 + s2)x

2 + · · ·
�

= (r0 + s0) + (r1 + s1)↵ + (r2 + s2)↵
2 + · · · .

By the distributive law in R,

ev↵
�
f(x) + g(x)

�
= r0 + s0 + r1↵ + s1↵ + r2↵

2 + s2↵
2 + · · ·

= (r0 + r1↵ + r2↵
2 + · · · ) + (s0 + s1↵ + s2↵

2 + · · · )
= ev↵

�
f(x)

�
+ ev↵

�
g(x)

�
.

(b) Let f(x), g(x) 2 R[x] and let f(x) = r0 + r1x + r2x2 + · · · and g(x) = s0 + s1x +
s2x2 + · · · .
Then

ev↵
�
f(x)g(x)

�
= ev↵(c0 + c1x+ c2x

2 + · · · ) where ck =
X

i+j=k

risj.

So ev↵
�
f(x)g(x)

�
= c0 + c1↵ + c2↵2 + · · · .

Now compute ev↵
�
f(x)

�
ev↵

�
g(x)

�
.

ev↵
�
f(x)

�
ev↵

�
g(x)

�
= (r0 + r1↵ + r2↵

2 + · · · )(s0 + s1↵ + s2↵
2 + · · · ).
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By the distributive law in R,

ev↵
�
f(x)

�
ev↵

�
g(x)

�
= r0s0 + r1s0↵ + r0s1↵ + r0s2↵

2 + r1s1↵
2 + r2s0↵

2 + · · ·
= r0s0 + (r1s0 + r0s1)↵ + (r0s2 + r1s1 + r2s0)↵

2 + · · ·
= c0 + c1↵ + c2↵

2 + · · · where

ck =
X

i+j=k

risj.

So
ev↵

�
f(x)g(x)

�
= ev↵

�
f(x)

�
ev↵

�
g(x)

�
.

(c) Let 1R be the identity in R and let 0R be the zero in R.
Then

ev↵(1R) = ev↵(1R + 0Rx+ 0Rx
2 + · · · ) = 1R + 0R↵ + 0R↵

2 + · · · = 1R.

So ev↵ is a ring homomorphism.

Lemma C.4.6. — (Gauss’ Lemma) Let R be a UFD. Let f(x), g(x) 2 R[x] be primitive
polynomials. Then f(x)g(x) is a primitive polynomial.

Proof. — Assume f(x) = r0 + r1x + r2x2 + · · · and g(x) = s0 + s1x + s2x2 + · · · are
primitive polynomials in R[x].
Proof by contradiction.
Assume f(x)g(x) is not primitive.
Then there exists an irreducible element p 2 R that divides all the coe�cients of
f(x)g(x).
Since f(x) is primitive there must be at least one coe�cient of f(x) which is not divisible
by p.
Since g(x) is primitive there must be at least one coe�cient of g(x) which is not divisible
by p.
Let m be the smallest m such that rm is not divisible by p.
Let n be the smallest n such that sn is not divisible by p.
Suppose that f(x)g(x) = c0 + c1x+ c2x2 + · · · .
Then, since p divides ri, for all i < m, and p divides sj, for all j < m,

cm+n = rmsn + rm�1sn+1 + rm+1sn�1 + · · ·+ r0sm+n + rm+ns0
= rmsn + pc,

where c is some element of R.
Since cm+n is divisible by p it follows that rmsn = cm+n � pc is divisible by p.
Suppose that d 2 R such that rmsn = pd.
Let

rm = a1 · · · ak, sn = b1 · · · bl, and d = d1 · · · dq,
be factorizations of rm, sn and d into irreducible elements a1, . . . , ak, b1, . . . , bl, d1, . . . , dq 2
R.
Then

a1 · · · akb1 · · · bl = pd1 · · · dq.
By uniqueness of factorizations,

either p is associate to ai for some 1 6 i 6 k,
or p is associate to bj for some 1 6 j 6 l.
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So either pi = up or qj = up for some unit u 2 R.
Then, either a = upp1 · · · p̂i · · · pm, or b = upq1 · · · q̂j · · · qn,
where ˆ denotes omitting the factor pi or qj.
Thus, either rm or sn is divisible by p.
Contradiction.
So f(x)g(x) is a primitive polynomial.
THIS IS A REALLY BAD PROOF

Proposition C.4.7. — Let R be a UFD. Let F be the field of fractions of R and let
f(x) 2 F[x]. Then

(a) There exists an element c 2 F and a primitive polynomial g(x) 2 R[x] such that

f(x) = cg(x).

(b) The factors c and g(x) are unique up to multiplication by a unit IN WHERE????.
(c) f(x) is irreducible in F[x] if and only if g(x) is irreducible in R[x].

Proof. —

(a) Let f(x) = a0
b0

+ a1
b1
x+ · · ·+ ak

bk
xk 2 F[x].

Then f(x) = 1
b0b1···bk

(c0 + c1x+ · · ·+ ckxk)

where ci = aib1 · · · b̂i · · · bk, where the b̂i denotes omission of the factor bi.
Let d = gcd(c0, c1, . . . , ck).
Then

f(x) =
d

b0 · · · bk
(c00 + c01x+ · · ·+ c0

k
xk)

where c0
i
= ci

d
.

Note that c0
i
2 R since d divides ci.

Furthermore c00 + c01x+ · · ·+ c0
k
xk = g(x) is primitive since gcd(c00, c

0

1, . . . , c
0

k
) = 1.

So
f(x) = cg(x)

where c = d

b0b1···bk
2 F and g(x) = c00 + c01x + · · · + c0

k
xk 2 R[x] is a primitive

polynomial.
(b) Suppose f(x) = cg(x) and f(x) = CG(x) where c, C 2 F and g(x), G(x) 2 R[x] are

primitive polynomials.
Let g(x) = a0 + a1x+ a2x2 + · · ·+ akxk and let G(x) = b0 + b1x+ b2x2 + · · ·+ bkxk.
Suppose c = a

b
and C = A

B
where a, b, A,B 2 R.

Since f(x) =
a

b
g(x) =

A

B
G(x) then

aBg(x) = bAG(x).

So aBai = bAbi for i 2 {1, . . . , k}.
Since g(x) is primitive then gcd(aBa0, aBa1, . . . , aBak) = aB.
Since G(x) is primitive then gcd(bAb0, bAb1, . . . , bAbk) = bA.
Thus, by Proposition 3.2.10????,

aB = ubA for some unit u 2 R.

So
a

b
= u ·

⇣A
B

⌘
.

So c = uC where u 2 R is a unit.
So CG(x) = cg(x) = uCg(x).
By the cancellation law, G(x) = ug(x).
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So c = uC and G(x) = ug(x).
So c and g(x) are unique up to multiplication by a unit.

(c) =) :
Assume that f(x) is irreducible in F [x].
Proof by contradiction. YIKES???????
Assume g(x) is not irreducible in R[x].
Then there are g1(x) and g2(x) in R[x] such that g(x) = g1(x)g2(x).
So f(x) = cg(x) = cg1(x)g2(x).
Since R[x] ✓ F [x] then g1(x), g2(x) 2 F [x].
So f(x) is not irreducible in F [x].
Contradiction.
So g(x) is irreducible in R[x].

(c) (=:
Assume g(x) is irreducible in R[x].
Proof by contradiction. YIKES??????
Assume f(x) is not irreducible in F[x].
Then there are f1(x) and f2(x) in F [x] such that f(x) = f1(x)f2(x).
So, by (a), there exist c1, c2 2 F and primitive polynomials g1(x), g2(x) 2 R[x] such
that

f1(x) = c1g1(x) and f2(x) = c2g2(x).

Let c = c1c2.
Then f(x) = cg1(x)g2(x).
By Gauss’ lemma g1(x)g2(x) is a primitive polynomial in R[x].
So, by (b), g(x) = ug1(x)g2(x), where u 2 R. IS THIS RIGHT???
So g(x) is not irreducible in R[x].
Contradiction.FIX THIS
So f(x) is irreducible in F [x].

Theorem C.4.8. — Let R be a unique factorization domain. Then R[x] is a unique
factorization domain.

Proof. — Assume g(x) 2 R[x] and let g(x) = a0 + a1x+ · · · akxk.
To show: (a) g(x) has a factorization into irreducible factors in R[x].

(b) The factorization of g(x) is unique up to multiplication by units in R[x] and
rearrangement of the factors.

(a) By Theorems 3.3.5, 3.2.2, and 3.2.6, F [x] is a UFD and so g(x) has a factorization
in F [x],

g(x) = f1(x)f2(x) · · · fr(x), where fi(x) 2 F [x] are irreducible in F [x].

Then, by Proposition 3.3.12(a), there exist elements c1, . . . cr 2 F and primitive
polynomials
g1(x), . . . , gr(x) 2 R[x] such that

fi(x) = cigi(x), for i 2 {1, . . . , k}.

Since the factors fi(x) are irreducible in F [x] then it follows from Proposition
3.3.12(c) that
the polynomials gi(x) are irreducible in R[x].
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Since the gi(x) are primitive, by Gauss’ lemma, the product g1(x) · · · gr(x) is prim-
itive.
So

g(x) = cg1(x)g2(x) · · · gr(x), where c = c1c2 · · · cr 2 F.

We also know that g(x) = gcd(a0, . . . , ak)g0(x), where g0(x) is a primitive polynomial
in R[x].
Thus, by Proposition 3.3.12(b), c = u gcd(a0, . . . , ak) where u 2 R is a unit. USE
THE NOTATION R⇥?????
It follows that c 2 R.
Since R is a UFD then c has a factorization

c = d1 · · · ds,
where the elements dj are irreducible elements in R.
So

g(x) = d1 · · · ds · g1(x) · · · gr(x),
is a factorization of g(x) into irreducibles in R[x].

(b) Suppose that g(x) = d01d
0

2 · · · d0lg01(x)g02(x) · · · g0m(x) is another factorization of g(x)
into irreducible factors in R[x].
By Proposition 3.3.12(c), each of the factors g0

i
(x) is irreducible in F[x].

So g(x) = d01d
0

2 · · · d0lg01(x)g02(x) · · · g0m(x) and g(x) = d1 · · · dsg1(x) · · · gr(x), are both
factorizations of g(x) in F[x].
By Theorems 3.3.5, 3.2.2, and 3.2.6, F[x] is a UFD, and so r = m and there is a
permutation � such that and ↵i 2 F

⇥ such that

g0
�(i)(x) = ↵igi(x).

Proposition 3.3.12(b), gives that each ↵i 2 R⇥.
Let u = ↵1↵2 · · ·↵r.
Then

g(x) = d1 · · · ds · · · g1(x) · · · gr(x) = d01d
0

2 · · · d0lg01(x)g02(x) · · · g0m(x)
= ud01d

0

2 · · · d0lg1(x)g2(x) · · · gm(x).
Then Proposition 3.3.12(b) implies that there is a unit v 2 R such that

d1 · · · ds = vud01 · · · d0l.
Since R[x] is a UFD, s = l and there is a permutation ⌧ such that

d⌧(i) = uid
0

i
,

where the ui are units in R.
So there is a rearrangement of the factors d0

i
and g0

j
(x) such that, up to multiplication

by units in R, they are the same as the factors di and gj(x).
So the factorization of g(x) in R[x] is unique.

So R[x] is a UFD.

THESE NEXT TWO RESULTS ARE NOT IN THE ORIGINAL VERSION??

Lemma C.4.9. — Let R be a UFD. For each irreducible element p 2 R let ⇡p : R !
R/pR be the quotient surjection (Part 1, Ex. 2.1.5????). Let ⇡̂p : R[x] ! R

pR
[x] be the

corresponding homomorphism between polynomial rings (Prop 3.1.6????). Let f(x) 2
R[x]. Then f(x) is not primitive if and only if there exists an irreducible element p 2 R
such that ⇡̂p

�
f(x)

�
= 0.
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Proof. —
) : Assume f(x) = c0 + c1x+ · · ·+ ckxk is not primitive.
Then there exists p 2 R irreducible such that p divides c0, p divides c1, . . ., p divides ck.
So c0, c1, . . . , ck 2 pR.
So ⇡p(c0) = ⇡p(c1) = · · · = ⇡p(ck) = 0.
So ⇡̂p

�
f(x)

�
= ⇡p(c0) + ⇡p(c1)x+ · · ·+ ⇡p(ck)xk = 0.

( : Assume that f(x) = c0+ c1x+ · · ·+ ckxk and that there exists an irreducible element
p 2 R such that ⇡̂p

�
f(x)

�
= 0.

Then ⇡p(c0) = ⇡p(c1) = · · · = ⇡p(ck) = 0.
So c0, c1, . . . , ck 2 pR.
So p divides c0, p divides c1, . . ., and p divides ck.
So f(x) is not primitive.

Lemma C.4.10. — (Gauss’ Lemma) Let R be a UFD. Let f(x), g(x) 2 R[x] be primitive
polynomials. Then f(x)g(x) is a primitive polynomial.

Proof. — We shall prove the contrapositive:
To show: If f(x)g(x) is not primitive then either f(x) is not primitive or g(x) is not
primitive.
Assume f(x)g(x) is not primitive.
Then, by Lemma ????X.X, there exists an irreducible element p 2 R such that

⇡̂p
�
f(x)g(x)

�
= 0,

where ⇡̂p : R[x] ! R

pR
[x] is the homomorphism between polynomial rings induced by the

quotient surjection ⇡p : R ! R/pR.
Since ⇡̂p is a homomorphism,

⇡̂p
�
f(x)g(x)

�
= ⇡̂p

�
f(x)

�
⇡̂p
�
g(x)

�
= 0.

By Lemma X.X????, pR is a prime ideal.
Thus, by Proposition X.X???, R/pR is an integral domain.
So either

⇡̂p
�
f(x)

�
= 0 or ⇡̂p

�
g(x)

�
= 0.

Thus, by Lemma X.X,

either f(x) is not primitive or g(x) is not primitive.

C.5. Proofs: Fields, Integral Domains, Fields of Fractions

Lemma C.5.1. — Let F be a commutative ring. Then F is a field if and only if the
only ideals of F are (0) and F .

Proof. —
): Assume F is a field.
To show: The only ideals of F are (0) and F .
Let I be an ideal of F .
Suppose I 6= (0).
Then there is an element x 2 I with x 6= 0.
Since F is a field, there is an element x�1 2 F such that xx�1 = 1.
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So 1 = x�1x 2 I.
So, if y 2 F , then y = y · 1 2 I.
So F ✓ I ✓ F .
So I = F .
So the only ideals of F are (0) and F .

(: Assume that the only ideals of F are (0) and F .
To show: F is a field.
Let x 2 F , x 6= 0.
Since (x) 6= (0) then (x) = F .
So there exists y 2 F such that xy = 1.
So F is a field.

Theorem C.5.2. — Let R be a commutative ring and let M be an ideal of R. Then
R/M is a field if and only if M is a maximal ideal.

Proof. —
): Assume R/M is a field.
Then, by Lemma 3.1.2, the only ideals of R/M are (0) and R/M .
By the correspondence theorem, Ex. 2.1.5(c), there is a one-to-one correspondence
between
ideals of R/M and ideals of R containing M .
Thus the only ideals of R containing M are M and R.
So M is a maximal ideal.

(: Assume M is a maximal ideal.
Then the only ideals of R containing M are M and R.
By the correspondence theorem, Ex. 2.1.5(c), there is a one-to-one correspondence be-
tween ideals of R/M and ideals of R containing M .
Thus the only ideals of R/M are (0) and R/M .
So, by Lemma 3.1.2, R/M is a field.

Proposition C.5.3. — (Cancellation Law) Let R be an integral domain. If a, b, c 2 R
and c 6= 0 and ac = bc then a = b.

Proof. — Assume a, b, c 2 R and c 6= 0 and ac = bc.
Then 0 = ac� bc = (a� b)c.
Since R is an integral domain and c 6= 0 then a� b = 0.
So a = b.

Theorem C.5.4. — Let R be a commutative ring and let P be an ideal of R. Then R/P
is an integral domain if and only if P is a prime ideal.

Proof. —
): Assume R/P is an integral domain.
To show: P is a prime ideal.
Let a, b 2 R and suppose ab 2 P .
To show: Either a 2 P or b 2 P .
Since ab 2 P then (a+ P )(b+ P ) = ab+ P = 0 + P in R/P .
Since R/P is an integral domain then either a+ P = 0 + P or b+ P = 0 + P .
Thus either a 2 P or b 2 P .
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So P is a prime ideal.

(: Assume P is a prime ideal.
To show: R/P is an integral domain.
Let a, b 2 R such that (a+ P )(b+ P ) = 0 + P .
To show: Either a+ P = 0 + P or b+ P = 0 + P .
Then ab+ P = 0 + P .
So ab 2 P .
Since P is prime then either a 2 P or b 2 P .
So either a+ P = 0 + P or b+ P = 0 + P .
So R/P is an integral domain.

Proposition C.5.5. — Let R be an integral domain. Let FR =
na
b
| a, b 2 R, b 6= 0

o
be

the set of fractions. Then equality of fractions is an equivalence relation.

Proof. —
To show: (a) a/b = a/b.

(b) If a/b = c/d then c/d = a/b.
(c) If a/b = c/d and c/d = e/f then a/b = e/f .

(a) Since ab = ba then a/b = a/b.
(b) Assume a/b = c/d.

Then ad = bc.
Since R is commutative then cb = da.
So c/d = a/b.

(c) Assume a/b = c/d and c/d = e/f .
Then ad = bc and cf = de.
To show: af = be.
Since ad = bc and cf = de then adcf = bcde.
Thus, by commutativity, afcd = becd.
Then, by the cancellation law for an integral domain, Proposition 3.1.5, af = be.
So a/b = e/f .

Proposition C.5.6. — Let R be an integral domain. Let FR =
na
b
| a, b 2 R, b 6= 0

o
be

its set of fractions. Let equality of fractions be as defined in Proposition 3.1.8????. Then
the operations +: FR ⇥ FR ! F and ⇥ : FR ⇥ FR ! FR given by

a

b
+

c

d
=

ad+ bc

bd
and

a

b
· c
d
=

ac

bd
are well defined.

Proof. — Assume
a

b
=

a0

b0
and

c

d
=

c0

d0
.

To show: (a)
a

b
+

c

d
=

a0

b0
+

c0

d0
.

(b)
a

b
· c
d
=

a0

b0
· c

0

d0

(a) To show:
ad+ bc

bd
=

a0d0 + b0c0

b0d0
.

To show: (ad+ bc)b0d0 = (a0d0 + b0c0)bd.
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We know that ab0 = ba0 and cd0 = dc0.
So

adb0|{z} d
0 + b cb0d0|{z} = a0bdd0 + bdb0c0 = (a0d0 + b0c0)bd.

So
a

b
+

c

d
=

a0

b0
+

c0

d0
.

(b) To show:
ac

bd
=

a0c0

b0d0
.

To show: acb0d0 = a0c0bd.
We know that ab0 = ba0 and cd0 = dc0.
So

acb0d0 = ba0cd0 = ba0dc0 = a0c0bd.

So
ac

bd
=

a0c0

b0d0
.

Theorem C.5.7. — Let R be an integral domain and let FR =
na
b
| a 2 R, b 2 R� {0}

o

be the set of fractions. Let equality of fractions be as defined in Proposition 3.1.8????
and let operations +: FR ⇥ FR ! FR and ⇥ : FR ⇥ FR ! FR be as given in Proposition
3.1.9????. Then FR is a field.

Proof. —
To show: (a) FR is a ring.

(b) FR is commutative.
(c) If x 2 FR and x 6= 0 then there exists x�1 2 FR such that xx�1 = 1.

(a) To show: (aa) +: FR ⇥ FR is well defined.
(ab) ⇥ : FR ⇥ FR is well defined.
(ac) If p/q,m/n, r/s 2 FR then

�
p/q+m/n

�
+ r/s = p/q+

�
m/n+ r/s

�
.

(ad) If p/q,m/n 2 FR then p/q +m/n = m/n+ p/q.
(ae) There is an element 0 2 FR such that 0 +m/n = m/n for all m/n.
(af) If x 2 FR then there is an element �x 2 FR such that x+ (�x) = 0.
(ag) If p/q,m/n, r/s 2 FR then p/q ·

�
m/n · r/s

�
=
�
p/q ·m/n

�
· r/s.

(ah) There is an element 1 2 FR such that 1 · x = x for all x 2 FR.
(ai) If m/n, p/q, r/s 2 FR then m/n

�
p/q + r/s

�
= m/n · p/q +m/n · r/s

and
�
p/q + r/s

�
m/n = p/q ·m/n+ r/s ·m/n.

(aa) and
(ab) are proved in Proposition 3.1.9?????.
(ac) Assume p/q,m/n, r/s 2 FR.

To show: (p/q +m/n) + r/s = p/q + (m/n+ r/s).
By the definition of the operation +: FR ⇥ FR ! FR,

⇣p
q
+

m

n

⌘
+

r

s
=

pn+mq

qn
+

r

s

=
(pn+mq)s+ qnr

qns

=
pns+mqs+ qnr

qns
.
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By the definition of the operation +: FR ⇥ FR ! FR,
p

q
+
⇣m
n

+
r

s

⌘
=

p

q
+
⇣ms+ nr

ns

⌘

=
pns+ q(ms+ nr)

qns

=
pns+ qms+ qnr

qns
.

Since R is commutative (R is an integral domain),

pns+mqs+ qnr

qns
=

pns+ qms+ qnr

qns
.

So ⇣p
q
+

m

n

⌘
+

r

s
=

p

q
+
⇣m
n

+
r

s

⌘
.

(ad) Assume p/q,m/n 2 FR.
To show: p/q +m/n = m/n+ p/q.
By the definition of +: FR ⇥ FR ! FR,

p

q
+

m

n
=

pn+ qm

qn
.

By the definition of +: FR ⇥ FR ! FR,
m

n
+

p

q
=

mq + np

nq
.

Since R is commutative,
pn+ qm

qn
=

mq + np

nq
.

So
p

q
+

m

n
=

m

n
+

p

q
.

(ae) To show: There is an element 0 2 FR such that if m/n 2 FR then 0 +m/n =
m/n.
Let 0 = 0/1 2 FR.
To show: If m/n 2 FR then 0/1 +m/n = m/n.
Assume m/n 2 FR.
Then

0

1
+

m

n
=

0 · n+m

1 · n =
0 +m

n
=

m

n
.

If m/n 2 FR then 0/1 +m/n = m/n for all m/n 2 FR.
So 0/1 is an identity for +: FR ⇥ FR ! FR.

(af) Assume m/n 2 FR.
Then

m

n
+

(�m)

n
=

mn+ (�mn)

n2
=

0

n2
.

To show: 0/n2 = 0/1.
Since 0 = 0 · 1 = 0 · n2 = 0 then 0/n2 = 0/1.
So

m

n
+

(�m)

n
=

0

1
.

(ag) Assume p/q,m/n, r/s 2 FR.
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To show: p/q · (m/n · r/s) = (p/q ·m/n) · r/s = pmr/qns.
By the definition of the operation ⇥ : FR ⇥ FR ! FR,

p

q
·
⇣m
n

· r
s

⌘
=

p

q
·
⇣mr

ns

⌘
=

pmr

qns
.

By the definition of the operation ⇥ : FR ⇥ FR ! FR,⇣p
q
· m
n

⌘
· r
s
=

r

s
=
⇣pm
qn

⌘
· r
s
=

pmr

qns
.

So
p

q
·
⇣m
n

· r
s

⌘
=
⇣p
q
· m
n

⌘
· r
s
.

(ah) To show: There is an element 1 2 FR such that if m/n 2 FR then 1 ·m/n =
m/n.
Let 1 = 1/1 2 FR.
To show: If m/n 2 FR then 1/1 ·m/n = m/n.
Assume m/n 2 FR.
Then

1

1
· m
n

=
1 ·m
1 · n =

m

n
.

So 1/1 is an identity element for ⇥ : FR ⇥ FR ! FR.
(ai) Assume m/n, p/q, r/s 2 FR.

To show: (aia) m/n(p/q + r/s) = m/n · p/q +m/n · r/s.
(aib) (p/q + r/s)m/n = p/q ·m/n+ r/s ·m/n.

(aia) By the definitions of the operations

m

n
·
⇣p
q
+

r

s

⌘
=

m

n
· ps+ qr

qs

=
m(ps+ qr)

nqs

=
mps+mqr

nqs

and
m

n
· p
q
+

m

n
· r
s
=

mp

nq
+

mr

ns

=
mpns+ nqmr

nqns
.

To show:
mps+mqr

nqs
=

mpns+ nqmr

nqns
.

To show: (mps+mqr)nqns = nqs(mpns+ nqmr).
By commutativity of R and the distributive property in R,

(mps+mqr)nqns = nqsn(mps+mqr)

= nqs(mpns+ nqmr).

So
mps+mqr

nqs
=

mpns+ nqmr

nqns
.

So
m

n
·
⇣p
q
+

r

s

⌘
=

m

n
· p
q
+

m

n
· r
s
.
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(aib) By the definitions of the operations
⇣p
q
+

r

s

⌘
· m
n

=
ps+ qr

qs
· m
n

=
(ps+ qr)m

qsn

=
psm+ qrm

qsn

and
p

q
· m
n

+
r

s
· m
n

=
pm

qn
+

rm

sn

=
pmsn+ qnrm

qnsn
.

To show:
psm+ qrm

qsn
=

pmsn+ qnrm

qnsn
.

To show: (psm+ qrm)qnsn = qsn(pmsn+ qnrm).
By commutativity of R and the distributive property in R,

(psm+ qrm)qnsn = qsnn(psm+ qrm)

= qsn(pmsn+ qnrm).

So
psm+ qrm

qsn
=

pmsn+ qnrm

qnsn
.

So ⇣p
q
+

r

s

⌘
· m
n

=
p

q
· m
n

+
r

s
· m
n
.

(b) To show: FR is commutative.
To show: If m/n, p/q 2 FR then m/n · p/q = p/q ·m/n.
Assume m/n, p/q 2 FR.
By the definition of ⇥ : FR ⇥ FR ! FR.

m

n
· p
q
=

mp

nq
and

p

q
· m
n

=
pm

pq
.

By commutativity in R,
mp

nq
=

pm

qn
.

So
m

n
· p
q
=

p

q
· m
n

So FR is commutative.
(c) To show: If x 2 FR and x 6= 0 then there exists x�1 2 FR such that xx�1 = 1.

Assume x = m/n 2 FR and m/n 6= 0/1.
Then, by equality of fractions, m · 1 6= 0 · n.
So m 6= 0.
Let x�1 = n/m. Note: n/m 2 FR since m 6= 0.
To show: m/n · n/m = 1/1.
By the definition of ⇥ : FR ⇥ FR ! FR,

m

n
· n
m

=
mn

nm
.
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To show:
mn

nm
=

1

1
.

But mn = nm, by commutativity in R.
So, by the definition of equality of fractions,

mn

nm
=

1

1
.

So, if x = m/n and m/n 6= 0 then x�1 = n/m 2 FR and xx�1 =
m

n
· n
m

=
1

1
.

So FR is a field.

Proposition C.5.8. — Let R be an integral domain with identity 1 and let FR be its
field of fractions. Then the map ' : R ! FR given by

' : R �! FR

r 7�! r

1

is an injective ring homomorphism.

Proof. — To show: (a) ' is a ring homomorphism. (b) ' is injective.

(a) To show: (aa) If r, s 2 R then '(r + s) = '(r) + '(s).
(ab) If r, s 2 R then '(rs) = '(r)'(s).

(ac) '(1) =
1

1
.

(aa) Assume r, s 2 R.
Then

'(r + s) =
r + s

1
and '(r) + '(s) =

r

1
+

s

1
.

By the definition of +: FR ⇥ FR ! FR,

r

1
+

s

1
=

r · 1 + 1 · s
1 · 1 =

r + s

1
.

So

'(r + s) = '(r) + '(s).

(ab) Assume r, s 2 R.
Then, by the definition of ⇥ : FR ⇥ FR ! FR,

'(rs) =
rs

1
=

r

1
· s
1
= '(r)'(s).

(ac) By the definition of ' : FR ! R,

'(1) =
1

1
.

So ' is a ring homomorphism.
(b) To show: If r, s 2 R and '(r) = '(s) then r = s.

Assume r, s 2 R and '(r) = '(s).
Then r/1 = s/1.
Thus, by the definition of equality of fractions, 1 · r = 1 · s.
So r = s.
So ' is injective.

So ' is an injective ring homomorphism.
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C.6. Proofs: Euclidean Domains, PIDs and UFDs

Theorem C.6.1. — A Euclidean domain is a principal ideal domain.

Proof. — Assume R is a Euclidean domain with size function � : (R� {0}) ! Z>0.
Let I be an ideal of R.
To show: There exists an element a 2 R such that I = aR.

Case 1: I = {0}.
Case 2: I 6= {0}.

Let a 2 I, a 6= 0, such that �(a) is as small as possible.
To show: I = aR.
To show: (a) I ✓ aR.

(b) aR ✓ I.
(a) Let b 2 I.

To show: b 2 (a).
Then there exist q, r 2 R such that b = aq + r where either r = 0 or �(r) <
�(a).
Since r = b� aq and b 2 I and a 2 I then r 2 I.
Since a 2 I is such that �(a) is as small as possible we cannot have �(r) <
�(a).
So r = 0.
So b = aq.
So b 2 aR.
So I ✓ aR.

(b) To show: aR ✓ I.
But a 2 I.
So aR ✓ I.
So I = aR.
So every ideal I of R is a principal ideal.

So R is a principal ideal domain.

Proposition C.6.2. — Let p, q 2 R. Then

(a) p is a unit () pR = R.
(b) p divides q () qR ✓ pR.
(c) p is a proper divisor of q () qR ( pR ( R.
(d) p is an associate of q () pR = qR.

(e)
p is irreducible () pR 6= 0 and pR 6= R and

If q 2 R and qR ◆ pR then either qR = pR or qR = R.

Proof. —

(a) ) : Assume p is a unit.
Let u 2 R such that up = 1.
Then 1 = up 2 pR.
So, if r 2 R then r · 1 2 pR.
So R ✓ (p) ✓ R.
So (p) = R.

( : Assume pR = R.
Then 1 2 pR.
So there exists i 2 R such that pu = 1.
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So p is a unit.
(b) ) : Assume p divides q.

So there exists a 2 R such that pa = q.
So q 2 pR.
So qR ✓ pR.

( : Assume qR ✓ pR.
Then q 2 pR.
So there exists a 2 R such that q = ap.
So p divides q.

(c) ) : Assume p is a proper divisor of q.
Let a 2 R such that q = ap and such that a is not a unit.
To show: (ca) qR ✓ pR. (cb) qR 6= pR. (cc) pR 6= R.
(ca) Since q = pa then q 2 pR,

So qR ✓ pR.
(cb) Proof by contradiction. YIKES???????

Assume (q) = (p).
Then there exists b 2 R such that p = bq.
So q = pa = baq.
Thus, since R is an integral domain then the cancellation law gives that
ba = 1.
So a is a unit.
Contradiction, a is not a unit.
So qR 6= pR.

(cc) By part (a), since p is not a unit then pR 6= R.

(c) ( : Assume qR ( pR ✓ R.
To show: p is a proper divisor of q.
To show: (ca) There exists a 2 R such that q = ap.

(cb) a is not a unit.
(cc) p is not a unit.

(ca) By part (a), since qR ✓ pR then p divides q.
So there exists a 2 R such that q = ap.

(cb) Proof by contradiction. YIKES????
Assume a is a unit.
Then there is a u 2 R such that ua = 1.
So p = uap = uq.
So p 2 qR.
So pR ✓ qR.
So pR = qR.
This is a contradiction to the assumption qR ✓ pR.
So a is not a unit.

(cc) By part (a), since pR 6= R then p is not a unit.

(d) ) : Assume p is an associate of q.
To show: (da) pR ✓ qR.

(db) qR ✓ pR.
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(da) Then there exists a unit a 2 R such that p = aq.
So p 2 qR.
So pR ✓ qR.

(db) Since p = aq and a is a unit then q = a�1p.
So q 2 pR.
So qR ✓ pR.
So qR = pR.

(d) ( : Assume qR = pR.
To show: (da) There exists a 2 R such that p = aq.

(db) a is a unit.
(da) Since pR ✓ qR then p 2 qR.

So there exists a 2 R such that p = aq.
(db) Since qR ✓ pR then q 2 pR.

So there exists b 2 R such that q = bp.
So p = aq = abp.
Then, by the cancellation law, 1 = ab.
So a is a unit.

(e) ) : Assume p is irreducible.
To show: (ea) pR 6= {0}.

(eb) pR 6= R.
(ec) If q 2 R and qR ✓ pR then either qR = pR or qR = R.

(ea) Since p 6= 0then pR 6= {0}.
(eb) Since p is not a unit tnen, by part (a), pR 6= R.
(ec) Assume q 2 R and qR ◆ pR.

Proof by contradiction. YIKES??????
Assume qR 6= pR and qR 6= R.
Then R ) qR ) pR.
So, by part (c), q is a proper divisor of p.
This is a contradiction to p being irreducible.
So either qR = pR or qR = R.

(e) ( : Assume pR 6= 0 and pR 6= R and if q 2 R and qR ◆ pR then either qR = pR
or qR = R.
To show: (ea) p 6= 0.

(eb) p is not a unit.
(ec) p has no proper divisor.

(ea) Since pR 6= {0} then p 6= 0.
(eb) Since pR 6= R then, by part (a), p is not a unit.
(ec) Assume p has a proper divisor q 2 R.

Then, by part (c), pR ( qR ( R.
But this is a contradiction to the assumption that if q 2 R and qR ◆ pR then
either qR = pR or qR = R.
So p has no proper divisor.

Lemma C.6.3. — If R is a principal ideal domain and p 2 R is an irreducible element
of R then pR is a prime ideal.
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Proof. — Let p 2 R be an irreducible element.
Let a, b 2 R and suppose ab 2 pR.
To show: If a /2 pR then b 2 pR.
Assume a /2 pR. Then let d 2 R such that dR = ha, pi, the ideal generated by a and p.
Since p 2 ha, pi then pR ✓ ha, pi = dR.
Since a /2 pR then dR = ha, pi 6= pR.
Thus, since p is irreducible then ha, pi = dR = 1 ·R = R.
So there exist r, s 2 R such that ra+ sp = 1.
So b = rab+ spb.
Thus, since ab 2 pR and pb 2 pR then b 2 pR.
So pR is a prime ideal.

Lemma C.6.4. — Let R be a principal ideal domain. There does not exist an infinite
sequence of elements a1, a2, . . . 2 R such that (0) ( (a1) ( (a2) ( . . ..

Proof. — Proof by contradiction. FIX THIS BY SHOWING CONTRAPOSITIVE
Suppose a1, a2, . . . 2 R is an infinite sequence of elements such that (0) ( (a1) ( (a2) (
. . ..
First we show that

I =
[

i2Z>1

(ai) is an ideal.

To show: (a) If a 2 I and r 2 R then ra 2 I.
(b) If a1, a2 2 I then a1 + a2 2 I.

(a) Let a 2 I and r 2 R.
Then there exists n 2 Z>1 such that a 2 (an).
So ra 2 (an).
So ra 2 I.

(b) Let a1, a2 2 I.
Then there exists m,n 2 Z>1 such that a1 2 (am) and a2 2 (an).
Since (am) ✓ (am+n) and (an) ✓ (am+n) then a1, a2 2 (am+n).
So a1 + a2 2 (am+n).
So a1 + a2 2 I.
So I is an ideal.

Since R is a principal ideal domain then there exists a 2 R such that I = (a).
Since a 2 I then there exists n 2 Z>1 such that a 2 (an).
So I = (a) ✓ (an) ✓ (an+1) ✓ I.
So (an) = (an+1).
But this is a contradiction to the assumption that (an) ( (an+1).
So R does not contain an infinite sequence of elements a1, a2, . . . 2 R such that (0) (

(a1) ( (a2) ( . . ..

Theorem C.6.5. — A principal ideal domain is a unique factorization domain.

Proof. — Let R be a principal ideal domain.
To show: (a) If x 2 R then there exist irreducible elements pi, . . . , pm 2 R such that
x = pi · · · pm.

(b) If x 2 R and x = p1 · · · pm and x = uq1 · · · qn where p1, . . . , pm, q1, . . . , qn are
irreducible and u is a unit then m = n and there exists a permutation � : {1, 2, . . . ,m} !
{1, 2, . . . ,m} and units u1, . . . , un 2 R such that qi = uip�(i) for i 2 {1, . . . , n}.

(a) Proof by contradiction. YIKES???????
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Suppose x 2 R and x cannot be written as x = p1 · · · pm with p1, . . . , pm are
irreducible.
Then x = x is not irreducible.
So x = a1b1 for some b1 2 R and some a1 which is not irreducible and
which is a proper divisor of x.
So x = a2b2b1 where a1 = a2b2 for some b2 2 R and some a2 which is not irreducible
and
which is a proper divisor of a1.
We can continue this process and obtain a sequence of elements a1, a2, . . . 2 R such
that
each ai+1 is a proper divisor of ai.
So, by Proposition 3.2.4 (c), 0 ( (a1) ( (a2) ( . . ..
But this is a contradiction to Lemma 3.2.8.????
So x can be written as x = p1 · · · pm where all p1, . . . , pm are irreducible.

(b) Suppose x 2 R and x = p1 · · · pn = uq1 · · · qm where u 2 R is a unit and p1, . . . , pn,
q1, . . . , qm 2 R are irreducible.
To show: m = n and there is a bijective map � : {1, 2, . . . , n} ! {1, 2, . . . , n} such
that
qi = uip�(i) for some ui 2 R.
The proof is by induction on n.
Case n = 1.

Suppose x 2 R and x = p1 = uq1 · · · qm where u 2 R is a unit and
p1, q1, . . . , qm 2 R
are irreducible.
Suppose m > 1.
Then using Proposition 3.2.4 d), (q1 · · · qm) = (uq1 · · · qm) = (p1).
So q1 · · · qm 2 (p1).
Since p1 is irreducible, by Lemma 3.2.7, (p1) is a prime ideal.
So qj 2 (p1) for some 1 6 j 6 m.
So (qj) ✓ (p1).
Since qj is irreducible, (qj) = (p1).
So qj = u1p1 for some unit u1 2 R.
So q1 · · · qj�1(u1p1)qj+1 · · · qm = p1.
By the cancellation law, u1q1 · · · qj�1qj+1 · · · qm = 1.
So q1 is a unit.
This is a contradiction to q1 being irreducible.
So m = 1.
So x = p1 = uq1 where u 2 R is a unit.

Induc tion assumption: Assume that if k < n and y = a1a2 · · · ak = u0b1 · · · bl where
u0 2 R
is a unit and a1, . . . , ak, b1, . . . , bl 2 R are irreducible then l = k and there is
a bijective
map �0 : {1, 2, . . . , k} ! {1, 2, . . . , k} such that for each i, bi = uia�(i) for
some unit ui 2 R.

Assume that x = p1 · · · pn = uq1 · · · qm where u 2 R is a unit and p1, . . . , pn,
q1, . . . , qm 2 R are all irreducible.
We know p1 · · · pn = uq1 · · · qm.
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So (uq1 · · · qm) = (q1 · · · qm) ✓ (pn).
So q1 · · · qm 2 (pn).
By Lemma 3.2.7, (pn) is a prime ideal.
So qj 2 (pn) for some j.
So (qj) ✓ (pn).
So (qj) = (pn) since qj is irreducible.
So qj and pn are associates.
So unpn = qj for some unit un 2 R.
Then p1 · · · pn = uq1 · · · qj�1(unpn)qj+1 · · · qm.
By cancellation, p1 · · · pn�1 = (uun)q1 · · · q̂j · · · qm,
where the hat over the qj denotes that the qj is omitted from the product.
By the induction hypothesis, m� 1 = n� 1 and there exists a bijective map
�0 : {1, 2, . . . , j� 1}[ {j+1, . . . , n} ! {1, 2, . . . , n� 1} such that uip�0(i) = qi
where
ui 2 R is a unit.
So m = n.
Define � : {1, 2, . . . , n} ! {1, 2, . . . , n} by

�(i) =

(
�0(i), if i 6= j;

n, if i = j.

Then qi = uip�(i) for each 1 6 i 6 n.

So R is a unique factorization domain.

Proposition C.6.6. — Let R be a unique factorization domain and let a0, a1, . . . , an 2
R. Then

(a) gcd(a0, a1, . . . , an) exists.
(b) gcd(a0, a1, . . . , an) is unique up to multiplication by a unit.

Proof. — (a) Let P = {p1, p2, . . . , pk} be a maximal set of irreducible elements such
that

(1) Every pj 2 P divides some ai, 0 6 i 6 n.
(2) No two of the elements of P are associate.

Let ai = q1 · · · qm be a factorization of ai into irreducible elements.
Each factor qr, 1 6 r 6 m, is associate to some pjr 2 P , otherwise P 0 = P [ {qr}
is a larger set satisfying (1) and (2).
So for each factor qr, 1 6 r 6 m, qr = urpjr for some unit ur 2 R and some pjr 2 P .
So

ai = u1pj1u2pj2 · · · urpjr
= upei11 pei22 · · · peik

k

where u 2 R is a unit and eij are integers eij > 0.
Let ej = mini{eij}.
Define d = pe11 pe22 · · · pek

k
.

To show: (aa) d divides ai for all 1 6 i 6 n. (ab) If d0 divides ai for all
1 6 i 6 n then d0 divides d.
(aa) Let i be such that 1 6 i 6 n.

Since ej 6 eij for all 1 6 j 6 k,

d = pe11 pe22 · · · pek
k
divides ai = upei11 pei22 · · · peik

k
.
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So d divides ai for all 1 6 i 6 n.
(ab) Assume d0 divides ai for all 1 6 i 6 n.

Let d0 = q1 · · · qm be a factorization of d0 into irreducible elements.
Since d0 divides ai for all 1 6 i 6 n, each factor qr of d0 divides ai for all
1 6 i 6 n.
So each qr is associate to some pjr , otherwise P 0 = P [ {qr}
is a larger set satisfying (1) and (2).
So, for each factor qr of d0, qr = urpjr for some unit ur 2 R and some pjr 2 P .
So

d0 = u1pj1u2pj2 · · · ukpjk = upf11 pf22 · · · pfk
k
,

where u 2 R is a unit and the fj are integers fj > 0.
Since d0 divides ai for all 1 6 i 6 n, then for each fj,

fj 6 eijfor all 1 6 i 6 n.

So, for each fj, fj 6 mini{eij}.
So, for each fj, fj 6 ej.
So d0 = upf11 pf22 · · · pfk

k
divides d = pe11 pe22 · · · pek

k
.

So d is a greatest common divisor of a1, a2, . . . , an.
(b) Assume d and d0 are both greatest common divisors of a0, . . . , an.

Then d divides d0 and d0 divides d.
So d = ad0 for some a 2 R and d0 = bd for some b 2 R.
So d = abd.
By the cancellation law, ab = 1.
So a, b are units in R.

C.7. Extensions: Euclidean Domains, PIDs and UFDs

Example 1.

Proposition C.7.1. — Let R be a commutative ring and let x 2 R. Let xR denote the
set

xR = {xr | r 2 R}.
Then (x) = Rx.

Proof. —
To show: (a) (x) ✓ Rx. (b) Rx ✓ (x).

(a) To show: (aa) x 2 Rx.
(ab) Rx is an ideal.

(aa) x = 1x 2 Rx.
(ab) If r1x, r2x 2 Rx then r1x+ r2x = (r1 + r2)x 2 Rx.

If rx 2 Rx and s 2 R then s(rx) = (sr)x 2 Rx.
So Rx is an ideal.
So (x) ✓ Rx.

(b) Let rx 2 Rx.
Then, since x 2 (x) and (x) is an ideal then rx 2 (x).
So (x) = Rx.
So Rx ✓ (x).



212 CHAPTER C. COMMUTATIVE RINGS

Example 2. Let R be a factorial ring. Let a0, a1, . . . , an 2 R. A greatest common
divisor, gcd(a0, a1, . . . , an), of a0, a1, . . . , an is an element d 2 R such that

(a) d divides ai for all i = 0, 1, . . . , n.
(b) If d0 divides ai for all i = 0, 1, . . . , n then d0 divides d.

Let R be a factorial ring and let a0, a1, . . . , an 2 R. Then show that

(a) gcd(a0, a1, . . . , an) exists.
(b) gcd(a0, a1, . . . , an) is unique up to multiplication by a unit.

Example 3. Let R be a factorial ring and let p 2 R be an irreducible element. Show
that (p) is a prime ideal of R. Example 4. Show that the ring of integers Z with size

function given by
� : Z� {0} ! Z>0

a 7! |a|.
is a Eucilidean domain.

Example 5. F [x] is a Euclidean domain with

� : F [x]� {0} ! Z>0

p(x) 7! deg
�
p(x)

�

Example 6. Z[i] = {a+ bi | a, b 2 Z} is a Euclidean domain with

� : Z[i]� {0} ! Z>0

a+ bi 7! a2 + b2.

Example 7. Z[x] is a factorial ring not a principal ideal domain.
So is Z[

p
�5].

hx, 2i ✓ Z[x] is not principal.

Example 8. R =
�
a + b(1 +

p
19i)/2 | a, b 2 Z

 
is a principal ideal domain that is not

a Euclidean domain.

Example 8. Eisenstein criterion.
Let f(x) = anxn + an�1xn�1 + · · ·+ a0 2 Z[x] and let p 2 Z>0 be a prime integer.

(a) p does not divide an,
(b) p divides each of an�1, an�2, . . . , a0,
(c) p2 does not divide a0,

then f(x) is irreducible in Q[x].

Proof. — (sketch)
Let ⇡p : Z ! Z/pZ denote the quotient map a 7! a.
Let ⇡̂p : Z[x] ! Z/pZ[x] be the extension of ⇡p to polynomial rings.
By (a) and (b), ⇡̂p

�
f(x)

�
= anxn where an = ⇡p(an).

Assume f(x) is not irreducible.
Then f(x) = g(x)h(x) for some g(x) = gkxk + · · ·+ g0 and h(x) = hlxl + · · ·+ h0.
Since ⇡̂p is a homomorphism, ⇡̂p

�
f(x)

�
= anxn = (g

k
xk + · · ·+ g0)(hlxl + · · ·+ h0).

The only way to factor anxn is (g
k
xk)(hlxl) = anxn.

So g
k�1 = · · · = g0 = hl�1 = · · · = h0 = 0.
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So p divides g0 and p divides h0.
Since f(x) =

�
g(x)

��
h(x)

�
then a0 = g0h0.

So p2 divides a0.
This contradicts assumption (c).
So f(x) is irreducible.

Example 9. Let f(x) = anxn + · · · + a0 2 Z[x] and let p be a prime integer such that
p does not divide an. Let ⇡̂p : Z[x] ! Z/pZ[x] be the canonical homomorphism (see Ex.
X). If ⇡̂p

�
f(x)

�
is irreducible in Z/pZ[x] then f(x) is irreducible in Q[x].

Example 9. If f(x) 2 Z[x], deg
�
f(x)

�
> 0, and f(x) is irreducible in Z[x] then f(x) is

irreducible in Q[x].

Example 10. Let f(x) 2 Z[x]. f(x) is irreducible in Z[x] if and only if

either f(x) = ±p, where p is a prime integer,
or f(x) is a primitive polynomial and f(x) is irreducible in Q[x].





CHAPTER D

TOWARDS CLASSIFYING GROUPS

D.1. Products and semidirect products of Groups

Direct products and semidirect products will be our main tools for classifying groups.

D.1.1. Direct Products. — Suppose H and K are groups. The idea is to make H⇥K
into a group.

Definition D.1.1. —
• The direct product , H ⇥K, of two groups H and K is the set H ⇥K with the operation
given by

(h1, k1)(h2, k2) = (h1h2, k1k2)

for h1, h2 2 H and k1, k2 2 K.
• More generally, given groups G1, . . . , Gn, the direct product G =

Q
i
Gi is the set

G =
Q

i
Gi with the operation given by

(. . . , hi, . . .)(. . . , ki, . . .) = (. . . , hiki, . . .),

where hi, ki 2 Gi and hiki is given by the operation in the group Gi.

HW: Show that these are good definitions, i.e., that, as defined above, H ⇥K and
Q

i
Gi

are groups with identities given by (1H , 1K) and (. . . , 1Gi
, . . .) respectively (1Gi

denotes
the identity in the group Gi).

The main theorem is the following:

Theorem D.1.1. — Let H, K be subgroups of a group G and let 1G denote the identity
in G. Suppose

(a) G = HK,
(b) Both H and K are normal in G, and
(c) H \K = {1G}.

Then
H ⇥K

⇠�! G
(h, k) 7�! hk

is an isomorphism.

D.1.2. Automorphisms. — Automorphisms are needed to define semidirect products.

Definition D.1.2. — An automorphism is an isomorphism between a group and it-
self.
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Note: There can be many di↵erent automorphisms of a group G.

HW: Give a concrete example of a group with more than one automorphism.

Definition D.1.3. — Let G be a group.

• The automorphisms of G, Aut(G), is the set of automorphisms of G.
• Let g 2 G. Conjugation by g is the map cg given by

cg : G ! G
h 7! ghg�1

• Inn(G) is the set Inn(G) = {cg | g 2 G}.

Theorem D.1.2. — Let G be a group.

(a) Aut(G) with the operation of composition of functions is a group.
(b) The map

c : G ! Aut(G)
g 7! cg

is a well defined homomorphism. Furthermore,

im c = Inn(G) and ker c = Z(G), the center of G.

(c) Inn(G) is a subgroup of Aut(G).

HW: Give an example of a group G such that Inn(G) 6= Aut(G).

HW: Prove that G/Z(G) ' Inn(G).

D.1.3. Semidirect Products. — The motivation for semidirect products comes from
the fact that if G is a group and if H and K are subgroups of G with K normal in G
then HK is a subgroup of G. Suppose that HK = G. That raises the question: Can
G somehow be expressed nicely as a combination of the two groups H and K? In the
case when both subgroups were normal, and H \K was {1} then G ' H ⇥K (Theorem
D.1.1). Semidirect products treat the case when only one of H and K are normal.

Definition D.1.4. — Let H and K be groups and let

✓ : H ! Aut(K)
h 7! ✓h

be a homomorphism.

The semidirect product of H and K via ✓, H⇥✓K, is the group given by the Cartesian
product H ⇥K with the operation given by

(h1, k1)(h2, k2) =
�
h1h2, ✓h2(k1)k2

�

for h1, h2 2 H and k1, k2 2 K.

Proposition D.1.3. — Let H and K be groups and let ✓ : H ! Aut(K) be a homomor-
phism. Then H ⇥✓ K is a group.

Theorem D.1.4. — Suppose H and K are subgroups of a group G with K normal in G
such that

(a) G = HK,
(b) K is normal in G, and
(c) H \K = (1), where 1 is the identity in G.



D.1. PRODUCTS AND SEMIDIRECT PRODUCTS OF GROUPS 217

Let ✓ be given by

✓ : H ! Aut(K)
h 7! ch,

where
ch : K ! K

k 7! hkh�1.

Then ✓ is a function, ✓ is a group homomorphism and

H ⇥✓ K
⇠�! G

(h, k) 7�! hk
is an isomorphism.

HW: Prove that if ker ✓ = K, then H ⇥✓ K = H ⇥K.

HW: Prove that if im ✓ = (1), then H ⇥✓ K = H ⇥K.
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D.2. p-groups and Sylow p-subgroups

D.2.1. p-Groups. —

Definition D.2.1. — Let p 2 Z>0 be a prime.

• A p-group is a group of order pa with a 2 Z>0.

Proposition D.2.1. — If G is a p-group then G contains an element of order p.

Proposition D.2.2. — If G is a p-group and Card(G) 6= 1 then the center of G is not
{1},

Card(Z(G)) 6= 1.

Proposition D.2.3. — Let p 2 Z>0 be a prime and let G be a group of cardinality p2.
Then G is abelian.

Theorem D.2.4. — If G is a p-group of order pa, then there exists a chain, of normal
subgroups of G,

(1) ✓ N1 ✓ N2 ✓ . . . ✓ Na�1 ✓ G,

such that Card(Ni) = pi.

D.2.2. The Sylow Theorems. —

Definition D.2.2. — Let p 2 Z>0 be prime, let a, b 2 Z>0 such that p does not divide
b and let G be a finite group of cardinality pab.

• A p-Sylow subgroup of G is a subgroup of G of cardinality pa.

Theorem D.2.5. — First Sylow theorem. Let p 2 Z>0 be prime, let a, b 2 Z>0 such
that p does not divide b and let G be a finite group of cardinality pab.

G has a subgroup of order pa.

Theorem D.2.6. — Second Sylow theorem. Let p 2 Z>0 be prime, let a, b 2 Z>0 such
that p does not divide b and let G be a finite group of cardinality pab.

All the p-Sylow subgroups of G are conjugates of each other.

Theorem D.2.7. — Third Sylow theorem. Let p 2 Z>0 be prime, let a, b 2 Z>0 such
that p does not divide b and let G be a finite group of cardinality pab.

The number of p-Sylow subgroups of G is 1 mod p.
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D.3. Solvable and nilpotent Groups

Definition D.3.1. — Let G be a group. Let g, h 2 G.

• The commutator of g and h is

[g, h] = g�1h�1gh.

Definition D.3.2. — Let G be a group.

• The derived group [G,G] of G is the group generated by all commutators of
elements of G,

[G,G] =
⌦
[g, h] | g, h 2 G

↵
.

Definition D.3.3. — Let G be a group.

• The derived series of G is the sequence

G = D0(G) ◆ D1(G) ◆ D2(G) ◆ · · · , where Di(G) =
⇥
Di�1(G), Di�1(G)

⇤
.

• The lower central series of G is the sequence

G = C1(G) ◆ C2(G) ◆ C3(G) ◆ · · · , where C i(G) =
⇥
G,Ci�1(G)

⇤
.

• The upper central series of G is the sequence

(1) = Z0(G) ✓ Z1(G) ✓ Z2(G) ✓ · · · ,
where Zi(G) is the subgroup of G such that Z

�
G/Zi�1(G)

�
= Zi(G)/Zi�1(G).

Definition D.3.4. —

• A group G is nilpotent if there exists n 2 Z>0 such that Cn+1(G) = {1}.
• The nilpotency class of a nilpotent group G is the least integer n 2 Z>0 such that
Cn+1(G) = {1}.

Proposition D.3.1. —

(a) A group G is nilpotent if there exists n 2 Z>0 such that Zn+1(G) = G.
(b) The least integer n such that Zn+1(G) = G is the nilpotency class of G.

Definition D.3.5. —

• A group G is solvable if there exists n 2 Z>0 such that Dn(g) = {1}.
• If G is a solvable group the least integer n 2 Z>0 such that Dn(G) = {1} is the
solvability class of G.

Proposition D.3.2. — Every nilpotent group is solvable.

(1) 6.12 CRD Theorem G is a finite nilpotent group.
(a) Each Sylow subgroup is normal in G.
(b) G is the direct product of its Sylow subgroups.

(2) p-group ) nilpotent ) solvable ) supersolvable.

Proposition D.3.3. — A finite group is solvable if and only if it has a composition
series whose factors are cyclic of prime order.

Definition D.3.6. — A finite group G is supersolvable if G is solvable and G has a
composition series

G ◆ G1 ◆ · · · ◆ Gs+1 = {1}
such that Gi is a normal subgroup of G for all i.
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Definition D.3.7. — A composition series of a group G is a chain of subgroups

G = G1 ◆ G2 ◆ · · · ◆ Gs ◆ Gs+1 = (1)

such that Gi/Gi+1 6= (1) are simple.

Solvable and Nilpotent Groups

(1) An is solvable if n 6 4 and An is not solvable if n > 5.
(2) Sn is solvable if n 6 4 and not solvable if n > 5.
(3) abelian ) solvable
(4) Burnside Theorem If |G| = paqb then G is solvable.
(5) S3 is solvable not nilpotent.

Theorem D.3.4. — A finite group G is solvable if and only if = composition series with
cyclic factors of prime order.
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D.3.1. Proofs for Group products. —

Theorem D.3.5. — Let H, K be subgroups of a group G and let 1G denote the identity
in G. Suppose

(a) G = HK,
(b) Both H and K are normal in G, and
(c) H \K = (1G).

Then G ' H ⇥K.

Proof. —
To show: G is isomorphic to H ⇥K.
To show: There exists an isomorphism � : G ! H ⇥K.
Define

↵ : H ⇥K ! G
(h, k) 7! hk

To show: (a) ↵ is a homomorphism.
(b) ↵ is injective.
(c) ↵ is surjective.

(a) Let (h1, k1), (h2, k2) 2 H ⇥K.
To show: ↵

�
(h1, k1)(h2, k2)

�
= ↵

�
(h1, k1)

�
↵
�
(h2, k2)

�
.

↵
�
(h1, k1)(h2, k2)

�
= ↵

�
(h1h2, k1k2)

�

= h1h2k1k2

= h1k1k
�1
1 h2k1h

�1
2 h2k2

= h1k1(k
�1
1 h2k1h

�1
2 )h2k2

= ↵(h1, k1)(k
�1
1 h2k1h

�1
2 )↵(h2, k2).

Since H is normal in G, k�1
1 h2k1 2 H.

So (k�1
1 h2k1)h

�1
2 2 H.

Since K is normal in G then h2k1h
�1
2 2 K.

So k�1
1 (h2k1h

�1
2 ) 2 K.

Since H \K = (1G) then k�1
1 h2k1h

�1
2 = 1G.

So ↵
�
(h1, k1)(h2, k2)

�
= ↵(h1, k1)↵(h2, k2).

So ↵ is a homomorphism.
(b) By Proposition XXX, we need to show: ker↵ = {(1G, 1G)}, where 1G is the identity

in G.
Let (h, k) 2 ker↵. Then

↵
�
(h, k)

�
= hk = 1G.

So h = k�1 and h 2 H \K. So h = 1G.
Also k = h�1 and k 2 H \K. So k = 1G.
So (h, k) = (1G, 1G).
So ker↵ = {(1G, 1G)}.
So ↵ is injective.

(c) To show: If g 2 G then there exists h 2 H and k 2 K such that g = ↵
�
(h, k)

�
.

Let g 2 G.
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Since G = HK then there exists h 2 H and k 2 K such that g = hk. So

g = hk = ↵(h, k).

So ↵ is surjective.

So ↵ is an isomorphism.

Theorem D.3.6. — Let G be a group.

(a) Aut(G) with the operation of composition of functions is a group.
(1) (b)] The map

c : G ! Aut(G)
g 7! cg

is a well defined homomorphism. Furthermore,

im c = Inn(G) and ker c = Z(G), the center of G.

(c) Inn(G) is a subgroup of Aut(G).

Proof. — (a) To show: (aa) The operation is well defined.
(ab) There is an element ◆G 2 Aut(G) such that if for ↵ 2 Aut(G) then

◆G � ↵ = ↵ = ↵ � ◆G.
(ac) If ↵ 2 Aut(G) then there exists an element ↵�1 2 Aut(G) such that

↵ � ↵�1 = ◆G = ↵�1 � ↵.
(aa) To show: (aaa) If ↵, � 2 Aut(G) then ↵ � � 2 Aut(G).

(aab) If ↵1,↵2, �1, �2 2 Aut(G) and ↵1 = ↵2 and �1 = �2 then
↵1 � �1 = ↵2 � �2.
(aaa) Assume ↵, � 2 Aut(G).

To show: ↵ � � 2 Aut(G).
To show: (aaaa) ↵ � � is bijective.

(aaab) ↵ � � is a homomorphism.
(aaaa) By § XXX Ex. XXX ↵ � � is a bijective map from G to G.
(aaab) Assume g1, g2 2 G. Then, since both ↵ and � are homomorphisms,

(↵ � �)(g1g2) = ↵
�
�(g1g2)

�

= ↵
�
�(g1)�(g2)

�

= ↵
�
�(g1)

�
↵
�
�(g2)

�

= (↵ � �)(g1) · (↵ � �)(g2).
So ↵ � � is a homomorphism.
So ↵ � � 2 Aut(G).

(aab) Assume ↵1,↵2, �1, �2 2 Aut(G) and ↵1 = ↵2 and �1 = �2.
This, if g 2 G then

(↵1 � �1)(g) = ↵1

�
�1(g)

�

= ↵2

�
�2(g)

�

= (↵2 � �2)(g).
So ↵1 � �1 = ↵2 � �2.
So the operation on Aut(G) is well defined.

(ab) Let ◆G : G ! G be the identity map on G.
To show: (aba) ◆G 2 Aut(G).

(abb) If ↵ 2 Aut(G) then ◆G � ↵ = ↵ = ↵ � ◆G.
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(aba) To show: (abaa) ◆G is a bijection.
(abab) ◆G is a homomorphism.

(abaa) This is very easy. You prove it.
(abab) Assume g1, g2 2 G. Then

◆G(g1g2) = g1g2

= ◆G(g1)◆G(g2).

So ◆G is a homomorphism.
So ◆G 2 RmathrmAut(G).

(abb) Assume ↵ 2 Aut(G). Then, if g 2 G then

(◆G � ↵)(g) = ◆G
�
↵(g)

�

= ↵(g)

= ↵
�
◆G(g)

�

= (↵ � ◆G)(g)
So ◆G � ↵ = ↵ = ↵ � ◆G.
Thus, if ↵ 2 Aut(G) then ◆G � ↵ = ↵ = ↵ � ◆G.

So ◆G is an identity in Aut(G).
(ac) Assume ↵ 2 Aut(G).

To show: There exists ↵�1 2 Aut(G) such that ↵ � ↵�1 = ◆G = ↵�1 � ↵.
Since ↵ 2 Aut(G) then ↵ is bijective.
Therefore, by Theorem XXX, there exists an inverse function to ↵, ↵�1, such
that ↵ � ↵�1 = ◆G = ↵�1 � ↵.
To show: ↵�1 2 Aut(G).
To show: (aca) ↵�1 is bijective.

(acb) ↵�1 is a homomorphism.
(aca) Since ↵ � ↵�1 = ◆G = ↵�1 � ↵ then ↵ is an inverse function to ↵�1.

Therefore, by Proposition XXX, ↵�1 is bijective.
(acb) Let g1, g2 2 G.

Since ↵ is bijective there exist h1, h2 2 G such that ↵(h1) = g1 and
↵(h2) = g2.
Since ↵ and ↵�1 are inverse functions and ↵ is a homomorphism then

↵�1(g1g2) = ↵�1
�
↵(h1)↵(h2)

�

= ↵�1
�
↵(h1h2)

�

= h1h2

= ↵�1
�
↵(h1)

�
↵�1

�
↵(h2)

�

= ↵�1(g1)↵
�1(g2).

So ↵�1 is a homomorphism.
So ↵�1 2 Aut(G).
So there exists ↵�1 2 Aut(G) such that ↵ � ↵�1 = ◆G = ↵�1 � ↵.

So Aut(G) is a group.
(b) Let c be given by

c : G ! Aut(G)
g 7! cg.

To show: (ba) c is well defined.
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(bb) c is a homomorphism.
(bc) imc = In(G).
(bd) ker c = Z(G), the center of G.

(ba) To show: c is well defined.
To show: (baa)f g 2 G then cg 2 Aut(G).

(bab) If g1, g2 2 G and g1 = g2 then cg1 = cg2 .
(baa) To show: cg 2 Aut(G).

To show: (baaa) cg is injective.
(baab) cg is surjective.
(baac) cg is a homomorphism.

(baaa) To show: If h1, h2 2 G and cg(h1) = cg(h2) then h1 = h2.
Assume h1, h2 2 G and cg(h1) = cg(h2).
Then

gh1g
�1 = cg(h1) = cg(h2) = gh2g

�1.

Multiplying both sides on the left by g�1 and on the right by g gives

h1 = h2.

So cg is injective.
(baab) To show: If h 2 G then there exists some k 2 G such that

cg(k) = h.

Assume h 2 G. Let k = g�1hg. Then

cg(k) = gkg�1 = gg�1hgg�1 = h.

So cg is surjective.
(baac) Assume h1, h2 2 G.

To show: cg(h1h2) = cg(h1)cg(h2).

cg(h1h2) = gh1h2g
�1

= gh1g
�1gh2g

�1

= cg(h1)cg(h2).

So cg is a homomorphism.
So cg 2 Aut(G).

(bab) Assume g1, g2 2 G and g1 = g2.
To show: cg1 = cg2 .
If h 2 G then

cg1(h) = g1hg
�1
1

= g2hg
�1
2

= cg2(h)

So cg1 = cg2 .
So c is well defined.

(bb) Assume g1, g2 2 G.
To show: cg1 � cg2 = cg1g2 .
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If h 2 G then

(cg1 � cg2)(h) = cg1
�
cg2(h)

�

= cg1(g2hg
�1
2 )

= g1g2hg
�1
2 g�1

1

= g1g2h(g1g2)
�1

= cg1g1(h)

So cg1 � cg2 = cg1g2 .
So c is a homomorphism.

(bc) To show: imc = In(G).
This follows from the definitions.

(bd) To show: ker c = Z(G).
To show: (bda) ker c ✓ Z(G).

(bdb) Z(G) ✓ ker c.
(bda) Let g 2 ker c. Then cg = ◆G.

So, if h 2 G then

h = cg(h) = ghg�1.

So if h 2 G then gh = hg.
So g 2 Z(G).
So ker c ✓ Z(G).

(bdb) Let g 2 Z(G).
Then, if h 2 G then gh = hg.
So, if h 2 G then

cg(h) = ghg�1 = h = ◆G(h),

So cg = ◆G.
So g 2 ker c.
So Z(G) ✓ ker c.
So ker c = Z(G).

So c is a well defined homomorphism.
(c) Let c be as in part (b).

Since c is a group homomorphism and im c = Inn(G) then Inn(G) is a subgroup of
Aut(G) by Proposition XXX.

Proposition D.3.7. — Let H and K be groups and let ✓ : H ! Aut(K) be a homomor-
phism. Then H ⇥✓ K is a group.

Proof. —
To show: (a) If (h1, k1), (h2, k2) 2 H ⇥✓ K then (h1, k1) · (h2, k2) 2 H ⇥✓ K.

(b) There is an identity in H ⇥✓ K.
(c) If (h1, k1) 2 H ⇥✓ K then there is an inverse for (h1, k1) in H ⇥✓ K.

(a) Assume (h1, k1), (h2, k2) 2 H ⇥✓ K.
By definition, (h1, k1) · (h2, k2) =

�
h1h2, ✓h2(k1)k2

�
.

Since ✓h2 : K ! K is a map from K to K then ✓h2(k1) 2 K.
So

(h1, k1) · (h2, k2) =
�
h1h2, ✓h2(k1)k2

�
2 H ⇥✓ K.
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(b) Let 1H , 1K be the identities on H and K respectively.
To show: (ba) If (h, k) 2 H ⇥✓ K then (1H , 1K)(h, k) = (h, k).

(bb) If (h, k) 2 H ⇥✓ K then (h, k)(1H , 1K) = (h, k).
(ba) Let(h, k) 2 H ⇥✓ K. Then (1H , 1K)(h, k) =

�
h, ✓h(1K)k

�
.

Since ✓h is an automorphism then ✓h(1K) = 1K .
So

(1H , 1K)(h, k) =
�
h, ✓h(1K)k

�
= (h, 1Kk) = (h, k).

(bb) Let (h, k) 2 H ⇥✓ K.
Then (h, k)(1H , 1K) =

�
h, ✓1H (k)1K

�
.

Since ✓ is a homomorphism then ✓1H = ◆K is the identity map on K.
So ✓1H (k) = ◆K(k) = k.
So

(h, k)(1H , 1K) =
�
h, ✓1H (k)

�
= (h, k).

So (1H , 1K) is an identity in H ⇥✓ K.
(c) Assume (h, k) 2 H ⇥✓ K.

To show: (ca)
�
h�1, ✓h�1(k�1)

�
(h, k) = (1H , 1K).

(cb) (h, k)
�
h�1, ✓h�1(k�1)

�
= (1H , 1K).

(ca) We have
�
h�1, ✓h�1(k�1)

�
(h, k) =

⇣
h�1h, ✓h

�
✓h�1(k�1)

�
k
⌘
.

Since ✓ is a homomorphism, ✓h�1 = ✓�1
h
.

So
�
h�1, ✓h�1(k�1)

�
(h, k) =

⇣
h�1h, ✓h

�
✓h�1(k�1)

�
k
⌘

=
⇣
1H , ✓h

�
✓�1
h
(k�1)

�
k
⌘

= (1H , k
�1k)

= (1H , 1K).

(cb) We have (h, k)
�
h�1, ✓h�1(k�1)

�
=
�
hh�1, ✓h�1(k)✓h�1(k�1)

�
.

Since ✓h�1 is an automorphism, ✓h�1(k�1) = ✓h�1(k)�1.
So

(h, k)
�
h�1, ✓h�1(k�1)

�
=
�
hh�1, ✓h�1(k)✓h�1(k�1)

�

=
�
1H , ✓h�1(k)✓h�1(k)�1

�

= (1H , 1K).

So
�
h�1, ✓h�1(k�1)

�
2 H ⇥✓ K is an inverse for (h, k).

So H ⇥✓ K is a group.

Theorem D.3.8. — Suppose H and K are subgroups of a group G with K normal in G
such that

(a) G = HK,
(b) K is normal in G, and
(c) H \K = (1), where 1 is the identity in G.

Let ✓ be given by

✓ : H ! Aut(K)
h 7! ch

where
ch : K ! K

k 7! hkh�1.

Then ✓ is a well defined homomorphism and G ' H ⇥✓ K.
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Proof. —
To show: (a) ✓ is well defined.

(b) ✓ is a homomorphism.
(c) G ' H ⇥✓ K.

(a) To show: (aa) If h 2 H then ch 2 Aut(K).
(ab) If h1, h2 2 H and h1 = h2 then ch1 = ch2 .

(aa) Assume h 2 H.
To show: (aaa) ch is well defined.

(aab) ch is a homomorphism.
(aac) ch is injective.
(aad) ch is surjective.

(aaa) To show: (1) ch(k) 2 K.
(2) If k1, k2 2 K, and k1 = k2 then ch(k1) = ch(k2).

(1) ch(k) = hkh�1 2 K since K is normal.
(2) This is clear.

So ch is well defined.
(aab) Let k1, k2 2 K.

Then

ch(k1)ch(k2) = hk1h
�1hk2h

�1 = hk1k2h
�1 = ch(k1k2).

So ch is a homomorphism.
(aac) To show: If k1, k2 2 K and ch(k1) = ch(k2) then k1 = k2.

Assume k1, k2 2 K and ch(k1) = ch(k2).
Then

hk1h
�1 = ch(k1) = ch(k2) = hk2h

�1.

Multiplying both sides on the left by h�1 and on the right by h gives

k1 = k2.

So ch is injective.
(aad) To show: If k1 2 K then there exists k2 2 K such that

ch(k2) = k1.

Assume k1 2 K. Let k2 = h�1k1h.
Then

ch(k2) = hk2h
�1 = hh�1k1hh

�1 = k1.

So ch is surjective.
So ✓ is well defined.

(b) To show: ✓ is a homomorphism.
Let h1, h2 2 H.
To show: ch1 � ch2 = ch1h2 .
If k 2 K then

(ch1 � ch2)(k) = ch1

�
ch2(k)

�

= ch1(h2kh
�1
2 )

= h1h2kh
�1
2 h�1

1

= h1h2k(h1h2)
�1

= ch1h2(k),
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So ch1 � ch2 = ch1h2 .
So ✓ is a homomorphism.

(c) To show: H ⇥✓ K is isomorphic to G = HK.
Define

↵ : H ⇥✓ K ! HK
(h, k) 7! hk.

To show: (ca) ↵ is a homomorphism.
(cb) ↵ is injective.
(cc) ↵ is surjective.

(ca) Assume (h1, k1), (h2, k2) 2 H ⇥✓ K.
Then

↵
�
(h1, k1)(h2, k2)

�
= ↵

⇣�
h1h2, ✓h2(k1)k2

�⌘

= h1h2✓h2(k1)k2

= h1h2h
�1
2 k1h2k2

= h1k1h2k2,

and
↵
�
(h1, k1)

�
↵
�
(h2, k2)

�
= h1k1h2k2.

So ↵
�
(h1k1)(h2, k2)

�
= ↵

�
(h1, k1)

�
↵
�
(h2, k2)

�
.

So ↵ is a homomorphism.
(cb) To show: ker↵ = {(1G, 1G)}.

Assume (h, k) 2 ker↵.
Then ↵(h, k) = hk = 1G.
So h = k�1 and h = k�1 2 H and h = k�1 2 K.
Since H \K = (1G) then h = k�1 = 1G.
So (h, k) = (1G, 1G).
So ker↵ = {(1G, 1G)}.
So ↵ is injective.

(cc) Let g 2 G.
Since G = HK then g = hk for some h 2 H and k 2 K.
Then

↵(h, k) = hk = g.

So ↵ is surjective.
So ↵ is an isomorphism.

So G ' H ⇥✓ K.
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D.3.2. Proofs for p-groups and p-Sylow subgroups. —

Proposition D.3.9. — If G is a p-group then G contains an element of order p.

Proof. — To show: There exists g 2 G such that o(g) = p.
Since Card(G) > 1 there exists x 2 G with x 6= 1.
Then o(x) 6= 1.
Since o(x) divides Card(G) = pa then o(x) = pb with 0 < b 6 a.
Let g = xp

b�1
.

Since o(x) = pb then

g = xp
b�1 6= 1, and gp =

⇣
xp

b�1
⌘p

= xp
b�1

p = xp
b

= 1.

So o(g) = p.

Proposition D.3.10. — If G is a p-group and Card(G) > 1 then the center of G is not
{1},

Card(Z(G)) 6= 1.

Proof. — To show:
��Z(G)

�� 6= 1.

(a) Since Card(G) = pa then p divides Card(G).
(b) Let Cg be a conjugacy class in G.

By Theorem xxx, Cg is an orbit under the action of G on itself by conjugation.
By Theorem ???, Card(Cg) divides Card(G) = pa.
Thus, if Card(Cg) 6= 1 then p divides Card(Cg).

(c) The Class equation is

Card(G) = Card(Z(G)) +
X

Card(Cg) 6=1

Card(Cg),

where the sum is over all distinct conjugacy classes such that Card(Cg) 6= 1.
Since p divides Card(G) and p divides every term in the sum we cannot have
Card(Z(G)) = 1.

So Card(Z(G)) 6= 1.

Proposition D.3.11. — Let p be a prime and let G be a group of order p2. Then G is
abelian.

Proof. — To show: The cardinality of the center of G is p2, Card(Z(G)) = p2.
By Proposition xxx, Card(Z(G)) divides Card(G) = p2.
To show: (a) Card(Z(G)) 6= 1.

(b) Card(Z(G)) 6= p.

(a) By Proposition xxx, Card(Z(G)) 6= 1.
(b) We will assume Card(Z(G)) = p and derive a contradiction.

Let x 2 G with x 62 Z(G).
Since Z(G) is a normal subgroup of G then G/Z(G) is a group and

Card(G/Z(G)) =
Card(G)

Card(Z(G))
=

p2

p
= p.

So, by Proposition xxx, G/Z(G) is cyclic.
Since x 62 Z(G) then Z(G) 6= xZ(G).
So xZ(G) generates G/Z(G), i.e.

G/Z(G) = {Z(G), xZ(G), x2Z(G), . . . , xp�1Z(G)}.
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Let g 2 G. Then there exists k 2 Z[0,p�1] such that gZ(G) = xkZ(G).
So there exists z 2 Z(G) such that g = xkz.
Then

xg = xxkz = xkxz = xkzx = gx.

So x 2 Z(G). This is a contradiction.

So Card(Z(G)) 6= p.
So Card(Z(G)) = p2 = Card(G).
So G is abelian.

Theorem D.3.12. — If G is a p-group of order pa, then there exists a chain, of normal
subgroups of G

(1) ✓ N1 ✓ N2 ✓ . . . ✓ Na�1 ✓ G,

such that Card(Ni) = pi.

Proof. — We know that Z(G) of G is a normal subgroup of G of order at least p.
Z(G) contains a subgroup of order p by proposition x.x.
This subgroup is a normal subgroup of G of order p.
Let N1 be this subgroup.
Doing the same argument on G/N1 gives a normal subgroup N2/N1 of G/N1 of order p
in G/N1.
Then by the correspondence theorem this corresponds to a normal subgroup N2 of G of
order p2 that contains N1.
In general, since G/Ni is a p-group of order pa�i it contains a normal subgroup of order
p in G/Ni which corresponds to a normal subgroup Ni+1 of G which contains Ni.

Theorem D.3.13. — First Sylow theorem. G has a subgroup of order pa.

Proof. — To show: There exists a subgroup of G of order pa.
Let S be the set of subsets of G with pa elements.
Let G act on S by left multiplication

G⇥ S ! S
(g, S) 7! gS

where gS = {gs | s 2 S}.

To show: (a) p does not divide Card(S).
(b) There exists S 2 S such that p does not divide the order Card(GS) of the

orbit GS.
(c) Let S be as in (b). Then Card(StabG(S)) > pa.
(d) Let S be as in (b). Card(StabG(S) 6 pa.

This will show that StabG(S) is a subgroup of G of order pa.

(a) Card(S) is the number of subsets of G with pa elements.

Card(S) =
✓
Card(G)

pa

◆
=

✓
pab

pa

◆
=

pab(pab� 1) · · · (pab� j) · · · (pab� pa + 1)

pa(pa � 1) · · · (pa � j) · · · 1 .

Suppose pi divides pab� j.
Then there exists k 2 Z>0 such that pik = pab� j.
So j = pab� pik and

pa � j = pa � pab+ pik = pi(pa�i � pa�ib+ k).

So pi divides pa � j.
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Thus, any factors of p in the numerator of Card(S) =
�
p
a
b

pa

�
are canceled by factors

of p in the denominator.
So p does not divide Card(S).

(b) It follows from Proposition xxx that

Card(S) =
X

distinct orbits

Card(GS),

where the sum is over the distinct orbits GS of G acting on S.
Since p does not divide Card(S) then there exists S 2 S such that p does not divide
Card(GS).

(c) Fix S 2 S such that p does not divide Card(GS).
By Proposition xxx,

pab = Card(G) = Card(StabG(S))Card(GS),

where StabG(S) is the stabilizer of S.
Since p does not divide Card(GS) then there exists k 2 Z>1 such that
Card(StabG(S)) = pak.
So Card(StabG(S)) > pa.

(d) Let s 2 S ✓ G and let GS = StabG(S).
Then GSs ✓ S, since GSS = S.
Since all cosets of GS are the same size (Proposition xxx) then

Card(GSs) = Card(GS).

Since GSs ✓ S then Card(GSs) 6 Card(S) = pa.
So Card(GS) 6 pa.

So Card(Gs) = pa.
So G contains a subgroup of order pa.

Theorem D.3.14. — Second Sylow theorem. All the p-Sylow subgroups of G are con-
jugates of each other.

Proof. —
Let P be a p-Sylow subgroup of G.
Let H be another p-Sylow subgroup of G
To show: There exists g 2 G such that H ✓ gPg�1.

(a) First we find the right g 2 G.
H acts on G/P by left multiplication,

H ⇥G/P ! G/P
(h, g1P ) 7! hg1P.

The orbits are Hg1P for g1 2 G.
By Proposition xxx,

Card(Hg1P ) divides Card(H) = pa.

So either Card(Hg1P ) = 1 or p divides Card(Hg1P ).

By Proposition xxx,

b =
pab

pa
=

Card(G)

Card(P )
= Card

�G
P

�
=

X

distinct orbits

Card(Hg1P ).

Since p does not divide b, there is an orbit HgP such that Card(HgP ) = 1.
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(b) Now show H ✓ gPg�1.
Let h 2 H. Since Card(HgP ) = 1,

HgP = gP,

So there exists p 2 P such that hg = gp.
So h = gpg�1 2 gPg�1.
So H ✓ gPg�1.

(c) Since H ✓ gPg�1 and Card(H) = Card(gPg�1) is finite then H = gPg�1.

So H is a conjugate of P .

Theorem D.3.15. — Third Sylow theorem. The number of p-Sylow subgroups of G is
1 mod p.

Proof. — Let S be the set of all p-Sylow subgroups of G.
Let P be a p-Sylow subgroup of G.
The group P acts on S by conjugation.

P ⇥ S ! S
(p,Q) 7! pQp�1.

For each Q 2 S let P ⇤Q denote the orbit of Q under this action.
To show: (a) Card(S) =

X

distinct orbits

Card(P ⇤Q).

(b) Either Card(P ⇤Q) = 0 mod p or Card(P ⇤Q) = 1.
(c) If Card(P ⇤Q) = 1 then Q = P , so there is only one orbit with Card(P ⇤Q) =

1.

(a) This follows from Proposition xxx.
(b) By Proposition xxx, Card(P ⇤Q) divides Card(P ) = pa.

So either Card(P ⇤Q) = 1 or p divides Card(P ⇤Q).
(c) Assume Card(P ⇤Q) = 1.

To show: P = Q.
If Card(P ⇤Q) = 1 then pQp�1 = Q for p 2 P .
So, if p 2 P then p 2 NQ, where NQ is the normalizer of Q.
So P ✓ NQ.
We know Q ✓ NQ also. So P and Q are both p-Sylow subgroups of NQ.
So, by Theorem xxx, P and Q are conjugates in NQ.
So there exists n 2 NQ such that nQn�1 = P .
But, by Proposition xxx, Q is normal in NQ, so nQn�1 = Q.
So P = Q.

Then (a), (b), and (c) give that Card(S) = 1 mod p.
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D.4. Exercises for the “products of groups” section

Exercise ?.?.1 An extension of a group H by a group N is a group G such that there
exist homomorphisms i : N ! G and p : G ! H such that

(1) ! N
i! G

p! H ! (1)

is an exact sequence. See §1 Ex. XX.
A section of p is a homomorphism s : H ! G such that p � s = idG, the identity on G.
A retraction is a homomorphism r : G ! N such that r � i = idN , the identity on N .

(1) ! N ⌦i

r
G ⌦p

s
H ! (1).

Exercise ?.?.2 Equivalence classes of extensions which respect G module structure of A
' H2(G,A).
Equivalence classes of split extensions 7! 1.
See Rotman 79, Theorem 10.24 and Curtis and Reiner p. 183.

Exercise ?.?.3 Classes of automorphisms of A⇥G which are identity in both A and G '
derivations on G ' H1(G,A).
See Curtis and Reiner p. 181.

HW: The dihedral group of order 8 D8 is a split extension of Z/2Z and Z/4Z.

HW: The quaternion group Q is a nonsplit extension of Z/2Z and Z/4Z.
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D.5. Examples for p-groups and Sylow theorems

Exercise ?.?.1 p-Sylow Subgroups
The second Sylow theorem implies that the number of p-Sylow subgroups of G divides the
order of G. This is because if we consider the action of G on the p-Sylow subgroups by
conjugation, the only orbit consists of a p-Sylow subgroup and all its conjugates, which
by the second Sylow theorem is all the p-Sylow subgroups of G. Since the cardinality of
the orbit must divide the order of G, the number of p-Sylow subgroups of G divides the
order of G.

Exercise ?.?.2 Classifying the groups of order 21
By the third Sylow theorem, 1, 8, 15, 22, . . . are the possibilities for the number of 7-
Sylow subgroups, and 1, 4, 7, 10, 13, 16, . . . are the possibilities for the number of 3-Sylow
subgroups.

The second Sylow theorem forces that there be exactly one 7-Sylow subgroup and either
one or seven 3-Sylow subgroups since the number of Sylow subgroups must divide 21, the
order of the group.

Since there is only 1 7-Sylow subgroup of G, call it K, and all conjugates K equal K, K
is normal in G. Since K has order 7, K ' Z7.

Case 1. One 3-Sylow subgroup.
If there is only 1 3-Sylow subgroup, call it H, then H is also normal in G and is isomorphic
to Z3. Now theK\H = (1) since any element in the intersection must have order dividing
both 3 and 7, the only possibility being 1, the only element of order 1. Now, HK is a
subgroup of G since K in normal in G, and since H \K = (1), |HK| = |H||K| = 3 · 7 =
21 = |G|. So G = HK. Then theorem x.x gives that G ' H ⇥K ' Z7 ⇥ Z3.

Case 2. Four 3-Sylow subgroups.
Let H be one of the 3-Sylow subgroups of G. Once again, H ' Z3. H is normal in G.
But by the same reasoning as before, H \ K = (1) and HK = G. Theorem x.x states
that this is enough to write G as a semidirect product of H and K. The number of ways
to do this depends on how many di↵erent homomorphisms ✓ : H ! Aut(K) there are.
Suppose that x is a generator of H and y is a generator of K. Then ✓ is completely
determined by where x goes i.e. what x�1yx is. We know that it is of the form yi

since it is an element of K. Suppose that x�1yx = yi. Then y = x�3yx3 = yi
3
forcing

i3 = 1 mod 7. The possibilities for i are 2and4. The semidirect products obtained by
these two possibilities are isomorphic since if x�1yx = y2, then x�2yx2 = y4, and since x
and x2 are both generators of H the map sending x 7! x2, y 7! y will be an isomorphism
of the two semidirect products. So in this case G ' Z3⇥✓ Z7 and any two such semidirect
products are isomorphic.
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Exercise ?.?.3 Groups of order 6 10.
Order 1 {1}
Order 2 Z/2Z
Order 3 Z/3Z
Order 4 Z/4Z,Z/2Z⇥ Z/2Z
Order 5 Z/5Z
Order 6 Z/6Z ⇠= Z/2Z⇥ Z/3Z, S3

⇠= D3

Order 7 Z/7Z
Order 8 Z/8Z, Z/2Z⇥ Z/4Z, Z/2Z⇥ Z/2Z,Z/2Z

The dihedral group, D4

The quaternion group, Q8

Order 9 Z/9Z,Z/3Z⇥ Z/3Z
Order 10 Z/10Z,

Z/5Z⇥✓ Z/2Z where ✓ =?
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R⇥, 48
action, 50
addition, 17, 19, 43, 50
additive identity, 17, 43, 50
additive inverse, 17, 19, 43, 50
annihilator, 59
basis, 22
center, 47
characteristic, 47
commutative ring, 47
complex numbers C, 18
coset, 20, 45, 51
cosets partition, 51
dimension, 22
direct sum, 47, 53
distributive law, 43
field, 17
addition, 17
additive inverse, 17
field homomorphism, 18, 28
identity, 17
multiplication, 17
multiplicative identity, 17
multiplicative inverse, 17
subfield, 17
zero, 17

finite fields Fp, 18
generated by, 53
homomorphism, 51
field homomorphism, 18, 28
image, 52
kernel, 52
linear transformation, 19
ring homomorphism, 44

ideal, 45

left ideal, 59
identity, 43
addititive identity, 17
multiplicative identity, 17

image, 21, 46, 52
inclusion, 26
integers Z, 44
inverse, 17, 48
additive inverse, 17, 19
inverse, 48
left inverse, 48
multiplicative inverse, 17
right inverse, 48
two sided inverse, 48

isomorphic, 20, 44, 51
isomorphism, 20, 51
ring isomorphism, 44

kernel, 21, 46, 52
Lagrange’s theorem, 96
left ideal, 59
linear combination, 24
linear transformation, 19, 36
linearly independent, 22
module, 19, 50
R-action, 50
addition, 50
additive identity, 50
additive inverse, 50
coset, 51
direct sum, 53
generated by, 53
homomorphism, 51
image, 52
isomorphic, 51
isomorphism, 51
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kernel, 52
maximal proper submodule, 53
proper submodule, 53
quotient, 52
right R-module, 63
scalar multiplication, 50
simple module, 53
subgroup, 51
submodule, 50
zero, 50
zero module, 50

multiplication, 17
multiplicative identity, 17, 43
multiplicative inverse, 17
null space, 21
quotient, 21, 46, 52
quotient map, 26
rational numbers Q, 18
real numbers R, 18
ring, 18, 43
addition, 43
additive identity, 43
center, 47
characteristic, 47
commutative ring, 18, 47
coset, 45
direct sum, 47
ideal, 45
identity, 43
isomorphic, 44
isomorphism, 44
multiplicative identity, 43
quotient, 46
subgroup, 45
subring, 43
unit, 48

zero, 43
zero ring, 44

ring homomorphism, 44
scalar multiplication, 19, 50
subgroup, 20, 45, 51
submodule, 50
subring, 43
unit, 48
vector space, 19
addition, 19
additive inverse, 19
basis, 22
cosets partition, 20
dimension, 22
direct sum, 22
image, 21
inclusion, 26
isomorphism, 20
kernel, 21
linear combination, 24
linear transformation, 19, 36
linearly independent, 22
quotient map, 26
quotient space, 21
scalar multiplication, 19
span, 22, 24
subgroup, 20
subspace, 19, 24
zero, 19
zero space, 19

vector space F
k, 19, 25

zero, 17, 19, 43, 50
zero module, 50

zero ideal, 45
zero ring, 44
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