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Let E be an algebraic (or holomorphic) vectorbundle over the Riemann sphere P!(C). Then
Grothendieck proved that E splits into a sum of line bundles £ =@ L; and that the isomorphism
classes of the L; are (up to order) uniquely determined by E. The L, in turn are classified by an
integer (their Chern numbers) so that m-dimensional vectorbundles over rPl(C) are classified by
an m-tuple of integers

K(E)=(k(E)y e, ,(E)), K(E)zKy(E)z 2K, (E), K(E)eZ.

In this short note we present a completely elementary proof of these facts which, as it turns out,
works over any field k.

1. Introduction

Let E be a holomorphic (or algebraic) vectorbundle over the Riemann sphere
PYC). (By [2] holomorphic and algebraic vectorbundles over P!(C) amount to the
same thing). In [1] Grothendieck proved that E splits into a sum of line bundles
E=@® L, and that the isomorphism classes of the L, are (up to order) uniquely
determined by E. The line bundles L; in turn are classified by an integer (their first
Chern number) so that m-dimensional vectorbundles over P(C) are classified by an
m-tuple of integers

KE)=(K(E),....,km(E)), Ki((E)Z:-zZKn(E), kel
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Below we give a completely elementary proof of these facts, which, as it turns out,
works over any field k. Of course ‘completely elementary’ means that such concepts
as ‘degree of a line bundle’ or ‘first Chern number’ or cohomology or ‘intersection

numbher’ are not needed or mentioned below. A
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matrix manipulation).
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2. Vectorbundles over P

Let k be any field. The projective line P} over k can be obtained as follows. Let
Uy =Spec(k[s]), U= Spec(k[t]), Ui2=Spec(ks,s"'])= Ui\ {0}, Uy =Spec(k[t,t~'])=
U,\ {0}. Now glue U, and U, together by identifying U, and U,; by means of the
isomorphism

kls,s 1> k[t,t™"], s—tL

Now let E be an m-dimensional vectorbundle over P} defined over k; and let
A™=Spec(k[ X}, ..., Xu]). Then E|y, i=1,2, is trivial, i.e. E|y= U;x A™, so that E
can be viewed (up to isomorphism) as obtained by glueing together U, x A™ and
U, x A™ by identifying U\ {0} x A" and U,\ {0} x A™ by means of an isomorphism
of the form

5 v) =~ (s~ A(s,57 M) @.D

where A(s,s”!) is a matrix with coefficients in k[s,s~'] which has nonzero
determinant for all s#0, s~!#0. This last fact means that

det(A(s,s ) =s", neZ. 2.2

A vectorbundle automorphism of U;x A™ is necessarily of the form (s,v)—
(s, U(s)v) where U(s) is a matrix with coefficients in k[s] with det U(s) e k\ {0} and
similarly an automorphism of U, x A™ is given by a matrix V(s~!) with coefficients
in kfs~'] with determinant in k\ {0}. Different trivializations of E v, differ by an
automorphism of U;x A™. It follows that

Proposition 2.3. Isomorphism classes of m-dimensional algebraic vectorbundles
over Pk correspond bijectively to equivalence classes of polynomial m x m matrices
A(s,571) over k[s,s™'] such that det A(s,s"")=s", neZ where the equivalence
relation is the following: A(s,s~')~A'(s,s™") iff there exist polynomial invertible
mxm matrices U(s), V(s~!) over k[s] and k[s'] respectively with constant
determinant such that

A'(s,s) = V(s YA, s HU). 2.4)
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3. A canonical form for matrices over ks, s~!]

Now let us study canonical forms for m xm matrices over k[s,s~'] under the
equivalence relation defined in Proposition 2.3 above. The result is

Proposition 3.1. Let A(s,s™') be an mxm matrix over kis,s™'] with determinant
equal to s" for some neZ. Then there exist polynomial m X m matrices V(s~!) and
U(s) with constant nonzero determinant such that

sh 0
s
Vs~ HA(s, s HU(s) = - (3.2)

0 §'m
Withryzryz-«-=ry,, ri€ Z. The r;are uniquely determined by A(s,s7"). Moreover if

A(s,s™") is polynomial in s then r;=0, i=1,...,m, and if A(s,s”") is polynomial in
sV then r;i<0, i=1,...,m.

Proof. Let’s prove uniqueness first. Write D(r(, ... r,) for the matrix on the right in
(3.2). Suppose there were two such matrices equivalent to A(s,s~'). Then there
would be polynomial matrices with constant nonzero determinant U(s), ¥(s~!) such
that

Vs™)D(r1y eevs tm) = D11,y oo, Fm)UCS).

If A is a matrix let
iy, eriy
Aj,,..., Jx

denote the minor of A obtained by taking the determinant of the submatrix of

A obtained by removing all rows with index in {1,...,m}\{i},...,i;} and all
columns with index in {1, ...,m}\{Jj},...,ji}. Then of course

l i r
(AB) r -’k= " <Z<r Arl ,fkkBj‘l -II(
Using this on the equality V(s YD(ry, ..., 7)) =D(r1, ..., r,)U(s) one finds that
ViK™ T e g1 kU 2 K (s) (3.3)
for all i;<--- <i;. Now for some iy, ..., iy,
Ui () #0.

Hence ri+---+ry<r; + -+ +r; forsomei <--- <i;,and hence certainly it tres
ry+ - +r, for all k. Multlplymg with V(s“) L on the left and U(s)"! on the nght in
V(s~ ')D(r,, verrF) =D(ri, ..., r)U(s) and repeating the argument gives r)+ -+ + r,<
ri+---ry for all k and hence r;=r}, i=1,...,m.
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It remains to prove existence. First multiply A(s,s~!) with a suitable power 5",
neNU {0} to obtain a polynomial matrix B(s). Then by post multiplication with a
suitable U(s) (column operations) we can find a B’(s) with b};#0 and b};=0,
i=2,...,m (b} is the greatest common divisor of by, ..., b;). Of course b}, =s* for
some ke NU{0} because det B(s) is a power of s. Let B, be the lower-right
(m—1) x (m — 1) submatrix of B. By induction we can assume that the proposition
holds for (m~—1)x(m—1) matrices. (The case m=1 is trivial). So there are
U,(s), Va(s 1) such that V,(s~1)B,U,(s) is of the form of the right hand side of (3.2).
Then

skl 0O ... 0

c; sk 0
0 W 0 U 0 .

Crm skm

for certain &\, k3, ...,kn€ NU{0} (same k, as before) and c;ek[s,s7'], i=2,...,m.
Subtracting suitable k{s~!] multiplies of the first row from rows 2,...,m (which is
premultiplication with a ¥(s~')) we can moreover see to it that c; € k[s].

Now consider all polynomial matrices of the form (3.4) which are equivalent to
B(s). Choose one for which k&, is maximal. Such a one exist because k,<degree
(det B(s)) because k,,...,k,=0. We claim that then k;=%;, i=2,...,m. Indeed
suppose that k, < k;. Subtracting a suitable k[s~!] multiple of the first row from the
i-th row we find a matrix (3.4) with ¢; =s*1*!¢’(s). Now interchange the first and the
i-th row to find a polynomial matrix B’(s) such that the greatest common divisor of
its first row elements is s¥1 with k]= k; + 1. Now apply to B’(s) the same procedure as
above to B(s). This would give a C’(s) of the form (3.4) with &|> &/, a contradiction.
We can therefore assume that in (3.4) k;=k;, c;ekls], i=2,...,m. Subtracting
suitable k[s]-multiples of the 2-nd, ..., m-th columns from the first one we find a
matrix (3.4) with degree (c;)<k;. But then deg(c)<k,; so that a suitable k[s~!]
multiple of s*1 is equal to ¢; so that a further premultiplication with a ¥V(s~') gives us
a matrix (3.4) with ¢;=---=c¢,,=0. This proves the first half of the last part of the
statement of the proposition and shows that there are ky,...,k,e NU{0},
kyz--2k, (by permuting columns and rows if necessary) and U(s), V(s~!) of
constant nonzero determinant such that

V(s~Y)s"A(s, s HU(s) = V(s HB(S)US) =D(ky, ..., k).

Multiplying with s" gives V(s~YA(s, s HU(S)=D(ry,...,r,) with r;=k;—n. The
second half of the last statement of the proposition is proved as the first half starting
with a matrix B(s™!) and using row (resp. column) operations everywhere where
we used column (resp. row) operations above. This concludes the proof of Proposi-
tion 3.1.
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4. Classification of vectorbundles over P}

Let O(n), neZ be the line bundle over fP,'( defined by the glueing matrix
A(s,57')=5"". Obviously then the bundle defined by the glueing matrix
A(s,s~ Y =D(ry, ..., I'm) is equal to the direct sum O(—r) @ @ O(—r).

Theorem 4.1. Let E be an algebraic m-dimensional vectorbundle over P} which is
defined over k. Then E is isomorphic over k to a direct sum of line bundles

E=0K)® - @®O0Kpy), KiZ: 2K, Ke€Z i=l,...,m,

and the k; are uniquely determined by the isomorphism class of E.

Remarks 4.2. It is perhaps worth remarking that E is positive (meaning that all the
x{E)=0) if the glueing matrix A(s,s~!) is polynomial in s~! and that E is negative
(.e. x(E)=<0 all i) if A(s,s”') is polynomial in s. This follows from the last
statement of Proposition 3.1. Also E contains a summand O(n) with n>0 if
deg(det A(S,571)) <0. Finally it follows that vectorbundles over PP} have no forms,
i.e. if E and E’ are two vectorbundles over & which become isomorphic over the
algebraic closure k£ of & then E and E’ are also isomorphic over . This can of course
also be seen by other, more sophisticated, means (e.g. Galois cohomology).
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