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P.4. Example proofs

P.4.1. An inverse function to f exists if and only if f is bijective.—

Theorem P.4.1. — Let f : S ! T be a function. The inverse function to f exists if
and only if f is bijective.

Proof. —

): Assume f : S ! T has an inverse function f�1 : T ! S.
To show: (a) f is injective.

(b) f is surjective.
(a) Assume s1, s2 2 S and f(s1) = f(s2).

To show: s1 = s2.

s1 = f�1f(s1)) = f�1f(s2)) = s2.

So f is injective.
(b) Let t 2 T .

To show: There exists s 2 S such that f(s) = t.
Let s = f�1(t).
Then

f(s) = f(f�1(t)) = t.

So f is surjective.
So f is bijective.

(: Assume f : S ! T is bijective.
To show: f has an inverse function.
We need to define a function ' : T ! S.
Let t 2 T .
Since f is surjective there eists s 2 S such that f(s) = t.
Define '(t) = s.
To show: (a) ' is well defined.

(b) ' is an inverse function to f .
(a) To show: (aa) If t 2 T then '(t) 2 S.

(ab) If t1, t2 2 T and t1 = t2 then '(t1) = '(t2).
(aa) This follows from the definition of '.
(ab) Assume t1, t2 2 T and t1 = t2.

Let s1, s2 2 S such that f(s1) = t1 and f(s2) = t2.
Since t1 = t2 then f(s1) = f(s2).
Since f is injective this implies that s1 = s2.
So '(t1) = s1 = s2 = '(t2).

So ' is well defined.
(b) To show: (ba) If s 2 S then '(f(s)) = s.

(bb) If t 2 T then f('(t)) = t.
(ba) This follows from the definition of '.
(bb) Assume t 2 T .

Let s 2 S be such that f(s) = t.
Then

f('(t)) = f(s) = t.
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So ' � f and f � ' are the identity functions on S and T , respectively.
So ' is an inverse function to f .

P.4.2. An equivalence relation on S and a partition of S are the same data.—

Let S be a set.

• A relation ⇠ on S is a subset R⇠ of S ⇥ S. Write s1 ⇠ s2 if the pair (s1, s2) is in
the subset R⇠ so that

R⇠ = {(s1, s2) 2 S ⇥ S | s1 ⇠ s2}.
• An equivalence relation on S is a relation ⇠ on S such that

(a) if s 2 S then s ⇠ s,
(b) if s1, s2 2 S and s1 ⇠ s2 then s2 ⇠ s1,
(c) if s1, s2, s3 2 S and s1 ⇠ s2 and s2 ⇠ s3 then s1 ⇠ s3.

Let ⇠ be an equivalence relation on a set S and let s 2 S. The equivalence class of s is
the set

[s] = {t 2 S | t ⇠ s}.
A partition of a set S is a collection P of subsets of S such that

(a) If s 2 S then there exists P 2 P such that s 2 P , and
(b) If P1, P2 2 P and P1 \ P2 6= ; then P1 = P2.

Theorem P.4.2. —
(a) If S is a set and let ⇠ be an equivalence relation on S then

the set of equivalence classes of ⇠ is a partition of S.

(b) If S is a set and P is a partition of S then

the relation defined by s ⇠ t if s and t are in the same P 2 P
is an equivalence relation on S.

Proof. —

(a) To show: (aa) If s 2 S then s is in some equivalence class.
(ab) If [s] \ [t] 6= ; then [s] = [t].

(aa) Let s 2 S.
Since s ⇠ s then s 2 [s].

(ab) Assume [s] \ [t] 6= ;.
To show: [s] = [t].
Since [s] \ [t] 6= ; then there is an r 2 [s] \ [t].
So s ⇠ r and r ⇠ t.
By transitivity, s ⇠ t.
To show: (aba) [s] ✓ [t].

(abb) [t] ✓ [s].
(aba) Assume u 2 [s].

Then u ⇠ s.
We know s ⇠ t.
So, by transitivity, u ⇠ t.
Therefore u 2 [t].

So [s] ✓ [t].
(aba) Assume v 2 [t].
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Then v ⇠ t.
We know t ⇠ s.
So, by transitivity, v ⇠ s.
Therefore v 2 [s].

So [t] ✓ [s].
So [s] = [t].

So the equivalence classes partition S.
(b) To show: ⇠ is an equivalence relation, i.e. that ⇠ is reflexive, symmetric and

transitive.
To show: (ba) If s 2 S then s ⇠ s.

(bb) If s ⇠ t then t ⇠ s.
(bc) If s ⇠ t and t ⇠ u then s ⇠ u.

(ba) Since s and s are in the same S↵ then s ⇠ s.
(bb) Assume s ⇠ t.

Then s and t are in the same S↵.
So t ⇠ s.

(bb) Assume s ⇠ t and t ⇠ u.
Then s and t are in the same S↵ and t and u are in the same S↵.

So s ⇠ u.
So ⇠ is an equivalence relation.

P.4.3. Identities in a field. —

A field is a set F with functions

F⇥ F �! F

(a, b) 7�! a+ b
and

F⇥ F �! F

(a, b) 7�! ab

such that

(Fa) If a, b, c 2 F then (a+ b) + c = a+ (b+ c),
(Fb) If a, b 2 F then a+ b = b+ a,
(Fc) There exists 0 2 F such that

if a 2 F then 0 + a = a and a+ 0 = a,

(Fd) If a 2 F then there exists �a 2 F such that a+ (�a) = 0 and (�a) + a = 0,
(Fe) If a, b, c 2 F then (ab)c = a(bc),
(Ff) If a, b, c 2 F then

(a+ b)c = ac+ bc and c(a+ b) = ca+ cb,

(Fg) There exists 1 2 F such that

if a 2 F then 1 · a = a and a · 1 = a,

(Fh) If a 2 F and a 6= 0 then there exists a�1 2 F such that aa�1 = 1 and a�1a = 1,
(Fi) If a, b 2 F then ab = ba.

Proposition P.4.3. — Let F be a field.
(a) If a 2 F then a · 0 = 0.
(b) If a 2 F then �(�a) = a.
(c) If a 2 F and a 6= 0 then (a�1)�1 = a.
(d) If a 2 F then a(�1) = �a.
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(e) If a, b 2 F then (�a)b = �ab.
(f) If a, b 2 F then (�a)(�b) = ab.

Proof. —

(a) Assume a 2 F.

a · 0 = a · (0 + 0), by (Fc),

= a · 0 + a · 0, by (Ff).

Add �a · 0 to each side and use (Fd) to get 0 = a · 0.
(b) Assume a 2 F.

By (Fd),
�(�a) + (�a) = 0 = a+ (�a).

Add �a to each side and use (Fd) to get �(�a) = a.
(c) Assume a 2 F and a 6= 0.

By (Fh),
(a�1)�1 · a�1 = 1 = a · a�1.

Multiply each side by a and use (Fh) and (Fg) to get (a�1)�1 = a.
(d) Assume a 2 F.

By (Ff),
a(�1) + a · 1 = a(�1 + 1) = a · 0 = 0,

where the last equality follows from part (a).
So, by (Fg), a(�1) + a = 0.
Add �a to each side and use (Fd) and (Fc) to get a(�1) = �a.

(e) Assume a, b 2 F.

(�a)b+ ab = (�a+ a)b, by (Ff),

= 0 · b, by (Fd),

= 0, by part (a).

Add �ab to each side and use (Fd) and (Fc) to get (�a)b = �ab.
(f) Assume a, b 2 F.

(�a)(�b) = �(a(�b)), by (e),

= �(�ab), by (e),

= ab, by part (b).

P.4.4. Identities in an ordered field. —

An ordered field is a field F with a total order 6 such that

(OFa) If a, b, c 2 F and a 6 b then a+ c 6 b+ c,
(OFb) If a, b 2 F and a > 0 and b > 0 then ab > 0.

Proposition P.4.4. — Let F be an ordered field.
(a) If a 2 F and a > 0 then �a < 0.
(b) If a 2 F and a 6= 0 then a2 > 0.
(c) 1 > 0.
(d) If a 2 F and a > 0 then a�1 > 0.
(e) If a, b 2 F and a > 0 and b > 0 then a+ b > 0.
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(f) If a, b 2 F and 0 < a < b then b�1 < a�1.

Proof. —

(a) Assume a 2 F and a > 0.
Then a+ (�a) > 0 + (�a), by (OFb).
So 0 > �a, by (Fd) and (Fc).

(b) Assume a 2 F and a 6= 0.
Case 1 : a > 0.

Then a · a > a · 0, by (OFb).
So a2 > 0, by part (a).

Case 2 : a < 0.
Then �a > 0, by part (a).
Then (�a)2 > 0, by Case 1.
So a2 > 0, by Proposition P.4.3 (f).

(c) To show: 1 > 0.
1 = 12 > 0, by part (b).

(d) Assume a 2 F and a > 0.
By part (b), a�2 = (a�1)2 > 0.
So a(a�1)2 > a · 0, by (OFb).
So a�1 > 0, by (Fh) and Proposition P.4.3 (a).

(e) Assume a, b 2 F and a > 0 and b > 0.

a+ b > 0 + b, by (OFa),

> 0 + 0, by (OFa),

= 0, by (Fc).

(f) Assume a, b 2 F and 0 < a < b.
So a > 0 and b > 0.
Then, by part (d), a�1 > 0 and b�1 > 0.
Thus, by (OFb), a�1b�1 > 0.
Since a < b, then b� a > 0, by (OFa).
So, by (OFb), a�1b�1(b� a) > 0.
So, by (Fh), a�1 � b�1 > 0.
So, by (OFa), a�1 > y�1.


