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1 Introduction

1.1 Motivation: the splitting problem

Suppose f(x) is a monic irreducible polynomial with integer coefficients. If
p is a prime number, then reducing the coefficients of f(x) modulo p gives
a new polynomial fp(x), which may be reducible. We say that f(x) is split
modulo p if fp(x) is the product of distinct linear factors.

Example 1.1.1. The polynomial f(x) = x2 + 1 is split modulo 5, since
f5(x) ≡ (x + 2)(x + 3) mod 5. But it is not split modulo 7, since f7(x) is
irreducible, nor is it split modulo 2, since f2(x) ≡ (x + 1)2 (mod 2) has
a repeated factor. The first few p for which x2 + 1 is split modulo p are
5, 13, 17, 29, 37, 41, 53, . . . .

Example 1.1.2. The polynomial f(x) = x3 − 2 is split modulo 31, since
f31(x) ≡ (x + 11)(x + 24)(x + 27) (mod 31). But it is not split mod-
ulo 5, since f5(x) ≡ (x + 2)(x2 + 3x + 4) (mod 5), and the second fac-
tor is irreducible. The first few p for which x3 − 2 is split modulo p are
31, 43, 109, 127, 157, 223, 229, . . . .

This article is concerned with the following simple question.

Question A. Given an irreducible polynomial f(x) with integer coefficients,
is there a rule which, for every prime p, determines whether f(x) is split
modulo p?

A large swath of modern number theory known as the Langlands program
is dedicated to variations on the theme of Question A.

1



We ought to clarify what is meant by a “rule” in Question A. We are
not looking for an algorithm to factor a polynomial modulo a prime. Rather
we are seeking a systematic connection to some other part of mathematics.
Such a rule is called a reciprocity law. Our search for reciprocity laws can be
rephrased as the study of a single group, the absolute Galois group of the
field of rational numbers, written Gal(Q/Q). The representation theory of
Gal(Q/Q) has been particularly fruitful in answering instances of Question
A. In this article we will review reciprocity laws in four successive epochs:

1. The solution of Question A in the case of f(x) = x2 + 1 is due to
Fermat. The solution for a general quadratic polynomial was conjec-
tured by Euler and first proved by Gauss; this is the famous quadratic
reciprocity law.

2. Thereafter, many other reciprocity laws followed, due to Eisenstein,
Kummer, Hilbert, Artin, and others, leading up to the formulation
of class field theory in the early 20th century. These reciprocity laws
are called abelian. They only apply to those instances of Question A
where the polynomial f(x) has a solvable Galois group.

3. In the second half of the 20th century, a remarkable link was found be-
tween modular forms and 2-dimensional representations of Gal(Q/Q),
due to Eichler, Shimura, Deligne, and Serre. This made it possible to
find reciprocity laws for certain quintic f(x) with non-solvable Galois
group.

4. The 21st century has seen an explosion of results which link repre-
sentations of Gal(Q/Q) to the geometry of arithmetic manifolds. We
highlight Scholze’s recent work [Sch13c], which employs techniques in-
vented within the past five years.

Besides the exposition of [Sch13c], there is much overlap between this
article and other surveys about reciprocity laws. Our Question A is lifted
almost verbatim from B. Wyman’s 1972 article [Wym72], which contains
a brief introduction to algebraic number theory. The article [AG00] is an
exposition of reciprocity laws in the context of Fermat’s Last Theorem. C.
Dalawat’s essay [SRY12, Ch. 2] describes the link between reciprocity laws
and modular forms, with many examples.
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2 Fermat, Euler, and Gauss

2.1 Quadratic reciprocity laws

Which positive integers n are the sum of two squares? Fermat settled this
question in 1640. Using his method of “descent”, he showed that if a prime
number p divides a sum of two squares, neither of which is divisible by
p, then p is itself a sum of two squares. Also one sees from the identity
(a2 + b2)(c2 + d2) = (ad− bc)2 + (ac+ bd)2 that the property of being a sum
of two squares is preserved under multiplication. From there it is simple to
check that n is a sum of two squares if and only if n = p1 · · · pkm2, where
each of the primes p1, . . . , pk is a sum of two squares, and m ≥ 1.

Thus we are reduced to the case that n = p is prime. We already
mentioned that p is a sum of two squares if it divides a sum of two squares,
neither of which is divisible by p. Thus we are trying to determine when the
congruence a2 + b2 ≡ 0 (mod p) has a solution for a, b 6≡ 0 (mod p). Recall
that the ring Z/pZ of integers modulo p is a field. After dividing by b2 and
relabeling, this becomes x2 +1 ≡ 0 (mod p). Deciding when it can be solved
turns out to be equivalent to answering Question A for f(x) = x2 + 1.

Theorem 2.1.1. Let p be an odd prime. Then x2 + 1 ≡ 0 (mod p) has a
solution if and only if p ≡ 1 (mod 4).

Proof. Suppose x2 + 1 ≡ 0 (mod p). Then xp−1 = (x2)(p−1)/2 ≡ (−1)(p−1)/2

(mod p). But by Fermat’s Little Theorem, xp−1 ≡ 1 (mod p), implying that
(−1)(p−1)/2 = 1 and therefore p ≡ 1 (mod 4).

Conversely, suppose p ≡ 1 (mod 4). Let x = ((p− 1)/2)!. We have x2 ≡
(−1)(p−1)/2(p−1)! (mod p) (by pairing up n with −n in the product), which
is (p− 1)! (mod p), and by Wilson’s theorem this is ≡ −1 (mod p).

Another way of phrasing Theorem 2.1.1 is that x2 + 1 splits modulo a
prime p if and only if p ≡ 1 (mod 4). (Note that modulo 2, x2 +1 ≡ (x+1)2

contains a repeated root, and so is not split as we have defined it. Given
an irreducible polynomial f(x), the primes p for which fp(x) has a repeated
factor all divide the discriminant of f(x), and hence are finite in number.)

Theorem 2.1.1 demonstrates the simplest possible sort of reciprocity law,
namely one where the factorization of f(x) modulo p is determined by a
congruence condition on p. As the following examples show, this is also the
case for other quadratic polynomials.

Example 2.1.2. The polynomial f(x) = x2 + x+ 1 splits modulo p if and
only if p ≡ 1 (mod 3). Let us sketch a proof of this fact. In one direction:
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If p ≡ 1 (mod 3), then 3 divides p − 1, which is the order of the group
(Z/pZ)×. By Cauchy’s theorem there exists an element w ∈ (Z/pZ)× of
order 3. Then w is a root of x2 + x + 1 = (x3 − 1)/(x − 1). In the other
direction: we can rule out p = 3 since f(x) ≡ (x−1)2 (mod 3). If x2 +x+1
has a root w (mod p), then w3 ≡ 1 but w 6≡ 1 (mod p), so that (Z/pZ)×

contains an element of order 3, and thus 3 divides p− 1.

Example 2.1.3. The polynomial f(x) = x2− 2 splits modulo p if and only
if p ≡ ±1 (mod 8). We’ll only prove part of this fact: suppose that p ≡ 1
(mod 8). We now apply a theorem from elementary number theory which
tells us that (Z/pZ)× is a cyclic group of order p− 1. Let g be a generator
of (Z/pZ)× and let y = g(p−1)/8, x = y + y−1. Then y4 = −1 and therefore
y2 = −y−2; thus x2 = y2 + 2 + y−2 = 2. This proof is based on the identity
of complex numbers e2πi/8 + e−2πi/8 =

√
2. Note that e2πi/8 is a primitive

8th root of 1; its analogue in Z/pZ is what we have called y.

Example 2.1.4. Is there a similar rule for the polynomial f(x) = x2 − 5?
Note that if fp(x) factors into linear factors, then there is an integer n such
that n (mod p) is a root of fp(x), so p divides n2−5. Conversely if p divides
n2− 5 then fp(x) ≡ (x−n)(x+n) (mod p). Thus in the table below, fp(x)
splits for each red prime p.

n Factorization of f(n) n Factorization of f(n)

1 −22 8 61
2 −1 9 22·19
3 22 10 5 · 19
4 11 11 22 · 29
5 225 12 139
6 31 13 22 · 41
7 22 · 11 14 191

(We are ignoring 2 and 5, since these are the prime divisors of the dis-
criminant of f(x).) The red primes are all congruent to 1 modulo 5.

In fact the p for which fp(x) splits are described by a congruence condi-
tion whenever f(x) is a quadratic polynomial:

Theorem 2.1.5 (Quadratic Reciprocity). Let f(x) = x2 + bx + c be a
monic irreducible polynomial with integer coefficients, so d = b2 − 4c is not
a square. Then for p not dividing d, the splitting behavior of f(x) modulo p
is determined by the congruence class of p modulo d.
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This is a form of the quadratic reciprocity law, which was conjectured by
Euler and proved (many times over) by Gauss. If p is an odd prime, then
f(x) factors modulo p if and only if d is congruent to a square modulo p. We
define the Legendre symbol (dp) for any odd prime p and any integer d prime
to p as 1 if d is a square modulo p and −1 otherwise. Thus for instance
Theorem 2.1.1 is the statement that (−1

p ) = (−1)(p−1)/2. In elementary
number theory texts there appears a more precise version of Theorem 2.1.5:
if q 6= p is an odd prime then(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 ,

which implies that the splitting behavior of x2− q modulo p depends on the
congruence class of p modulo 4q. The symmetry between p and q explains
the term “reciprocity” for such laws.

Let us return for a moment to Fermat’s theorem on sums of squares.
Could it apply to the representation of integers by other quadratic forms,
such as a2 + 5b2? Theorem 2.1.5 shows that a prime p 6= 2, 5 divides an
integer of the form x2 + 5 if and only if p satisfies a congruence condition
modulo 20, which happens to be the condition that p ≡ 1, 3, 7, 9 (mod 20).
But such a prime (for instance 7) is not necessarily of the form a2 + 5b2. It
turns out that Fermat’s method of descent fails in this context. Phrased in
modern terms, the culprit is the failure of Z[

√
−5] to have the property of

unique factorization into primes. In fact p = a2 + 5b2 if and only if p ≡ 1, 9
(mod 20). For a fascinating account of the problem of classifying primes of
the form x2 + ny2, see Cox’s book of the same title [Cox89].

2.2 Some reciprocity laws of higher degree

What about polynomials f(x) of higher degree? A little experimentation
will reveal that the factorization behavior of a “random” cubic or quartic
polynomial will be influenced, but not completely determined, by a congru-
ence condition modulo p. For instance, in Example 1.1.2, the primes for
which x3 − 2 is split are all congruent to 1 modulo 3, but the converse is
false. There are special cases where a congruence condition is the complete
story: for instance the polynomial x3 + x2 − 2x − 1 splits modulo p if and
only if p ≡ ±1 (mod 7). When is the splitting behavior of a polynomial
determined by congruence conditions?

For a clue, let m ≥ 1 and consider the polynomial xm − 1. If p does
not divide m, xm − 1 splits modulo p if and only if the multiplicative group
(Z/pZ)× contains m distinct elements of order dividing m. Since (Z/pZ)×
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is a cyclic group of order p− 1, this happens exactly when p ≡ 1 (mod m).
This logic extends to show that the splitting behavior of f(x) is determined
by congruence conditions whenever f(x) is a factor of xm−1. Using some al-
gebraic number theory, it can be shown that splitting is based on congruence
conditions conditions modulo m for those f(x) whose roots are contained
in the cyclotomic field Q(ζm), where ζm = exp(2πi/m). For instance, the
roots of x3 + x2 − 2x − 1 are ζk7 + ζ−k7 , where k = 1, 2, 3, which explains
why the splitting behavior of this polynomial modulo p is determined by p
modulo 7.

Thus there is a satisfactory answer to Question A whenever the roots of
f(x) are contained in a cyclotomic field. Surprisingly, the converse is also
true. See [Wym72] for a discussion of the proof of the following theorem.

Theorem 2.2.1. The splitting behavior of f(x) modulo p is determined by
congruence conditions on p if and only if the roots of f(x) are contained in
a cyclotomic field.

What would a reciprocity law look like if it isn’t a set of congruence
conditions?

Example 2.2.2. Let f(x) = x3 − 2. If f(x) splits modulo p, then 2 has
distinct cube roots x1, x2, x3 modulo p. The ratio x1/x2 must have order
3 in (Z/pZ)×. So 3 divides |(Z/pZ)×| = p − 1, and thus p ≡ 1 (mod 3).
Here are the first few primes p ≡ 1 (mod 3), with the primes for which f(x)
splits shown in red:

7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163,
181, 193, 199, 211, 223, 229, 241. . .

There doesn’t seem to be a pattern arising from congruence conditions
on p. In fact Theorem 2.2.1 shows that there can’t be one, since Q( 3

√
2)

isn’t contained in a cyclotomic field.

A similar analysis can be carried out for the polynomial f(x) = x4−2. In
order for this polynomial to split modulo p, it is necessary but not sufficient
that p ≡ 1 (mod 8). Reciprocity laws for both x3 − 2 and x4 − 2 were
conjectured by Euler and proved by Gauss.

Theorem 2.2.3 ([Cox89, Theorems 4.15 and 4.23(ii)]). The polynomial
x3− 2 splits modulo p if and only if p = a2 + 27b2 for integers a and b. The
polynomial x4 − 2 splits modulo p if and only if p = a2 + 64b2 for integers a
and b.
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Unlike the case of a2+b2, which represents p if and only if p ≡ 1 (mod 4),
the representation of p by the quadratic forms a2 +27b2 and a2 +64b2 is not
determined by a congruence condition on p. But in fact there are disguised
congruence conditions in Theorem 2.2.3, which were well known to Gauss.
Let us focus on x4−2. If x4−2 splits modulo p, then the quotient of two of its
roots in Z/pZ must be a square root of −1, so that by Theorem 2.1.1 we have
p ≡ 1 (mod 4). By Fermat’s theorem p = a2+b2. Without loss of generality,
assume that a is odd and b is even. We now pass to the ring Z[i] of Gaussian
integers, the subring of C consisting of those a+ bi with a, b ∈ Z. In Z[i], p
is no longer prime; we have p = ππ, where π = a + bi. Theorem 2.2.3 says
that x4 − 2 splits modulo p if and only if π ≡ 1, 3, 5, 7 (mod 8Z[i]). Indeed,
this condition translates into the statement that b = 8b0 for an integer b0, so
p = a2 + 64b20. Thus the splitting behavior of x4 − 2 modulo a prime p ≡ 1
(mod 4) is determined by a congruence condition on a prime of Z[i] which
divides p.

As an example, 13 = (3 + 2i)(3 − 2i). But 3 + 2i isn’t congruent to
1, 3, 5, or 7 (mod 8Z[i]), and therefore x4 − 2 is not split modulo 13. On
the other hand 73 = (3 + 8i)(3 − 8i), and 3 + 8i ≡ 3 (mod 8Z[i]), so that
x4 − 2 is split modulo 73.

The analysis for x3 − 2 is similar, but involves the Eisenstein integers
Z[ω], where ω = e2πi/3. For a discussion of reciprocity laws for polynomials
of the form x3−a and x4−a, including a proof of Theorem 2.2.3, see [IR90,
Ch. 9].

3 Class Field Theory

3.1 Some algebraic number theory

At this point it is appropriate to introduce some basic notions from algebraic
number theory. If f(x) is an irreducible polynomial with rational coefficients,
then K = Q[x]/f(x) is an algebraic number field. Let OK be the integral
closure of Z in K. It is a basic fact of algebraic number theory that OK
is a Dedekind domain. This means that even though OK may not have the
property of unique factorization, it does have the corresponding property for
ideals. See for instance [IR90, Ch. 12]. It is common to refer to a nonzero
prime ideal of OK as a “prime of K” or a “finite place of K”.

Example 3.1.1. Let K = Q(
√
−5). Then OK = Z[

√
−5]. The element 6

admits two factorizations 2·3 = (1+
√
−5)(1−

√
−5) into irreducible elements

of OK , none of which divide any other. However, every nonzero ideal in OK
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factors into prime ideals in one way only. The ideals P = (2, 1 +
√
−5),

Q = (3, 1 +
√
−5) and Q = (3, 1 −

√
−5) of Z[

√
−5] are all prime, and we

have (2) = P 2, (3) = QQ, (1 +
√
−5) = PQ and (1 −

√
−5) = PQ. The

ideal (6) has a unique factorization into prime ideals, namely P 2QQ.

If p is a prime number, then pOK = pe11 · · · p
ek
k is a product of powers of

distinct primes of K. For each i, the ring OK/pi is a finite field extension
of Z/pZ. If ei = 1 for all i, we call p unramified in K. We say that p is split
in K if it is unramified and if OK/pi ∼= Z/pZ for each i. If ei > 1 for some
i, then p is ramified in K. There are finitely many ramified primes.

The splitting of primes in number fields is closely related to the splitting
of polynomials modulo primes. Let f(x) be a monic irreducible polynomial
with integer coefficients, and let K = Q(α) be the field obtained by adjoining
to Q a single root α of f(x). Then with possibly finitely many exceptions,
f(x) is split modulo p if and only if p splits in K (see [Lan94, Proposition
27]).

These notions have analogues in an extension of number fields L/K. If
p is a prime of K, then we can factor pOL = Pe1

1 · · ·P
ek
k into powers of

distinct primes of L. The primes Pi are said to divide p. We say p is
unramified in L if each ei = 1, and ramified otherwise; there are finitely
many ramified primes. We say p is split1 in L if it is unramified and if for
each i, OL/Pi

∼= OK/p.
The “correct” generalization of Question A is then:

Question B. Let L/K be an extension of number fields. Is there a rule for
determining when a prime ideal of K is split in L?

Question B is inextricably linked with Galois theory. Recall that if K is
a field, an extension L/K is Galois if it is the splitting field of a collection of
separable polynomials with coefficients in K (separable means no repeated
roots). If L/K is Galois, the Galois group Gal(L/K) is the group of field
automorphisms of L which act as the identity on K. Its cardinality is the
same as the degree of L/K (that is, the dimension of K as an L-vector
space). The philosophy of Galois theory is that there is no algebraic means
of distinguishing the roots of an irreducible polynomial within the field they
generate (such as

√
2 and −

√
2 within Q(

√
2)), and that one can bring to

bear the power of group theory in analyzing those roots.

Example 3.1.2. Let K be a finite field of cardinality q, and let L/K is a
finite extension of degree d. Then L/K is Galois. The group Gal(L/K) is a
cyclic group of order d, with generator x 7→ xq.

1What we have defined as split, other authors sometimes call completely split.
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Example 3.1.3. For an integer m ≥ 1, we have the cyclotomic field Q(ζm).
There is an isomorphism α : Gal(Q(ζm)/Q) → (Z/mZ)×, characterized by

σ(ζm) = ζ
α(σ)
m for each σ ∈ Gal(Q(ζm)/Q). Note that if c is complex

conjugation then c(ζm) = ζm = ζ−1
m , so that α(c) ≡ −1 (mod m).

Example 3.1.4. The splitting field of the polynomial x4 − 2 over Q is
L = Q(i, 4

√
2). The Galois group Gal(L/Q) is the dihedral group of order 8,

generated by two elements r and s, defined by the table

r( 4
√

2) = i 4
√

2, s( 4
√

2) = 4
√

2,
r(i) = i, s(i) = −i.

These generators satisfy the relations r4 = 1, s2 = 1, and srs−1 = r−1.

Let us now return to Question B. If L/K is an arbitrary extension of
number fields, let L′/K be a Galois closure. This is a Galois extension of
minimal degree containing L. It turns out that a prime of K is split in L
if and only if it is split in L′ (see [Neu99, §8, Exercise 4]). Thus to answer
Question B it suffices to assume that L/K is Galois.

Let L/K be Galois extension of number fields, let p be a prime of K,
and let P be a prime of L dividing p. The number of elements of OK/p is
denoted Np. If p is unramified in L, then there exists a distinguished auto-
morphism FrobP|p ∈ Gal(L/K) called the Frobenius automorphism which is
characterized by the relation

FrobP|p(x) ≡ xNp mod P

for all x ∈ OL.
If P′ is another prime of L dividing p, the automorphisms FrobP|p and

FrobP′|p are conjugate in Gal(L/K). Thus one can talk about a well-defined
conjugacy class Frobp in Gal(L/K). If L/K happens to be abelian, then
Frobp is a well-defined element of Gal(L/K). An important observation is
that for a prime p of K that is unramified in L,

Frobp = 1 in Gal(L/K) if and only if p is split in L.

This criterion makes sense even when L/K is not abelian, since the conju-
gacy class of the identity always has one element.

Example 3.1.5. Let K = Q, L = Q(i). Then Gal(L/K) = {1, c}, where c
is complex conjugation. The prime 3 remains prime in Z[i]. Then Frob3 = c,
since for a, b ∈ Z,

(a+ bi)3 ≡ a3 + b3i3 ≡ a− bi ≡ a+ bi (mod 3Z[i]).
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On the other hand, 5 splits in Q(i) as (5) = (2 + i)(2− i). Since

(a+ bi)5 ≡ a5 + b5i5 ≡ a+ bi (mod 2 + i),

we can conclude Frob5 = 1.

3.2 The reciprocity map

Class field theory refers to the complete solution of Question B in the case
that L/K is Galois and Gal(L/K) is abelian. Such extensions are simply
called abelian. Roughly speaking, it predicts that for a prime p of K which
is unramified in L, the element Frobp ∈ Gal(L/K) is determined by “con-
gruence conditions” on p.

To make a precise statement we need a few definitions. Recall that a
nonzero prime ideal of OK is also called a finite place of K. An infinite
place of K is a field embedding τ : K ↪→ C, considered up to complex
conjugation. An infinite place is either a real place or a complex place,
as τ(K) is contained in R or not.

Theorem 3.2.1. Let L/K be an abelian extension of number fields. There
exists an ideal f of OK (depending on L) with the following property. Suppose
p = (π) is a principal prime ideal of K such that π ≡ 1 (mod f), and such
that τ(π) > 0 for all real places τ of K. Then p is split in L.

We remark that there is a refined version of Theorem 3.2.1 involving a
homomorphism called the reciprocity map or Artin map, which generalizes
the Legendre symbol. See [Cas67, Ch. VII].

Example 3.2.2. In the case K = Q and L = Q(i), we can verify that
Theorem 3.2.1 holds with f = (4): this reduces to the statement that if
p ≡ 1 (mod 4) is a (positive) prime, then p splits in Q(i).

Example 3.2.3. More generally, suppose K = Q and L/Q is an abelian
extension. In the context of Theorem 3.2.1, write f = (m), where m ≥ 1.
Then any p ≡ 1 (mod m) splits in L. Compare this with the behavior
of the cyclotomic field Q(ζm): a prime p splits in Q(ζm) if and only if
p ≡ 1 (mod m). Thus the set of primes which split completely in Q(ζm)
is contained in the set of primes which split completely L. This fact can
be used to show that L is contained in Q(ζm). See for instance [Cas67,
Theorem 6.1]. Therefore we have

Theorem 3.2.4 (The Kronecker-Weber theorem, [Was97, Thm. 14.1]). Ev-
ery extension of Q with an abelian Galois group is contained in a cyclotomic
field.
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Example 3.2.5. Let K = Q(i) and L = K( 4
√

2). It turns out that in
Theorem 3.2.1 we can take f = (8). Suppose p is a prime number of the
form a2 + 64b2, where a ≡ 1 (mod 8). Then p = ππ where π = a + bi is a
prime in Z[i] and π ≡ 1 (mod 8Z[i]), and we can deduce that p splits in L.
This recovers part of Theorem 2.2.3.

Theorem 3.2.1 is the work of many people, including Artin, Hasse,
Furtwängler, Takagi, and others. It allows us to answer Question B in
the case that the polynomial f(x) is solvable, meaning that its roots lie in a
tower of number fields Q = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K, with each Ki+1/Ki

abelian. A prime p splits in K if and only if p splits in K1, a prime dividing
p in K1 splits in K2, and so on, with each splitting being governed by con-
gruences. In Example 3.2.5, the relevant tower was Q ⊂ Q(i) ⊂ Q(i, 4

√
2).

Not all extensions of number fields are solvable. For instance, if f(x)
is a “random” quintic polynomial with rational coefficients, then the Galois
group of f is likely to be S5, which contains the non-abelian simple group A5.
Theorem 3.2.1 makes no predictions about the splitting behavior of primes
in an A5-extension. The first “non-solvable reciprocity laws” were discovered
by Shimura in the 1960s [Shi66], and further investigated by Deligne [Del71]
and Deligne-Serre [DS74]. These reciprocity laws link Galois representations
with modular forms.

3.3 The absolute Galois group of a number field, and Galois
representations

It is immensely useful to talk about all of the finite extensions of a number
field K at once, as living in an algebraic closure K. This leads to the absolute
Galois group Gal(K/K), which is the group of automorphisms of K which
act as the identity on K. We have

Gal(K/K) = lim←−
L

Gal(L/K),

where L runs over finite Galois extensions ofK. Written this way, Gal(K/K)
becomes a topological group, whose open subgroups are exactly the sub-
groups Gal(K/L) consisting of automorphisms which act trivially on a finite
extension L/K. Focus can then shift from particular number fields L/K to
the topological group Gal(K/K).

The group Gal(K/K) is very complicated. It is difficult even to write
down particular elements of it (Zorn’s lemma is usually required). The best
way to study Gal(K/K) is through Galois representations, which for our
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purposes are continuous homomorphisms

ρ : Gal(K/K)→ GLn(F ),

where F is some topological field. We say that ρ is unramified at a prime p
of K if it factors through Gal(L/K), where L/K is some (possibly infinite)
algebraic extension which is unramified at p. In that case ρ(Frobp) is a
well-defined conjugacy class in GLn(F ).

Question C. Given a Galois representation ρ : Gal(K/K) → GLn(F ), is
there a rule for determining the conjugacy class of ρ(Frobp) for the unram-
ified2 primes p?

3.4 Artin representations

If E = C is the field of complex numbers, then a Galois representation
ρ : Gal(K/K) → GLn(C) is called an Artin representation. The image
of an Artin representation is necessarily finite, so that ρ factors through
a representation of a finite group Gal(L/K). Solving Question C for Artin
representations would also solve Question B. For instance if L/K is finite and
Galois, then one can find an Artin representation ρ whose kernel is exactly
Gal(K/L), and then a prime p splits in L if and only if ρ(Frobp) = 1.

Example 3.4.1 (One-dimensional Artin representations over Q). A one-
dimensional Artin representation over the base field Q is just a continuous
homomorphism ρ : Gal(Q/Q) → C×. By the Kronecker-Weber theorem
(Theorem 3.2.4), there is an m for which ρ factors through Gal(Q(ζm)/Q) ∼=
(Z/mZ)×. Thus one-dimensional Artin representations ρ correspond to
Dirichlet characters, which are complex-valued characters χ of (Z/mZ)×.
This correspondence is characterized by the relation ρ(Frobp) = χ(p) for all
p not dividing m.

Example 3.4.2 (A dihedral Artin representation). Recall from Example
3.1.4 that Gal(Q(i, 4

√
2)/Q)) is isomorphic to the dihedral group D8. The

group D8 has a two-dimensional representation, which sends r to

(
0 1
−1 0

)
and s to

(
0 1
1 0

)
. This can be visualized by thinking of D8 as the group of

2For the purposes of this question it is reasonable to demand that ρ be ramified at
only finitely many primes. See [Ram00] for a construction of an irreducible 2-dimensional
ρ which is ramified at infinitely many primes.
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r s

Figure 1: Generators for the dihedral group D8, pictured as symmetries of
the square.

symmetries of a square, cf. Figure 1. Thus we can construct a 2-dimensional
Artin representation

ρ : Gal(Q/Q)→ GL2(C)

which factors through Gal(Q(i, 4
√

2)/Q). For an odd prime p, p is unramified
in Q(i, 4

√
2), and we have the following explicit description of Frobp:

Frobp is the conjugacy class of



1, if p = a2 + 64b2,

r2, if p = a2 + 16b2 and b is odd,

rs, if p ≡ 3 mod 8,

r, if p ≡ 5 mod 8,

s, if p ≡ 7 mod 8.

Thus in this situation we have a complete answer to Question C. Inasmuch
as a representation of a group is determined by its character, the Galois
representation ρ is determined by the function σ 7→ tr ρ(σ). This function
takes the following values on Frobenius elements:

tr ρ(Frobp) =


2, if p = a2 + 64b2,

−2, if p = a2 + 16b2, b odd,

0, otherwise.

(3.4.1)

3.5 p-adic Galois representations

An Artin representation ρ : Gal(K/K) → GLn(C) always has a finite im-
age. However, it is possible to construct Galois representations, even one-
dimensional ones, having an infinite image. To do that, we change the target
from a matrix group over C to one over the p-adic numbers. For a prime p,
the p-adic integers Zp are defined as the inverse limit

Zp = lim←−
m

Z/pmZ.

13



Alternatively, Zp is the completion of Z with respect to the p-adic abso-
lute value n 7→ |n|p, which for n 6= 0 is defined as the reciprocal of the
largest power of p which divides n, and |0|p = 0. A p-adic integer can

be expressed uniquely as a series a0 + a1p + a2p
2 + . . . , with each “digit”

ai ∈ {0, 1, . . . , p− 1}. Let Qp be the fraction field of Zp; this is the field of
p-adic numbers.

A p-adic Galois representation has matrix entries in the field Qp or a
finite extension thereof. As a general rule, p-adic representations are far
richer than Artin representations, because the topologies on Gal(K/K) and
GLn(Qp) are more compatible. (The first group is profinite, and the second
is locally profinite.)

At this point we caution the reader that when discussing p-adic Galois
representations ρ, we will use the letter ` to denote a varying prime, so that
for instance Question C will be about determining the conjugacy class of
ρ(Frob`) for unramified primes `.

Example 3.5.1 (The p-adic cyclotomic character). The p-adic cyclotomic
character ρcycl is the one-dimensional representation

Gal(Q/Q)→ Z×p ↪→ Q×p = GL1(Qp)

defined as follows: if σ ∈ Gal(Q/Q), then ρcycl(σ) = a0 + a1p+ a2p
2 + · · · ∈

Z×p is characterized by the relation

σ(ζpn) = ζ
a0+a1p+···+an−1pn−1

pn for all n,

where ζpn = e2πi/pn . The extensions Q(ζpn)/Q are ramified only at p,
[Was97, Proposition 2.3]. For a prime ` 6= p, we have that Frob`(ζpn) ≡
ζ`pn modulo a prime of Q(ζpn) above `, and this is enough to show that

Frob`(ζpn) = ζ`pn [Was97, Lemma 2.12]. It follows that ρcycl(Frob`) = `,
which answers Question C for ρcycl.

3.6 Galois representations coming from geometry

Algebraic varieties over number fields provide a rich source of Galois repre-
sentations. As an example, let f(x) be a monic polynomial of degree 3 with
integer coefficients, and consider the plane curve y2 = f(x). Assume that
f(x) has no repeated roots, so that this curve is nonsingular. Let E be the
completion of this curve, which is obtained by adding a point ∞. For any
field K containing Q, the set E(K) of points of E with coordinates in K has

14



the structure of an abelian group, with identity element ∞. In this group,
three points sum to ∞ exactly when they are collinear.

The group of complex points E(C) is isomorphic to a complex torus:
E(C) ∼= S1 × S1. For a positive integer n, the group E[n] of n-torsion
elements of E(C) is therefore isomorphic to Z/nZ× Z/nZ. These “torsion
points” all lie in E(Q). For instance, E[2] consists of the origin ∞ together
with the three points (α, 0), where α runs through the roots of f(x). The
group Gal(Q/Q) acts on E(Q) coordinate-wise, and preserves E[n]. The
action of Gal(Q/Q) on E[n] determines a Galois representation with values
in GL2(Z/nZ).

Let p be a prime. Define the p-adic Tate module

TpE = lim←−
m

E[pm] ∼= Zp × Zp = Z2
p.

The Tate module admits a continuous action of Gal(Q/Q). Viewing Z2
p

inside Q2
p, we obtain a Galois representation ρ : Gal(Q/Q) → GL2(Qp).

In contrast to the Artin representations, the image of ρ is infinite. It so
happens that ρ is unramified at primes ` not dividing p∆, where ∆ is the
discriminant of f(x). For such `, the characteristic polynomial of the 2× 2
matrix ρ(Frob`) has the following shape:

det(xI − ρ(Frob`)) = x2 − (`+ 1−N`)x+ `, (3.6.1)

where N` is the number of points of E with coordinates in the finite field
F`.

More generally, let X be an algebraic variety defined over the rationals.
For our purposes this is a system of polynomial equations with rational
coefficients. For each i ≥ 0 there is a finite-dimensional Qp-vector space
H i(XQ,ét,Qp) (the ith p-adic étale cohomology group) admitting a continu-

ous action of Gal(Q/Q) which is unramified outside of a finite set of primes,
namely p and those primes for which the reduction of X is singular.

Étale cohomology was introduced by Grothendieck in order to prove the
Weil conjectures for a variety defined over a finite field. It is not quite
the same as the usual (singular) cohomology of a topological space; the
precise definition is very technical3. Nonetheless, for a variety X, the étale

3Here’s a quick summary: If X is an algebraic variety one has an étale site Xét, which
is something like a topological space without any points. The “open subsets” of Xét are
not subsets at all but rather morphisms U → X which are étale (flat and unramified).
Then one can define a sheaf F on the étale site: this is an assignment of a set F(U)
to each U → X, together with the appropriate restriction maps, which satisfies the sheaf
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cohomology groups are the same as the singular cohomology groups of the
topological space X(C). Thus when X = E is our elliptic curve, so that
E(C) ∼= S1×S1, we have H1(EQ,ét,Z/nZ) ∼= H1(S1×S1,Z/nZ) ∼= Z/nZ×
Z/nZ. In fact H1(EQ,ét,Zp) is canonically isomorphic to the Zp-dual of the
p-adic Tate module TpE.

It is not much of an exaggeration to say that the only known con-
structions of Galois representations involve the étale cohomology of vari-
eties in some way. (An Artin representation such as that appearing in
Example 3.4.2 comes from the degree zero étale cohomology of a zero-
dimensional variety!) There is a precise sense in which a Galois represen-
tation ρ : Gal(Q/Q) → GLn(Qp) appears to come from geometry, or is
“geometric” (we refer here to the property of being potentially semi-stable
at p, [Fon94]). The Fontaine-Mazur conjecture [FM95] asserts that an irre-
ducible p-adic Galois representation which is geometric in this sense always
appears as a subquotient of some H i(XQ,ét,Qp).

4 Elliptic modular forms

4.1 Basic definition and examples

The theory of modular forms developed in a context completely unrelated
to the arithmetic questions posed in this article. They arose in relation to
the elliptic functions investigated by Legendre, Abel, Jacobi and others in
the early 19th century, which in turn arose in association with finding the
arc length of an ellipse. For an introduction to the elementary theory of
modular forms, we recommend the book [Ser73].

A modular form is a certain kind of holomorphic function on the upper
half-plane H = {τ |Im τ > 0}, which we view simultaneously as a complex
manifold and as a Riemannian manifold equipped with the hyperbolic metric
y−2(dx2 + dy2). The automorphism group of H is the group of Möbius

transformations τ 7→ γ ·τ = (aτ +b)/(cτ +d), where γ =

(
a b
c d

)
∈ SL2(R).

In brief, a holomorphic function f(τ) on H is a modular form if it transforms
in a certain way under a subgroup of SL2(R).

axioms. From here it is more or less formal to define the cohomology Hi(Xét,F) whenever
F is a sheaf of abelian groups. A special case is when F = Z/nZ is a constant sheaf.
One defines Hi(Xét,Zp) as the inverse limit lim←−H

i(Xét,Z/p
nZ), and Hi(Xét,Qp) as

Hi(Xét,Zp)⊗Zp Qp. The standard reference for étale cohomology is [Mil80]. See also the
review [Blo81].
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Example 4.1.1. Before formally defining modular forms, we give an exam-
ple. For τ ∈ H, the series

θ(τ) =
∑
n∈Z

eiπτn
2

converges to a holomorphic function on H. This is an example of a Jacobi
theta function. Besides the evident relation θ(τ + 2) = θ(τ), it satisfies the
transformation law

θ(−1/τ) =
√
τ/iθ(τ), (4.1.1)

which can be proved using Poisson summation. The automorphisms τ 7→

τ + 2 and τ 7→ −1/τ of H can be represented by the matrices

(
1 2
0 1

)
and(

0 1
−1 0

)
, respectively. Thus θ admits a transformation law with respect to

the subgroup of SL2(Z) generated by those two matrices.
The modular form θ(τ) is related to the Riemann zeta function ζ(s) via

π−s/2Γ(s/2)ζ(s) =

∫ ∞
0

1

2
(θ(it)− 1)t

s
2
dt

t
. (4.1.2)

Riemann’s second proof of the analytic continuation and functional equation
of ζ(s) relies on this relation. The main idea is to break up the integral Eq.
(4.1.2) into two pieces, one from 0 to 1 and the other from 1 to ∞. Then
the transformation t 7→ 1/t is used on the former, using (4.1.1). The result
is

π−s/2Γ(s/2)ζ(s) =

∫ ∞
1

(ts/2 + t(1−s)/2)
θ(it)− 1

2

dt

t
− 1

s
− 1

1− s
.

Since θ(it) − 1 = O(e−πt) as t → ∞, π−s/2Γ(s/2)ζ(s) extends to a mero-
morphic function on C invariant under s 7→ 1− s.

We will only define modular forms associated to subgroups of SL2(R) of
a very particular shape. For a nonzero integer N , let

Γ1(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ a, d ≡ 1 mod N, c ≡ 0 mod N

}
. (4.1.3)

This is a subgroup of SL2(Z) of finite index.
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Definition 4.1.2. Let N, k ≥ 1 be integers. A modular form of weight k
and level N is a holomorphic function g on H which satisfies

g

(
aτ + b

cτ + d

)
= (cτ + d)kg(τ)

for all

(
a b
c d

)
∈ Γ1(N), and which is “holomorphic at the cusps”.

Since

(
1 1
0 1

)
∈ Γ1(N), a modular form g(τ) satisfies g(τ + 1) = g(τ),

so that g is a function of the parameter q = e2πiτ . “Holomorphic at the
cusps” means that the Fourier expansion of g(τ), a priori a series of the
form

∑
n∈Z an(g)qn, has an(g) = 0 for n < 0; a similar condition is imposed

for g ◦ γ for all γ ∈ SL2(Z). We say g is a cusp form (or that g is cuspidal)
if it is zero at the cusps, meaning that a0(g ◦ γ) = 0 as well.

If g is a modular form of weight k, we set L(g, s) =
∑

n≥1 an(g)n−s,
which turns out to be convergent for Re s > k. A manipulation along the
lines of Example 4.1.1 shows that L(g, s) admits an analytic continuation
to all of C (entire if g is a cusp form) and satisfies a functional equation
relating L(g, k − s) to L(g̃, s), where g̃(τ) = g(−1/(Nτ)).

Example 4.1.3 (Eisenstein series). Let k ≥ 4 be even. For τ ∈ H, the
series

Gk(τ) =
∑

(m,n)∈Z2\{(0,0)}

1

(mτ + n)k

defines a holomorphic function of τ , which turns out to be a modular form
of weight k and level 1. That is, it satisfies

Gk

(
aτ + b

cτ + d

)
= (cτ + d)kGk(τ)

for all

(
a b
c d

)
∈ Γ1(1) = SL2(Z). Its Fourier expansion is

Gk(τ) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)
,

where q = e2πiτ , σk−1(n) =
∑

d|n d
k−1 and Bk ∈ Q is the kth Bernoulli num-

ber. If we normalize the Eisenstein series by setting Ek(τ) = Gk(τ)/(2ζ(k)),
then the Fourier expansion of Ek(τ) has rational coefficients and constant
term 1. Then Ek is a modular form of weight k and level 1, and L(Ek, s) =
ζ(s)ζ(s− k + 1).
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Example 4.1.4 (The cusp form ∆). The Eisenstein series Ek are not cusp
forms, since their Fourier expansions have nonzero constant term. Define
∆(τ) = (E4(τ)3 − E6(τ)2)/1728; this is a cusp form of weight 12 and level
1. It has integral Fourier coefficients:

∆(τ) = q
∏
n≥1

(1− qn)24 =
∑
n≥1

τ(n)qn,

where the sequence4 τ(n) for n ≥ 1 starts out as 1,−24, 252,−1472, . . . . It
was observed by Ramanujan and proved by Mordell that τ(mn) = τ(m)τ(n)
when m and n are relatively prime [Ser73, Cor. to Prop. 14].

4.2 Some modular forms of weight 1

If θ is the Jacobi theta function of Example 4.1.1, then

θ(2τ)2 =
∑
a,b∈Z

qa
2+b2

is a modular form of weight 1 and level 4.
This is an instance of a very general construction involving rings of in-

tegers in quadratic fields, such as Z[i]. Suppose α ⊂ Z[i] is nonzero, and
χ : (Z[i]/(α))× → C× is a homomorphism. Assume that χ(i) = 1. Extend
χ to a multiplicative function on Z[i] by declaring it to be 0 on elements
which are not prime to α. It is a result of Hecke [Hec27] that the series

θχ(τ) =
1

4

∑
a,b∈Z

χ(a+ bi)qa
2+b2

is a modular form of weight 1 and level 4 |α|2, and if χ is nontrivial then θχ
is a cusp form. (Note that if χ(i) 6= 1, this series is 0.)

Example 4.2.1 (A cuspidal theta function). The abelian group (Z[i]/8Z[i])×

has generators 3, 5, i, and 1 + 2i, of orders 2, 2, 4, and 4, respectively. Let
χ : (Z[i]/8Z[i])× → C× be the unique homomorphism which is trivial on the
first three generators, and which sends 1 + 2i to i. Then θχ is a modular
form of weight 1 and level 256. For a prime p, the pth coefficient in the
Fourier expansion of θχ is

ap(θχ) =

{
χ(a+ bi) + χ(a− bi), p ≡ 1 mod 4, p = a2 + b2,

0, p ≡ 3 mod 4 or p = 2.

4The τ in τ(n) has nothing to do with the complex variable we write as τ . Both
notations are traditional.
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Now if p ≡ 1 (mod 4), we can write p = a2 + b2 with a odd and b even. A
short calculation shows that

ap(θχ) =


2, 8|b
−2, 4|b but 8 - b,
0, 4 - b.

Referring back to (3.4.1), we find that for all odd primes p,

ap(θχ) = tr ρ(Frobp)

for the Galois representation ρ constructed in Example 3.4.2. This equation
hints at an extraordinary relationship between modular forms and represen-
tations of Gal(Q/Q).

4.3 Hecke operators

Let Mk(N) (resp., Sk(N)) denote the space of modular forms (resp., cusp
forms) of weight k and levelN . ThenMk(N) and Sk(N) are finite-dimensional
vector spaces over C. For each prime p not dividing N the Hecke operators
Tp and 〈p〉 are endomorphisms of Mk(N) defined by

(Tpg)(τ) = pk−1g(pτ) +
1

p

p−1∑
j=0

g

(
τ + j

p

)
(〈p〉g)(τ) = g(γτ)(cτ + d)−k.

Here γ =

(
a b
c d

)
is any element of SL2(Z) with c ≡ 0 (mod N) and d ≡ p

(mod N). There are similar operators Tn and 〈n〉 for all integers n which
are relatively prime to N . The Hecke operators preserve Mk(N) and Sk(N).

These operators commute with one another. Furthermore there is a
Hermitian inner product on Sk(N) relative to which these operators are
normal. Therefore the Tn and 〈n〉 are simultaneously diagonalizable on
Sk(N). A modular form is an eigenform if it is an eigenvector5 for all the
Hecke operators. Suppose g =

∑
n≥1 an(g)qn is a cuspidal eigenform which

is normalized, meaning that a1(g) = 1. Then for all n relatively prime to
N , the eigenvalue of Tn on g is just an(g).

5There are also Hecke operators indexed by primes which do divide N ; an eigenform
should be an eigenvector for these also.
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If g(τ) ∈ Mk(N) is an eigenform, then there exists a homomorphism
χ : (Z/NZ)× → C× (a Dirichlet character) such that 〈n〉g(τ) = χ(n)g(τ)
for all n relatively prime to N . Then g satisfies

g

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kg(τ)

for all matrices

(
a b
c d

)
lying in the group

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod N

}
.

We say that χ is the character of g(τ).
It so happens that the space S12(1) is one-dimensional, spanned by ∆.

Thus it must necessarily be an eigenform for all the Hecke operators Tn,
with eigenvalue τ(n). This explains why τ(mn) = τ(m)τ(n) when m and n
are relatively prime.

Let g(τ) ∈ Sk(N) have Fourier expansion
∑

n≥1 anq
n. Assume that

a1 = 1. It is formal to show that if g(τ) is an eigenform with character χ,
then L(g, s) can be written as an Euler product

L(g, s) =
∏
p

Lp(g, s),

where Lp(g, s) is the reciprocal of a polynomial in p−s of degree at most 2.
For every p not dividing N ,

Lp(g, s) =
1

1− app−s + χ(p)pk−2s
.

See for instance [Kob84, Prop. 36].
Remarkably, if g(τ) is an eigenform, then there exists a number field F

for which the Hecke eigenvalues of g(τ) all lie in OF .

4.4 Galois representations associated with modular forms

The following theorem of Deligne and Serre generalizes the phenomenon
we observed in Example 4.2.1. For a number field F and a prime p of F ,
we let Fp denote the completion of F with respect to the p-adic absolute
value. It is a finite extension of a p-adic field Qp. We remark here that a
two-dimensional Galois representation ρ is even or odd as det ρ(c) is 1 or −1
respectively, where c is complex conjugation.
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Theorem 4.4.1. Let g(τ) =
∑

n≥1 an(g)qn be a cuspidal eigenform of
weight k, level N , and character χ : (Z/NZ)× → C×, normalized so that
a1 = 1. Let F be a number field containing the an(g) and the values of χ.

1. Suppose k ≥ 2. Then for all primes p of F there exists an odd irre-
ducible Galois representation

ρg,p : Gal(Q/Q)→ GL2(Fp)

such that for all ` prime to N and to p, ρg,p is unramified at `, and
the characteristic polynomial of ρg,p(Frob`) is x2 − a`(g)x+ χ(`)`k−1.

2. Suppose k = 1. Then there exists an odd irreducible Galois represen-
tation

ρg : Gal(Q/Q)→ GL2(C)

such that for all ` prime to N , ρg is unramified at `, and the charac-
teristic polynomial of ρg(Frob`) is x2 − a`(g)x+ χ(`).

These two statements are proved in [Del71] and [DS74], respectively. In
the first statement, the image of ρg,p is infinite. In the second statement, ρg
is an Artin representation, whose image is finite.

Example 4.4.2 (An icosahedral cusp form). Let f(x) be a polynomial
of degree 5 with rational coefficients, and let K be its splitting field. Then
Gal(K/Q) is a subgroup of S5, the group of permutations of the five roots of
f(x). Let us assume that Gal(K/Q) is isomorphic to A5, the group of even
permutations. The group A5 doesn’t have any irreducible 2-dimensional
representations, but there exists an extension Ã5 of A5 by the cyclic group
of order 4 which does. It can be shown that there is an irreducible Artin
representation ρ : Gal(Q/Q) → GL2(C) whose image is isomorphic to Ã5,
such that in the diagram

GL2(C)

P

��

Gal(Q/Q)

ρ
77ppppppppppp

Pρ ''NNNNNNNNNNN

PGL2(C),

where P is the projection homomorphism, the fixed field of the kernel of Pρ
is K. The Artin representation ρ is odd when Pρ(c) 6= 1 (c being complex
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conjugation), which is equivalent to the condition that c act nontrivially on
the roots of f(x). Assume this is the case. Then since the action of c on the
roots of f(x) is an even permutation of order 2, it must be the product of
two transpositions. We deduce that f(x) has exactly one real root.

Recall that Theorem 4.4.1 associates an odd irreducible Artin represen-
tation ρg to a cuspidal eigenform g of weight 1. Does ρ = ρg for such an
eigenform g? This question was answered affirmatively by Buhler [Buh78]
for the polynomial

f(x) = x5 + 10x3 − 10x2 + 35x− 18.

In this case ρ = ρg, where g is a cuspidal eigenform

g(τ) = q − iq3 − ijq7 − q9 + jq13 + i(1− j)q19 − jq21 + . . . ,

where i =
√
−1 and j = (1 +

√
5)/2. This g belongs to S1(800) and its

character χ factors through a homomorphism (Z/100Z)× → C×. A prime
` 6= 2, 5 splits in K if and only if ρ(Frob`) is a scalar matrix. Since ρ(Frob`)
has finite order, it is semisimple, and therefore it is scalar if and only if
its characteristic polynomial has zero discriminant. The characteristic poly-
nomial of ρ(Frob`) is x2 − a`(g)x + χ(`), with discriminant a`(g)2 − 4χ(`).
Therefore we have the following answer to Question B: ` splits in K if and
only if a`(g)2 = 4χ(`).

Example 4.4.3 (The Galois representation associated to ∆). Recall from
Example 4.1.4 the cuspidal eigenform ∆(τ) =

∑
n≥1 τ(n)qn of weight 12

and level 1 (with trivial character). Theorem 4.4.1 associates to ∆ a p-
adic representation ρ∆,p for all primes p. This can be reduced modulo p
to obtain a mod p Galois representation ρ∆,p : Gal(Q/Q) → GL2(Z/pZ),
whose kernel cuts out a number field which is ramified only at p. It is
a difficult computational problem to compute this number field. For some
small primes p this has been carried out in [Bos11], at least for the associated
projective representation Pρ∆,p : Gal(Q/Q) → PGL2(Z/pZ). For instance
if p = 11, the fixed field of the kernel of Pρ∆,p is the splitting field of

f(x) = x12 − 4x11 + 55x9 − 165x8 + 264x7 − 341x6

+330x5 − 165x4 − 55x3 + 99x2 − 41x− 111.

From this we can derive a partial answer to Question A for this f(x),
valid for almost all primes6 `: if f(x) splits modulo ` then Pρ∆,11(Frob`)

6“Almost all primes” means “All but finitely many primes”.
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is the identity, so ρ∆,11 is a scalar aI2, where a ∈ Z/11Z. The charac-
teristic polynomial of ρ∆(Frob`) is x2 − τ(`)x + `11. Therefore 2a ≡ τ(`)
(mod 11) and a2 ≡ `11 ≡ ` (mod 11), and so we have τ(`)2 ≡ 4` (mod 11).
This is an interesting necessary condition for f(x) to split mod `. Unfortu-
nately the converse isn’t true: if τ(`)2 ≡ 4` (mod 11), the most we can say

about ρ∆,11(Frob`) is that it is conjugate to a matrix of the form

(
a b
0 a

)
(mod 11).

4.5 Modular Galois representations

Theorem 4.4.1 says that to every cuspidal eigenform g and prime number
p there exists an associated two-dimensional odd irreducible p-adic Galois
representation ρ, such that ρ is unramified at ` for almost all primes `, and
the conjugacy class of ρ(Frob`) can be read off from the eigenvalues of T`
and 〈`〉 on g. Let us call an odd irreducible Galois representation modular
if it arises this way. Thus we have an affirmative answer to Question C for
all modular Galois representations.

The question of which Galois representations are modular took on a
special urgency in the 1980s, because of the remarkable link to Fermat’s Last
Theorem. Recall from §3.6 that if E is an elliptic curve over the rational
numbers, and p is a prime, then the Tate module TpE is a two-dimensional
p-adic Galois representation. We say that E is modular if TpE is. Thus E
is modular if and only if there exists a cuspidal eigenform g of weight k and
character χ such that for almost all primes `, the characteristic polynomial
of Frob` on TpE is x2 − a`(g)x + χ(`)`k−1. Comparing this with (3.6.1),
we find that E is modular if and only if there exists a cuspidal eigenform
g of weight 2 and trivial character, such that for almost all primes `, the
number of points on E with coordinates in F` is ` + 1 − a`(g). Note that
this statement is independent of the prime p!

Conjecture 4.5.1 (The Shimura–Taniyama–Weil conjecture). Every ellip-
tic curve defined over the rational numbers is modular.

Suppose p ≥ 3 is prime and a, b, c are nonzero integers with ap+ bp = cp.
It was pointed out by Frey [Fre86] that (possibly after normalizing the triple
(a, b, c) a little bit) the elliptic curve E with equation y2 = x(x−ap)(x+ bp)
has unusual properties suggesting that it could not be modular. These
properties are related to the fact that the discriminant of the cubic x(x −
ap)(x+bp) is (abc)2p, a perfect pth power. Ribet [Rib90] showed that E is not
modular, using subtle properties of modular forms. The next breakthrough
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came with Wiles [Wil95] and Taylor-Wiles [TW95], who showed that E
is modular after all! With this contradiction fell Fermat’s Last Theorem.
In fact [TW95] proved the modularity of any semistable elliptic curve, a
class of elliptic curves containing Frey’s. The full Shimura–Taniyama–Weil
conjecture (applying to all elliptic curves over Q) was proved in [BCDT01].

The Tate module of an elliptic curve gives an odd irreducible p-adic
representation ρ : Gal(Q/Q) → GL2(Qp). Could it be the case that every
odd irreducible p-adic representation ρ is modular? Not quite, because there
are a few necessary conditions. One is that ρ be unramified at all but finitely
many primes. There is also the “geometric” condition we mentioned at the
end of §3.6. A modular representation satisfies both conditions.

Conjecture 4.5.2 (Fontaine-Mazur, [FM95]). Let F/Qp be a finite exten-
sion, and let ρ : Gal(Q/Q)→ GL2(F ) be an odd irreducible geometric Galois
representation which is unramified at all but finitely many primes. Then ρ
is modular.

Many cases of this conjecture were proved independently by Emerton
[Eme06] and Kisin [Kis09].

If ρ : Gal(Q/Q) → GL2(C) is an irreducible odd Artin representation,
then ρ is modular if and only if there exists a cuspidal eigenform g of weight
1 such that tr ρ(Frobp) = ap(g) for almost all primes p. This is the two-
dimensional case of Artin’s conjecture, which can be stated for all dimensions
in terms of the analytic continuation of an L-function attached to ρ. (The
one-dimensional case of Artin’s conjecture is settled by class field theory.)
Two-dimensional Artin representations can be classified by the projective
image of ρ, which is a finite subgroup in PGL2(C); this can be dihedral
(Dn), tetrahedral (A4), octahedral (S4), or icosahedral (A5). In the dihe-
dral case, the required eigenform g is a theta function, similar to the one
appearing in Example 4.2.1. The tetrahedral and octahedral cases were
treated by Langlands [Lan80] and Tunnell [Tun81], respectively, using an
analytic technique known as base change; these results were used in Wiles’
attack on Fermat’s Last Theorem. Much more difficult is the icosahedral
case, essentially because A5 is nonsolvable. All cases of Artin’s conjecture for
two-dimensional odd Artin representations were finally settled in [KW09b].
Thus Question A is settled for polynomials f(x) of degree ≤ 5 with Galois
group A5 having exactly one real root, as in Example 4.4.2.
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4.6 Modular curves

Here we sketch out some of the ideas behind the proof of Theorem 4.4.1,
concerning the existence of Galois representations attached to cuspidal eigen-
forms.

Modular forms are holomorphic functions on H which admit symmetries
with respect to a finite-index subgroup Γ ⊂ SL2(Z). It stands to reason that
they correspond to objects defined on the quotient Γ\H, a (non-compact)
Riemann surface. To illustrate this, suppose that g(τ) is a modular form of
weight 2 and level N . Then the differential form g(τ)dτ on H is invariant
under Γ1(N), and so descends to a differential form on Γ1(N)\H.

The curve Γ1(N)\H can be compactified by adding a finite set of points
called cusps, one for each element of Γ1(N)\P1(Q). The result is a compact
Riemann surface called X1(N), whose underlying set of points is Γ1(N)\(H∪
P1(Q)). If g(τ) happens to be a cusp form, then g(τ)dτ extends to a differ-
ential form on X1(N). In fact the space S2(N) of cusp forms of weight 2 and
level N is isomorphic to the space H0(X1(N),Ω1

X1(N)/C) of (holomorphic)

differential forms on X1(N).
The Riemann surfaces X1(N) are examples of modular curves. Modular

curves are defined in general as those Riemann surfaces arising as the quo-
tient of H by a congruence subgroup of SL2(Z) (that is, a subgroup defined
by congruence conditions modulo N), along with their compactifications.
Any hyperbolic Riemann surface is a quotient of H by some discrete sub-
group Γ ⊂ SL2(R), but modular curves are distinguished by the condition
that Γ be conjugate to a congruence subgroup of SL2(Z).

Modular curves come equipped with a family of multivalued functions
known as Hecke correspondences. For an element τ ∈ H ∪ P1(Q), let [τ ]
denote its image in X1(N). If γ ∈ GL2(Q) has positive determinant, then
[τ ] 7→ [γ(τ)] is not generally a well-defined function X1(N)→ X1(N), but it
only takes finitely many values. This is the Hecke correspondence associated
to γ; it only depends on the double coset Γ1(N)γΓ1(N). For each prime

p - N , the Hecke correspondence associated to the matrix

(
p 0
0 1

)
is denoted

Tp, and the Hecke correspondence associated to

(
a b
c d

)
∈ SL2(Z) (c ≡ 0

(mod N), d ≡ p (mod N)) is denoted 〈p〉. Each Hecke correspondence
determines an endomorphism of the cohomology group H1(X1(N),Q).

We can now sketch a proof of Theorem 4.4.1 in the case of weight 2,
which synthesizes a study of modular curves from the analytic and algebraic
points of view. On the analytic side we have the Hodge decomposition for
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the compact Riemann surface X1(N):

H1(X1(N),Q)⊗Q C ∼= H1,0 ⊕H0,1,

where H1,0 = H0(X1(N),Ω1
X1(N)/C) ∼= S2(N) and H0,1 = H

1,0
. The spaces

H1(X1(N),Q) and S2(N) come equipped with actions by the Hecke oper-
ators Tp and 〈p〉 for p - N , and the isomorphism above is compatible with
the action of these operators. The conclusion is that systems of eigenval-
ues coming from cuspidal eigenforms of weight 2 and level N appear in
H1(X1(N),C) with multiplicity 2. (There is a similar statement for forms
of higher weight; one replaces the C in H1(X1(N),C) with a non-constant
coefficient system.) Since H1(X1(N),Q) is a finite-dimensional vector space
over Q, the eigenvalues of the Hecke operators Tp and 〈p〉 all belong to a
single number field, and therefore the same is true for Hecke eigenvalues of
cusp forms.

On the algebraic side, we have the remarkable fact that X1(N) is a pro-
jective algebraic curve which can be defined over the rational numbers. All
compact Riemann surfaces are projective algebraic curves – this is Riemann’s
existence theorem. Thus X1(N) can be realized as the set of solutions to
a system of polynomial equations. Much harder is the statement that the
coefficients of these polynomials can be taken to be rational numbers. This
is related to the interpretation of modular curves as moduli spaces for ellip-
tic curves with level structure. In this interpretation, the point [τ ] of Y1(N)
corresponds to the elliptic curve C/(Z ⊕ Zτ) together with the N -torsion
point 1/N . The problem of classifying elliptic curves E together with a
point of order N can be posed over the rational numbers, and its solution
is a rational model for Y1(N). With some care Y1(N) can be defined as the
solution to a moduli problem over the integers, which is representable by
a scheme over Spec Z which is smooth modulo p for p - N . The definitive
reference for this topic is [KM85].

As a result, we can form the étale cohomology H1(X1(N)ét,Qp) as in
§3.6: this is a representation of Gal(Q/Q) which is unramified outside of pN .
Furthermore, the Hecke correspondences are also defined over the rational
numbers, which means that their action on H1(X1(N)ét,Qp) commute with
the action of Galois.

The analytic and algebraic stories are linked together by means of the
following comparison isomorphism:

H1(X1(N),Q)⊗Qp
∼= H1(X1(N)ét,Qp). (4.6.1)

Suppose now that g is a cuspidal eigenform of weight 2 and level N . For
simplicity assume that the Hecke eigenvalues of g lie in Q. This means that
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there exists a two-dimensional Hecke-eigenspace V ⊂ H1(X1(N),Q) with
the same Hecke eigenvalues as g. Let Vp be the image of V ⊗Q Qp under
(4.6.1). Since the actions of the Hecke operators and Gal(Q/Q) commute,
the latter preserves Vp. The action of Gal(Q/Q) on the dual of Vp is the
Galois representation ρg,p required by Theorem 4.4.1. One still needs to
verify that for all primes ` not dividing pN , the characteristic polynomial
of ρg,p(Frob`) is as claimed. This is a consequence of the Eichler–Shimura
relation, for which we refer the reader to [PS73].

4.7 Interlude: Automorphic representations

This article began with a discussion of the problem of determining the split-
ting behavior of a polynomial modulo a prime (Question A). This was refined
into a question about the splitting behavior of primes in extensions of num-
ber fields (Question B). A further refinement posed the same problem in
terms of Galois representations (Question C): given a Galois representation
ρ : Gal(K/K)→ GLn(F ), is there a rule for determining the conjugacy class
of ρ(Frobp) for the unramified primes p?

Here is a summary of what we have discussed so far concerning Question
C:

• The case n = 1 finds a satisfactory solution in class field theory. For
instance if K = Q and F = C, characters ρ : Gal(Q/Q) → C× are
essentially in correspondence with Dirichlet characters χ; the corre-
spondence is characterized by ρ(Frob`) = χ(`) for almost every `, as
in Example 3.4.1.

• In the case n = 2 and K = Q, a large class of p-adic Galois representa-
tions are modular, which means there exists a corresponding cuspidal
eigenform g of some weight k, level N , and character χ on (Z/NZ)×.
Then for every prime ` - Np, the characteristic polynomial of ρ(Frob`)
is x2 − a`(g)x+ χ(`)`k−1.

Dirichlet characters and eigenforms, though they seem like completely
different entities, are but two instances of a class of objects called automor-
phic representations, which belong to the realm of harmonic analysis. The
study of automorphic representations and their relation to Galois groups
is known as the Langlands program, after Robert Langlands, who laid out
a series of sweeping conjectures unifying the phenomena described above.
See [Gel84] for a detailed introduction. Before saying more, let us highlight
some of the properties shared by Dirichlet characters and eigenforms:
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• Local data. A Dirichlet character χ can be described in terms of local
data χ(p) for every prime p. Similarly, an eigenform g can be described
in terms of its eigenvalues ap(g) and χ(p) for the Hecke operators Tp
and 〈p〉, respectively.

• L-functions. A Dirichlet character χ has an L-function L(χ, s), which
factors as an Euler product

∏
p(1 − χ(p)p−s)−1 for Re s > 1, where

the pth Euler factor depends on the local data of χ at p. Similarly,
an eigenform g has an L-function L(g, s), which factors as an Euler
product

∏
p(1 − ap(g)p−s + χ(p)pk−2s)−1 for Re s > k. Both L(χ, s)

and L(g, s) admit an analytic continuation and functional equation.
In fact L(χ, s) (resp., L(g, s)) is entire if χ is nontrivial (resp, if g is
cuspidal).

• Galois representations. Both Dirichlet characters and eigenforms
have associated Galois representations ρ, of dimensions 1 and 2 respec-
tively, where for almost all primes p, the conjugacy class of ρ(Frobp)
is determined by the local data at p of the character or eigenform.

An automorphic representation, then, must be some sort of entity π
which has local components πp for all primes p, as well as an L-function
L(π, s) =

∏
p L(πp, s), initially convergent for Re s � 0, but which has

an analytic continuation and functional equation. For some automorphic
representations (the algebraic ones), we expect there exists a corresponding
Galois representation ρ, for which the conjugacy class ρ(Frobp) is determined
by πp.

We had mentioned that automorphic representations belong to the realm
of harmonic analysis. In harmonic analysis one starts with a measure space
X and considers the Hilbert space L2(X) of square-integrable7 functions
on X. If X has a measure-preserving right action by a group G, then
L2(X) becomes a unitary representation of G, via (g · f)(x) = f(xg), for
f ∈ L2(X), x ∈ X, g ∈ G. We are interested in the decomposition of L2(X)
into irreducible unitary G-modules. For instance if G = X = R/Z (acting
on itself by addition) then the irreducible unitary R/Z-modules appearing
in L2(R/Z) are 1-dimensional and spanned by the functions en(z) = e2πinz,
n ∈ Z. Any function f in L2(R/Z) has a Fourier expansion

f(z) =
∑
n∈Z

cn(f)en(z),

7Pedantic note: In practice one usually modifies this to “square-integrable modulo
center” after selecting a central character, in order for the theory to work properly.
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and so L2(R/Z) decomposes as a Hilbert direct sum of the one-dimensional
irreducible representations of R/Z. IfX = G = R, the situation is more sub-
tle: the unitary irreducible representations of R are the characters et(z) =
e2πitz, t ∈ R, but these do not belong to L2(R). Nevertheless, every
f ∈ L2(R) can be expressed as a Fourier transform:

f(z) =

∫
t∈R

f̂(t)et(z)dt.

One says that the representations et appear continuously in L2(R).
Now let G = SL2(R) and let Γ ⊂ G be a discrete subgroup of finite

covolume. (For instance, Γ could be a subgroup of SL2(Z) of finite index.)
The decomposition of L2(Γ\G) into unitary representations of G leads nat-
urally to modular forms on Γ. For the full story, see [Gel75, §2]. The basic
idea is that L2(Γ\G) has a discrete series part coming from modular forms,
and (if Γ\G is not compact) a continuous series part coming from Eisenstein
series. If g is a modular form of weight k for Γ, we can define a function
φg ∈ L2(Γ\SL2(R)), via

φg(γ) = (ci+ d)−kg

(
ai+ b

ci+ d

)
, γ =

(
a b
c d

)
, (4.7.1)

and then the G-module generated by φg is a so-called discrete series repre-
sentation of weight k. In fact there is a lovely decomposition of the discrete
series part of L2(Γ\G) into irreducible subspaces corresponding to modular
forms (along with their nonholomorphic cousins, the Maass forms).

Thus it is tempting to define a general automorphic representation as a
unitary representation of a Lie group G appearing in L2(Γ\G), where Γ ⊂ G
is a discrete subgroup. But this won’t quite suffice, because it isn’t clear
how the required local data at every prime p are going to appear.

The correct formalism is going to put all the prime numbers on an equal
footing with the infinite place of Q, and for this we need the adele ring A.
Recall that for each prime p, we have the field of p-adic numbers Qp. Define
also Q∞ = R, the completion of Q with respect to the usual metric. We
define A as the subring of

∏
p≤∞Qp consisting of those (ap)p≤∞ for which

ap ∈ Zp for almost all p. Note that A contains Q as a subring, embedded
diagonally.

Let n ≥ 1. The focus now shifts to the group GLn(A). An appropriate
choice of topology on GLn(A) gives it the structure of a nondiscrete locally
compact topological group. (This is not the topology induced by viewing
GLn(A) as a subgroup of

∏
p≤∞GLn(Qp).) We remark that the introduc-

tion of adeles into the study of algebraic groups is due to Weil [Wei82].
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Definition 4.7.1. An automorphic form on GLn is a function

φ : GLn(Q)\GLn(A)→ C

which is square-integrable relative to the pushforward of a Haar measure on
GLn(A) to the quotient GLn(Q)\GLn(A). Let L2 be the space of automor-
phic forms on GLn. An automorphic representation of GLn is an irreducible
representation of GLn(A) appearing in L2.

The notion of “appearing in” may be rather subtle owing to the existence
of the continuous series, as in the example above with X = G = R. Also
there is a notion of cuspidal automorphic form, involving a vanishing of
certain zeroth Fourier coefficients; an automorphic representation is called
cuspidal if it appears in the space L2

0 of cuspidal automorphic forms. Finally,
there is a more general notion of automorphic form on G, where G is any
reductive algebraic group.

For formal reasons, an irreducible representation π of GLn(A) decom-
poses as a “restricted tensor product” ⊗′p≤∞π∞, where πp is an irreducible
representation of GLn(Qp). Furthermore, for almost all p, πp is what is
known as an unramified principal series representation. For p 6= ∞, the
unramified principal series representations of GLn(Qp) are parametrized by
unordered n-tuples of complex numbers {αp,1, . . . , αp,n} (the Satake param-
eters). For each local πp there is an L-factor L(πp, s), which for unramified
principal series representations is

L(πp, s) =

n∏
i=1

(1− αp,ip−s)−1.

If π is a cuspidal automorphic representation, the global L-function L(π, s) =∏
p Lp(π, s), convergent for Re s � 0, admits an analytic continuation and

functional equation [GJ72].

Example 4.7.2 (Dirichlet characters as automorphic forms, and Hecke
characters). If n = 1, an automorphic form is a function on GL1(Q)\GL1(A) =
Q×\A×. We claim that

Q×\A× =
∏
p<∞

Z×p ×R×>0.

Indeed, if a = (ap)p≤∞ ∈ A×, we can find a unique rational number
γ so that |γ|p = |ap|p for all p < ∞ and γa∞ > 0. (Explicitly, γ =

sgn(a∞)
∏
p<∞ |ap|

−1
p .) Then γ−1a ∈

∏
p<∞ Z×p × R×>0. An automorphic
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representation of GL1 is called a Hecke character. It is just a character
χ : Q×\A× ∼=

∏
p<∞ Z×p ×R×>0 → C×.

Hecke characters may have infinite order. If χ has finite order, it van-
ishes on R×>0, and must therefore factor through some finite quotient group
of
∏
p<∞ Z×p , which by the Chinese remainder theorem is isomorphic to

(Z/NZ)× for some N ≥ 1. Thus finite-order Hecke characters are essen-
tially the same as Dirichlet characters. Every Hecke character takes the
form χ0χ∞, where χ0 is finite-order and χ∞ factors through a continuous
homomorphism R×>0 → C×.

These notions extend to a general number field K. Recall that a place
of K is either a prime of K or an embedding of K into C. For each place p
of K we have the completion Kp. When p is infinite, Kp is R or C. When
p is finite, Kp is a finite extension of Qp for some prime number p. Let Op

be its ring of integers, and let $ ∈ Op be a prime element. If χ is a Hecke
character of K, its L-function is

L(χ, s) =
∏

p unram.

(
1− χ($p)

Nps

)−1

.

The analytic continuation and functional equation of L(χ, s) was established
by Hecke himself, but Tate’s thesis [Cas67, Ch. XV] gave a new proof using
harmonic analysis on adele groups. Tate’s thesis laid the foundations for the
modern theory of automorphic representations.

Example 4.7.3 (Modular forms as automorphic forms). Let g be a modular
form of weight k. We may define an automorphic form φg on GL2 through
a formula similar to (4.7.1), see [Gel75, §3]. If g is a cuspidal eigenform,
the representation of GL2(A) spanned by translates of φg is an automorphic
representation πg. One gets a correspondence g 7→ πg between the set of
cuspidal eigenforms and the set of cuspidal automorphic representations of
GL2 which are discrete series at ∞. Under mild conditions on g, one has an
equality of L-functions L(g, s) = L(πg, s).

Conjecture 4.7.4 (Langlands Reciprocity). Let π be a cuspidal algebraic8

automorphic representation of GLn. Let p be a prime, and let ι : C →
Qp be a field isomorphism. Then there exists an irreducible p-adic Galois
representation

ρ : Gal(Q/Q)→ GLn(Qp),

8Algebraic is a certain condition on π∞ that we will not define here; in the case that
n = 1 and π = χ = χ0χ∞ is a Hecke character, it is the condition that χ∞(z) = zk for an
integer k. See [Clo90] for the precise definition.
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such that for almost all primes `, ρ is unramified at ` and the roots of the
characteristic polynomial of ρ(Frob`) are the images under ι of the Satake
parameters α`,1, . . . , α`,n of π`. Furthermore, ρ is “geometric”.

The converse to Conjecture 4.7.4 is the Fontaine-Mazur conjecture, which
generalizes Conjecture 4.5.2. Thus there is a conjectural bijection between
algebraic cuspidal automorphic representations of GLn and a certain class of
n-dimensional p-adic representations of Gal(Q/Q). Both conjectures remain
out of reach in the level of generality we have posed them. The situation
is much better understood when Q is replaced with the function field of a
curve defined over a finite field. There the analogues of Conjecture 4.7.4
and its converse were established by L. Lafforgue [Laf02], building on work
of Drinfeld.

Example 4.7.5 (Algebraic Maass forms). The simplest case of Conjecture
4.7.4 not accessible by current methods occurs when π is a cuspidal algebraic
automorphic representation of GL2 for which π∞ is a so-called principal se-
ries representation. Such π correspond to algebraic Maass forms. A Maass
form is an analytic (not holomorphic) function on Γ1(N)\H which is an
eigenvector for the Laplacian operator y−2(∂2/∂x2 + ∂2/∂y2); it is algebraic
if the eigenvalue is 1/4. A finer form of Conjecture 4.7.4 (see [Gel97, §2])
predicts a correspondence between two-dimensional even Artin representa-
tions and cuspidal algebraic Maass eigenforms. Nobody has any idea how to
prove the correspondence in those instances where the Artin representation
is of icosahedral type. As an example, the polynomial

f(x) = x5 − x4 − 780x3 − 1795x2 + 3106x+ 344

has Galois group A5. As in Example 4.4.2, there is a corresponding Artin
represention ρ : Gal(Q/Q)→ GL2(C); it happens to be unramified outside
the single prime 1951 (see [DM06]). But this time f(x) has all real roots, so
ρ is even. Conjecturally, there exists a Maass form

g(x+ iy) =
∑
n6=0

an
√
yK0(2π |n| y)e2πinx

for the group Γ1(1951) such that ap = tr ρ(Frobp) for all primes p 6= 1951.
Here K0(y) is a Bessel function:

K0(y) =
1

2

∫ ∞
0

exp

(
−y

2

(
t+

1

t

))
dt

t
, y > 0.
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5 The cohomology of arithmetic manifolds

5.1 Arithmetic manifolds for GLn

In §4.6 we discussed the special role that modular curves play in the proof
of Theorem 4.4.1. Recall that the Riemann surface Y1(N) is the quotient
Γ1(N)\H, where Γ1(N) ⊂ SL2(Z) is the finite-index subgroup defined in
(4.1.3), and X1(N) is a compactification of Y1(N). For every prime p - N ,
the Hecke operators Tp and 〈p〉 act by algebraic correspondences on X1(N).
Therefore they act as a commuting family of endomorphisms on the singular
cohomology group H1(X1(N),Q), and it makes sense to talk about a Hecke
eigenclass in this space, possibly after extending scalars to a finite extension
of Q. The proof of Theorem 4.4.1 (for modular forms of weight 2, anyway)
involved a combination of two facts:

1. Hecke eigenclasses in H1(X1(N),Q) correspond to cuspidal eigen-
forms.

2. The p-adic cohomology H1(X1(N),Qp) can be interpreted as an étale
cohomology group of an algebraic curve over Q, and therefore it admits
an action of Gal(Q/Q) which commutes with the action of the Hecke
operators.

One might seek to generalize Theorem 4.4.1 to higher dimension as fol-
lows. The group SL2(R) acts transitively on H, and the stabilizer of i is
SO(2), so H ∼= SL2(R)/SO(2). Let us put Hn = SLn(R)/ SO(n); this is a
manifold with a left action by SLn(R). One can form the quotient Γ\Hn by
a congruence subgroup Γ ⊂ SLn(Z) whose definition is analogous to Γ1(N).
The result is an example of an arithmetic manifold. As with modular curves,
arithmetic manifolds admit Hecke correspondences. For each prime p - N ,
there are n Hecke correspondences Tp,1, . . . , Tp,n. Let us only say that when
n = 2, Tp,1 and Tp,2 are Tp and 〈p〉, respectively. For each j ≥ 0, the Hecke
correspondences act as endomorphisms on Hj(Γ\Hn,Q), and so one can
talk about Hecke eigenclasses. Do these correspond to n-dimensional Galois
representations?

Fact (1) above generalizes nicely to our situation: Hecke eigenclasses
in the cohomology of Γ\Hn (possibly with coefficients in a nontrivial local
system arising from an algebraic representation of GLn) correspond to auto-
morphic representations of GLn. The correspondence only sees automorphic
representations of a certain sort known as cohomological9. We will only say

9Also known as regular algebraic.
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here that the condition that π be cohomological is a condition on the infi-
nite component π∞, and that the precise relationship between eigenclasses in
Hj(Γ\Hn,Q) and cohomological representations is known (we are referring
to Matsushima’s formula, see [BW00, Ch. VII]). If we were able to associate
a Galois representation to an eigenclass in Hj(Γ\Hn,Q), it would establish
Langlands reciprocity (Conjecture 4.7.4) for the corresponding automorphic
representation.

Generalizing (2) hits a wall immediately for n > 2, however. The prob-
lem is that Hn isn’t a complex manifold for n > 2, and so no quotient of it
is going to be an algebraic variety. For instance, H3 has dimension 5, which
is odd. Finding a Galois representation seems rather hopeless. Nonetheless,
the following theorem was announced around 2012:

Theorem 5.1.1 ([HLTT],[Sch13c]). Let g be a Hecke eigenclass in the sin-
gular cohomology Hj(Γ\Hn,C), and let a`,i(g) be the eigenvalue of T`,i on
g for ` - N prime and i = 1, . . . , n. There exists a continuous semisimple
p-adic Galois representation

ρ : Gal(Q/Q)→ GLn(Qp)

which is associated to g in the sense that for all primes ` - Np, ρ is unram-
ified at `, and the characteristic polynomial of ρ(Frob`) is

xn +
n∑
k=1

(−1)k`k(k−1)/2a`,k(g)xn−k. (5.1.1)

The results of [HLTT] and [Sch13c] are rather stronger than this: they
show that every cuspidal regular algebraic automorphic representation of
GLn over a totally real or CM field F has an associated Galois representa-
tion. Theorem 5.1.1 is the special case F = Q.

5.2 Scholze’s theorem on torsion classes

In fact the results of [Sch13c] are stronger still. Theorem 5.1.1 concerns the
singular cohomology Hj(Γ\Hn,C) with complex coefficients, but we could
also have considered the integral cohomology Hj(Γ\Hn,Z), a finitely gener-
ated abelian group equipped with the action of Hecke operators Tp,i. When
n = 2, Y1(N) = Γ1(N)\H is a surface; the integral cohomology groups of
a surface are known to be torsion-free. But for n > 2, the cohomology
Hj(Γ\Hn,Z) can contain a large torsion subgroup. This torsion subgroup
is also preserved by the Hecke operators. Ash [Ash92, Conjecture B] asked
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whether the mod p eigenclasses have corresponding mod p Galois represen-
tations. In fact they do:

Theorem 5.2.1 ([Sch13c]). Let p be prime, and let g be a Hecke eigenclass
in Hj(Γ\Hn,Z/pZ). Then there exists a continuous semisimple Galois rep-
resentation

ρg : Gal(Q/Q)→ GLn(Fp)

which is associated to g in the same sense as in Theorem 5.1.1, except that
the polynomial in (5.1.1) now has coefficients in Fp.

Thm. 5.2.1 is a partial answer to Question C for the Galois represen-
tations ρg. We remark that Thm. 5.2.1 also applies to eigenclasses in
Hj(Γ\Hn, V ), where V is a local system. In prior years, Ash and others
had developed a conjectural converse to Thm. 5.2.1, which predicts that
every Galois representation ρ : Gal(Q/Q) → GLn(Fp) satisfying a “strict
parity condition” (which generalizes the notion of being odd) has a corre-
sponding Hecke eigenclass g in Hj(Γ\Hn, V ) for an appropriate choice of Γ,
j, and V . See for instance [ADP02], which offers a great deal of numerical
evidence.

5.3 Arithmetic manifolds in the large

The rest of the article will be an exposition of the ideas behind [Sch13c].
We begin with a discussion of arithmetic manifolds, of which Γ\Hn is an
example.

An arithmetic manifold is a double coset space

X = Γ\G(R)/K,

where

• G is a semisimple algebraic group over Q,

• K is a maximal compact subgroup of the Lie group G(R), and

• Γ ⊂ G(R) is an arithmetic subgroup–this is a generalization of the
notion of a finite-index subgroup of SL2(Z). See [Mil13, Ch. VII] for
a precise definition.

There is a natural way to give D = G(R)/K the structure of a Rieman-
nian manifold. One shows that D is a Riemannian symmetric space: this
means that for every point p ∈ D there exists an isometry ip : D → D which
fixes p and whose derivative at p is multiplication by −1.
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One can also show that an arithmetic subgroup Γ ⊂ G(R) is a lattice
(meaning a discrete subgroup with finite covolume with respect to the Haar
measure on G(R)). The quotient X = Γ\D is a locally Riemannian sym-
metric space, meaning that for every point p ∈ X there exists an isometry
ip as in the previous paragraph, except that it may only be defined in a
neighborhood of p. Furthermore, X has finite volume.

Conversely, suppose that X is a locally Riemannian symmetric space of
finite volume. Let X̃ be its universal cover. One can show that the identity
component of Aut X̃ is a semisimple real Lie group G, and that X̃ ∼= G/K
for K ⊂ G a maximal compact subgroup. Thus X = Γ\G/K for a lattice
Γ ⊂ G. Let us call a lattice Γ ⊂ G arithmetic if X is an arithmetic manifold.
The following is an incredible theorem of Margulis.

Theorem 5.3.1 ([Mar91]). As long as G has no factor isogenous to SO(n, 1)
or SU(n, 1), every lattice in G is arithmetic.

Thus outside of the exceptional cases described by the theorem, every
locally Riemannian symmetric space of finite volume is an arithmetic man-
ifold! In particular every lattice in SLn(R) for n ≥ 3 is arithmetic. In
contrast SL2(R) and SL2(C) (which are isogenous to SO(1, 1) and SO(3, 1),
respectively) have uncountably many conjugacy classes of non-arithmetic
subgroups.

The arithmetic manifolds relevant to reciprocity laws are those where Γ
is a congruence subgroup, meaning that Γ contains a subgroup of the form
ker(G(Z)→ G(Z/NZ)) for some integerN . There are infinitely many conju-
gacy classes of finite-index subgroups of SL2(Z) which are non-congruence.
But once again SL2 is exceptional. A theorem of Bass–Lazard–Serre and
Mennicke shows that for n ≥ 3, every finite-index subgroup of SLn(Z) is a
congruence subgroup. For a discussion of the “congruence subgroup prob-
lem”, see [Rag04].

If Γ is a congruence subgroup, then the arithmetic manifold Γ\G(R)/K
has Hecke correspondences for almost every prime p, and so there is the
possibility of posing a version of Theorem 5.1.1 for Hecke eigenclasses in the
cohomology of this space. There is an adelic construction of these manifolds
which is more in line with the philosophy of automorphic representations.
Let G be a reductive group, and let X = G(Q)\G(A)/K0K∞, where K0 ⊂
G(Af ) is a compact open subgroup, and K∞ ⊂ G(R) is a maximal compact
subgroup. Then Matsushima’s formula [BW00] relates the cohomology of
X to cohomological automorphic representations of G.

Example 5.3.2 (Bianchi manifolds). Let G = SL2(C). Then K = SU(2)
is a maximal compact subgroup of G, and G/K ∼= C × R>0 is hyperbolic
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3-space. Let F be an imaginary quadratic field with ring of integers OF (e.g.
F = Q(i) and OF = Z[i]). If Γ is a congruence subgroup of SL2(OF ), then
X = Γ\G(R)/K is called a Bianchi manifold. (It is indeed an arithmetic
manifold; the role of G is played by the Weil restriction of SL2 /F from F to
Q.) In fact Theorem 5.2.1 generalizes to such X: Hecke eigenclasses in the
mod p cohomology of X correspond to 2-dimensional mod p representations
of Gal(F/F ). See [Sen14] for a survey of the arithmetic of Bianchi manifolds.

5.4 Shimura varieties

We are especially interested in arithmetic manifolds Γ\G(R)/K which are
algebraic varieties defined over a number field, in the hopes of constructing
Galois representations. A necessary condition for this is that the Riemannian
symmetric space G(R)/K must have a complex structure compatible with
its Riemannian structure; i.e. it must be a Hermitian symmetric domain.
This occurs if and only if K contains a central subgroup isomorphic to the
circle group S1; a quarter turn by this circle furnishes the complex structure
on the identity coset of G(R)/K. Examples of G for which G(R)/K is a
Hermitian symmetric domain include Sp2n, U(p, q) and O(2, n). Note that
Sp2 = SL2, and that the corresponding Hermitian symmetric domain is the
upper-half plane H.

The following “meta-theorem” encompasses a series of important results
by Shimura, which were put into a common perspective by Deligne. It
generalizes the fact that Γ1(N)\H is an algebraic curve defined over Q.

Theorem 5.4.1 ([Del79]). In many cases, the quotient of a Hermitian sym-
metric domain by a congruence subgroup is an algebraic variety defined over
a number field, which can be given explicity.

Varieties constructed this way are called Shimura varieties, and they
provide the vital link between automorphic representations and Galois rep-
resentations. Because of Theorem 5.4.1, there is hope of replicating some
of the theory of elliptic modular forms discussed in §4 in the context of
Shimura varieties.

Example 5.4.2 (Siegel Modular Varieties). Let Γ ⊂ Sp2n(Z) be a congru-
ence subgroup. The arithmetic manifold

ShΓ = Γ\Sp2n(R)/U(n)

is a Shimura variety known as a Siegel modular variety. It is the moduli
space for principally polarized abelian varieties of dimension n equipped
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with a level structure dictated by Γ. A Siegel cusp form g of weight k and
level Γ is a holomorphic function on the complex manifold Sp2n(R)/U(n)
which transforms appropriately under Γ, and which vanishes at the cusps of
ShΓ in an appropriate sense. Alternatively g can be seen as a section of the
line bundle ω⊗k, where ω is the push-forward of the canonical line bundle
through the universal abelian variety A → ShΓ. For almost every prime
`, there are Hecke operators T`,1, . . . , T`,2n+1 acting on the space of Siegel
modular forms of weight k and level Γ.

Theorem 5.4.3. Let g be a Siegel cusp form which is an eigenform for all
the Hecke operators. Then for each prime p there is a Galois representation

ρ : Gal(Q/Q)→ GL2n+1(Qp)

which is associated to g in the sense that for almost all primes `, the char-
acteristic polynomial of ρ(Frob`) is determined by the eigenvalues of the
operators T`,i on g.

We refer to [Sch13c, Cor. V.1.7] for the precise statement. The proof
of Theorem 5.4.3, which combines contributions from many people, is far
more complicated than that of Theorem 4.4.1. We will only say that after
applying heavy automorphic machinery of Arthur, the Galois representation
ρ in this theorem is found within the cohomology of an appropriate Shimura
variety.

The “many cases” of arithmetic manifolds referred to by Thm. 5.4.1
are essentially those which can be embedded inside of the Siegel modular
variety. They include the cases where G is U(p, q) and O(2, n).

5.5 Arithmetic manifolds at the boundary of a Shimura va-
riety

Let Sh be the Shimura variety of Example 5.4.2, corresponding to a con-
gruence subgroup Γ ⊂ Sp2n(Z), and let X be an arithmetic manifold for
GLn, corresponding to a congruence subgroup Γ0 ⊂ SLn(Z). The proof of
Theorem 5.2.1 leverages a topological connection between Sh (which is an
algebraic variety) and X (which is not, in general). The connection comes
from the fact that Sp2n contains a parabolic subgroup P , consisting of ma-
trices of the form(

A B
0 tA−1

)
, A ∈ GLn, B ∈Mn×n, A

tB symmetric.
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The Levi subgroup of P is isomorphic to GLn. Let us now assume that the
projection P → GLn carries Γ ∩ P onto Γ0.

The Shimura variety Sh is not compact. There are many ways to com-
pactify it; for our purposes we need the compactification Sh due to Borel-
Serre ([BS73], see also the exposition in [Gor05, §4], and the book [BJ06]).
This compactification has the following properties:

• Sh is a compact manifold with corners,

• The inclusion Sh ↪→ Sh is a homotopy equivalence,

• The boundary Sh\Sh is a stratified manifold, with each stratum a
locally symmetric space for a parabolic subgroup of Sp2n,

• In particular the boundary contains XP as an open subset, where XP

is a torus bundle over X.

The result is that cohomology classes on X appear in Sh. The compact-
ification Sh is preserved by Hecke correspondences, so that if g is a Hecke
eigenclass in H i(X,Z/pZ), then there exists an eigenclass g′ in H i(Sh,Z/pZ)
whose Hecke eigenvalues are related to those of g in a systematic way. The
precise statement, which is rather technical, is [Sch13c, Cor. V.2.4].

We wish to produce a Galois representation associated to g′. It would
be nice if g′ were the image of a torsion-free eigenclass in H i(Sh,Z), for
then there would be a corresponding automorphic representation by Mat-
sushima’s formula, and then we could apply Theorem 4.4. However this may
not be the case, as H i(Sh,Z) will typically have lots of torsion elements.

Scholze’s breakthrough comes in the form of the following theorem.

Theorem 5.5.1 ([Sch13c, Theorem I.5]). Let g′ be an eigenclass in the
cohomology group H i(Sh,Z/pZ). Then there exists a Siegel cusp form h
(possibly for a subgroup smaller than Γ) whose Hecke eigenvalues are con-
gruent to those of g′ modulo p.

Granting Theorem 5.5.1, we can now indicate how the proof of Theorem
5.2.1 proceeds. Given an eigenclass g ∈ H i(X,Z/pZ), there exists a corre-
sponding eigenclass g′ ∈ H i(Sh,Z/pZ), and then by Theorem 5.5.1 there is
a corresponding cusp form h. Applying Theorem 5.4.3 one finds a p-adic
Galois representation ρ′ of dimension 2n + 1. The reduction ρ′ (mod p) is
related to the Hecke eigenvalues on g. However it is (2n + 1)-dimensional,
not n-dimensional. The final arguments of [Sch13c] show that the origins
of g as a cohomology class on X (rather than on Sh) place constraints
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on ρ′ (mod p), forcing the existence of an n-dimensional summand ρ of ρ′

(mod p). This ρ is the mod p Galois representation required by Theorem
5.2.1.

5.6 Rigid-analytic spaces and their cohomology

Theorem 5.5.1 asserts a connection between a topological object (a cohomol-
ogy class) and an analytic object (a cusp form) associated with the Siegel
modular variety Sh. Such connections are well-known in the world of clas-
sical manifolds. The most basic example is the de Rham theorem,

Hk(X,Z)⊗Z R ∼= Hk
dR(X),

which connects the topology of a compact manifold X with differential forms
on it. IfX is a compact Kähler manifold (which is the case ifX is a projective
variety), then there is a Hodge decomposition

Hk(X,Z)⊗Z C ∼=
⊕
i+j=k

H i(X,Ωj
X/C), (5.6.1)

where Ωj
X/C is the sheaf of holomorphic j-forms on X. However, the Hodge

decomposition of the Shimura variety Sh will be of no use in proving The-
orem 5.5.1, since the desired connection between the topological object and
the analytic object is a congruence, which makes no sense in the context of
complex vector spaces.

Instead we turn to the theory of rigid-analytic spaces, which runs parallel
to the theory of complex manifolds, but in which the field C is replaced by
a p-adic field K. The theory was first developed by Tate [Tat71]; a standard
reference is [BGR84]. In this theory one defines a K-affinoid algebra A,
which is a certain kind of Banach K-algebra. The set of maximal ideals
SpmA is called an affinoid space, and a general rigid-analytic space is created
by gluing together affinoid spaces, as schemes are created by gluing together
affine schemes.

Example 5.6.1 (The rigid-analytic closed disc). Let C be the completion
of an algebraic closure of Qp, and let A = C〈T 〉 be the ring of power series
f =

∑
n≥0 anT

n with C coefficients such that an → 0. The unusual topology
of p-adic numbers implies that a power series with C coefficients converges
on the closed unit disc D = {z ∈ C| |z| ≤ 1} if and only if it belongs to A.
In fact D ∼= SpmA via z 7→ ker(f 7→ f(z)).
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Let K/Qp be a topological field which is complete with respect to an
absolute value z 7→ |z| extending the one on Qp. A K-affinoid algebra A
is defined to be any quotient of K〈T1, . . . , Tn〉. This ring (called a Tate
algebra) is noetherian. Therefore a general affinoid space can be visualized
as a closed subset of a polydisc {(z1, . . . , zn)| |zi| ≤ 1} cut out by a finite list
of equations given by convergent power series.

Does a version of (5.6.1) hold for rigid-analytic varieties X? This ques-
tion was posed by Tate himself [Tat67], who answered it affirmatively in the
case that X is an abelian variety. To even pose the question one needs an
analogue of H i(X,Z) for a rigid-analytic space. Singular cohomology won’t
behave well for rigid-analytic spaces, because their topology isn’t anything
like a classical manifold. As with schemes, rigid-analytic spaces have an
étale site [Hub96], so that one can define cohomology groups H i(Xét,Z/nZ)
for any integer n, as well as the p-adic cohomology H i(Xét,Zp). If X starts
out life as a nonsingular variety over Q, then there is a corresponding rigid-
analytic space Xan, and the various cohomology theories attached to X
agree:

H i(X(C),Z)⊗Z Zp ∼= H i(XQ,ét,Zp)
∼= H i(Xan

C,ét,Zp). (5.6.2)

Tate’s question in [Tat67] asks whether the p-adic étale cohomology
groups of a proper rigid-analytic variety satisfy an analogue of the Hodge
decomposition. It was answered affirmatively for proper algebraic varieties
by Fontaine-Messing [FM87] and Faltings [Fal88] and in general by Scholze
[Sch13a]:

Theorem 5.6.2. Let X be a rigid-analytic space over Qp which is smooth
and proper (a condition akin to being compact). Then X has a “Hodge-Tate
decomposition”

Hk(XC,ét,Zp)⊗Zp C
∼=
⊕
i+j=k

H i(X,Ωj
X/Qp

)⊗Qp C(−j).

The Hodge decomposition is compatible with the action of Gal(Qp/Qp).

The C(−j) refers to a one-dimensional C vector space on which Gal(Qp/Qp)
acts through the −jth power of the p-adic cyclotomic character. Scholze also
shows that the action of Gal(Qp/Qp) on Hk(XC,ét,Qp) is “geometric” in the
same sense as in Conjecture 4.5.2.
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5.7 Some remarks on p-adic geometry, and the inevitability
of perfectoid spaces

A fundamental difference between classical manifolds and rigid-analytic spaces
is that the former are locally contractible: A manifold X can be covered
by open subsets Ui such that all intersections between the Ui are con-
tractible. Consequently if F is a sheaf on X, computing the cohomology
groups H i(X,F) can be reduced to a combinatorial study of the values of F
on the intersections of the Uj . In other words, the cohomology of a manifold
can be computed by the Čech complex of a sufficiently fine open covering.

For a general (not necessarily contractible) open cover U = {Ui}, the
Čech complex of F with respect to U does not compute H i(X,F); the
failure to do so is measured by the cohomology of F on the intersections of
the Ui. The precise statement is that we have a spectral sequence

Ȟ i(U ,Hj(F)) =⇒ H i+j(X,F),

where Hj(F) is the presheaf U 7→ Hj(U,F). If Hj(UI ,F) = 0 for all
intersections UI among the Ui and all j > 0, then the spectral sequence
simply gives Ȟ i(U ,F) = H i(X,F).

The same formalism applies to sheaves on any topological space or site10

X. Suppose F is a sheaf on X. If one can find a covering U = {Ui}i∈I of
X such that H i(UJ ,F) = 0 for all finite subsets J ⊂ I and all i > 1, then
Ȟ i(U ,F) = H i(X,F).

Example 5.7.1 (Quasi-coherent sheaves). Let X be a scheme, and let F
be a quasi-coherent sheaf on U . For example F could be the structure sheaf
OX . If X is affine, then Hj(X,F) = 0 for all j > 0. (In fact the converse is
true: this is Serre’s criterion for affineness.) If X is an arbitrary separated
scheme, then one can find an open cover U = {Ui} of X such that all finite
intersections among the Ui are affine. Then the cohomology of F can be
computed by the Čech complex of U .

If X is a rigid-analytic space, and F is a sheaf on the étale site of X,
one might hope that there exists an étale covering {Ui → X} which is fine
enough so that F has no cohomology on the fiber products among the Ui.
This is false for the constant sheaf Z/pZ, as the following example suggests.

Example 5.7.2 (The rigid-analytic closed disc is not contractible). Let
D = SpmC〈T 〉 be the closed disc from Example 5.6.1. Let f(T ) ∈ C〈T 〉

10Pedantic note: in the case of a site, one has to replace intersections with fiber products.
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have coefficients bounded by 1, so that |f(z)| ≤ 1 for all z ∈ D. The equation
Y p−Y = f defines an étale cover D′ → D (an Artin-Schreier cover), because
its Y -derivative pY p−1− 1 is nowhere zero on D′. For many values of f this
cover is connected, which indicates that the étale fundamental group of D
is quite large. So in the p-adic world, the closed disc isn’t simply connected!
In particular H1(Dét,Z/pZ) is not even finitely generated. The same should
be true for all affinoid spaces of positive dimension.

Thus the open sets U → X constituting the étale topology aren’t fine
enough to compute the cohomology of a rigid-analytic space. In [Sch13a],
Scholze sidesteps this problem by defining a finer topology on X, the pro-
étale site, in which opens U → X are allowed to be infinite-to-one. They are
defined as U = lim←−Un, where each Un → X is étale. But then what sort of
a beast is U? The following example is not to be taken too seriously; rather
the intent is to leave an impression on the reader of how strange such a U
can be.

Example 5.7.3 (The p-adic solenoid). Let X = S1, and for each n ≥ 0
let Xn → X be the pn-fold cover x 7→ xp

n
. Then the Xn form a projective

system, and one can define the space X̃ = lim←−Xn with the inverse limit
topology. Thus X is the set of sequences (z0, z1, . . . ) of complex numbers
with |zi| = 1 and zpi = zi−1 for all i ≥ 1. (In fact X is isomorphic to

the quotient of R × Zp modulo a diagonally embedded Z.) Then X̃ is
not a manifold at all. For instance it is not path-connected (although it is
connected).

Example 5.7.4 (The perfectoid closed disc). Let X = D as in Example
5.6.1, and let Xn → X be the map D → D given by x 7→ xp

n
. This map

is étale away from the origin. Let D̃ = lim←−Xn; then D̃\ {0} is a pro-étale

cover of D\ {0}. However, D̃ does not exist in the category of rigid-analytic
spaces.

Extracting arbitrary pth power roots of functions is a common technique
in p-adic geometry, e.g. [Fal02]. But it is to Scholze’s credit that he could
fearlessly incorporate strange spaces like D̃ into a versatile, well-oiled theory.
This is the theory of perfectoid spaces, [Sch12], [Sch13b].

Definition 5.7.5. Let C be a complete algebraically closed extension of
Qp. A perfectoid C-algebra is a Banach C-algebra A such that the subring
A◦ = {a ∈ A| sup ‖an‖ <∞} is bounded, and such that the Frobenius map

A◦/pA◦ → A◦/pA◦

x 7→ xp
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is surjective.

Example 5.7.6. The simplest nontrivial example of a perfectoid C-algebra
is A = C〈T 1/p∞〉, equal to the completion of C[T 1/p∞ ] with respect to the
norm ‖

∑
r arT

r‖ = max |ar|. This is the ring of analytic functions on the

perfectoid closed disc D̃ of Example 5.7.4. It is not noetherian.

Given a perfectoid C-algebra A, one can define a perfectoid affinoid space
SpaA, a ringed space whose points are the continuous valuations11 of A;
Scholze shows that this is an adic space in the sense of Huber [Hub93]. Fi-
nally, a perfectoid space is an adic space created by gluing together perfectoid
affinoid spaces.

A smooth rigid-analytic space X always admits a pro-étale cover Ui →
X, where each Ui is a perfectoid affinoid [Sch13a, Cor. 4.7].

Theorem 5.7.7 ([Sch12, Prop. 7.13]). Let U be a perfectoid affinoid space
over C. Then H i(Uét,O+

U ) is almost zero for i > 0.

Here O+
U is the sheaf of functions bounded by 1, considered as a sheaf

on the étale site of U , and “almost zero” means annihilated by the maximal
ideal ofOC = {z ∈ C| |z| ≤ 1}. This theorem implies that for a rigid-analytic
space X, the cohomology H i

ét(X,O
+
X) can “almost” be computed by the

Čech complex associated to a pro-étale cover of X by perfectoid affinoids.
Furthermore, the Artin-Schreier sequence

0→ Z/pZ→ O+
X/p → O+

X/p→ 0

x 7→ xp − x

of sheaves on Xét can be used to deduce the same result for H i(Xét,Z/pZ).
For proper smooth X, the Artin-Schreier sequence is used to prove the

following result (itself a stepping-stone to Theorem 5.6.2):

Theorem 5.7.8 ([Sch13a, Theorem 1.3]). Let X be a proper smooth rigid-
analytic space over C. Then H i(Xét,Z/pZ) is finite, and the map

H i(Xét,Z/pZ)⊗Z/pZ OC/p→ H i(Xét,O+
X/p).

is an almost isomorphism of OC/p-modules, meaning that the kernel and
cokernel are almost zero.

11In contrast to the theory of rigid-analytic spaces, it is too näıve to consider only the
maximal ideals of A.
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5.8 Shimura varieties at infinite level

The full force of the technology of perfectoid spaces is required for the proof
of Theorem 5.5.1. In the context of that theorem, we are given an eigenclass
g′ in H i(Sh,Z/pZ). Using the comparison isomorphisms of (5.6.2), g′ may
be identified with a class in H i(Shan

ét ,Z/pZ), where Shan is the rigid-analytic
space over C associated with Sh.

Theorem 5.7.8 applies12 to give an almost isomorphism

H i(Shan
ét ,Z/pZ)⊗Z/pZ OC/p ∼= H i(Shan

ét ,O+
Shan/p).

Let g′′ be the image of g′ ⊗ 1 under this isomorphism.
Because of Theorem 5.7.7, the cohomology H i

ét(Shan,O+
Shan/p) can be

computed using the Čech complex associated to a pro-étale cover of Shan

consisting of perfectoid affinoid spaces. Astoundingly, there is a natural
pro-étale cover coming from Shimura varieties at infinite level.

Theorem 5.8.1 ([Sch13c, Theorem I.8]). For each m ≥ 0, let Shpm denote
the Siegel modular variety parametrizing principally polarized abelian vari-
eties of dimension n with Γ-level structure and an additional full pm-level
structure. Then the inverse limit lim←− Shan

pm exists as a perfectoid space Shan
p∞.

There is a period morphism

π : Shan
p∞ → Grass(n, 2n)

onto the Grassmannian of n-planes in 2n-space, having the following prop-
erties:

1. π is affine, i.e. it pulls back affinoids to affinoids,

2. π commutes with the Hecke operators away from p,

3. Letting L be the ample line bundle on Grass(n, 2n) coming from the
Plücker embedding, π∗L is the line bundle ω from Example 5.4.2.

Morally, the existence of π can be explained this way: A point of Shan
p∞

over C is an abelian variety A/C together with a basis for the Tate module
TpA. Taking duals, we get a trivialization H1(Aét,Qp) ∼= Q2n

p . On the other
hand we have the Hodge decomposition

H1(Aét,Qp)⊗Qp C
∼= H0(A,Ω1

A/C)⊕H1(A,OA)(−1).

12Actually one has to work with a compactified version of Shan here, because Theorem
5.7.8 only applies to proper rigid-analytic spaces. We will be ignoring this issue for the
purposes of exposition.
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Combining these structures, we get a distinguished n-plane H0(A,Ω1
A/C)

inside H1(Aét,Qp)⊗Qp C
∼= C2g, which is to say a point of Grass(n, 2n). It

is quite another thing to show that Shan
p∞ is a perfectoid space; we can only

refer the reader to [Sch13c] itself.
Let s1, . . . , sN be a basis for H0(Grass(n, 2n),L). Then Grass(n, 2n)

is covered by affinoid spaces Vj = {sj 6= 0}. Each Uj = π−1(Vj) is an
affinoid space by (1). The Uj constitute a covering of Shan by perfectoid
affinoid spaces in the pro-étale topology, and so H i(Shan

ét ,O+
Shan/p) can be

computed using the associated Čech complex. Crucially, each of the terms
H0(UJ ,O+

Shan/p) in that complex (here UJ is some intersection among the
Uj) is stable under the prime-to-p Hecke operators, by (2). The existence
of the eigenclass g′′ ∈ H i(Shan

ét ,O+
Shan/p) implies the existence of a function

g′′′ ∈ H0(UJ ,O+
Shan/p) with the same prime-to-p Hecke eigenvalues. This

g′′′ can be thought of as the reduction mod p of a meromorphic function on
Shan

p∞ with poles on a subspace of lower dimension.
Let tj = π∗(sj), so tj is a section of ω on Shan

p∞ (by property (3)). Then
multiplying g′′′ by some sufficiently high power of

∏
j∈J sj produces a section

f of ω⊗k mod p on Shan
p∞ for some k. This section is the reduction of a cusp

form f ∈ H0(Shpm , ω
⊗k), which is the cusp form required by Theorem 5.5.1.

5.9 Concluding remarks

Theorem 5.2.1 is a spectacular advance. Even though special cases of it had
been conjectured and tested numerically, nearly no one could have guessed
that a proof was on the horizon. Nor was it clear, as it is now, that torsion
classes in the cohomology of arithmetic manifolds play such an important
role in number theory. (Even if one is only interested in a “characteris-
tic 0” result like Theorem 5.1.1, Scholze’s proof requires a detour through
mod pn cohomology.) We ought to mention Emerton’s theory of completed
cohomology (see [CE12] for a survey), which aims to establish a general the-
ory of p-adic automorphic forms to complement the classical theory. As a
byproduct of his proof of Theorem 5.2.1, Scholze shows that certain p-adic
automorphic forms have corresponding Galois representations as well. These
new Galois representations move in p-adic families, and are not necessarily
“geometric”.

The diversity of methods required in the proof of Theorem 5.2.1 is re-
markable. Prior theorems which constructed Galois representations from
automorphic representations (e.g., [HT01]) required a combination of diffi-
cult techniques from automorphic forms (base change, endoscopic transfer)
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and from algebraic geometry (Shimura varieties, étale cohomology). To
these techniques we must now add the advanced theory of p-adic analytic
geometry (perfectoid spaces, the pro-étale topology).

Despite these advances, not even our original Question A has anything
remotely like a complete solution. Such a solution could arrive in the form of
Artin’s conjecture or a generalized Serre’s conjecture, concerning the modu-
larity of Galois representations with coefficients in C or a finite field, respec-
tively. As mentioned at the end of §4.5, Artin’s conjecture is open except
in dimension one and in some of the two-dimensional cases. The original
Serre’s conjecture [Ser87] refers to the modularity of an odd irreducible two-
dimensional Galois representation with coefficients in a finite field; it is now
a theorem [KW09a]. A generalized Serre’s conjecture would be a converse
to Theorem 5.2.1; this has been formulated precisely in [Her09] but for the
moment remains wide open.

6 Acknowledgements

This article is an expanded version of notes for the Current Events Bulletin
session of the 2015 AMS-MAA Joint Mathematics Meetings. We thank
David Eisenbud for the invitation to participate in that session. We also
thank Keith Conrad for thoroughly proofreading a draft of the manuscript,
and Sug Woo Shin and Ehud de Shalit for their comments. Finally, we thank
the referee for an extraordinarily helpful and swift report.

References

[ADP02] A. Ash, D. Doud, and D. Pollack, Galois representations with
conjectural connections to arithmetic cohomology, Duke Math.
J. 112 (2002), no. 3, 521–579.

[AG00] Avner Ash and Robert Gross, Generalized non-abelian reci-
procity laws: a context for Wiles’ proof, Bull. London Math.
Soc. 32 (2000), no. 4, 385–397.

[Ash92] Avner Ash, Galois representations attached to mod p cohomology
of GL(n,Z), Duke Math. J. 65 (1992), no. 2, 235–255.

[BCDT01] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the mod-
ularity of elliptic curves over Q: wild 3-adic exercises, J. Amer.
Math. Soc. 14 (2001), no. 4, 843–939 (electronic).

48
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[Buh78] J. P. Buhler, Icosahedral Galois representations, Lecture Notes in
Mathematics, Vol. 654, Springer-Verlag, Berlin-New York, 1978.

[BW00] A. Borel and N. Wallach, Continuous cohomology, discrete sub-
groups, and representations of reductive groups, second ed.,
Mathematical Surveys and Monographs, vol. 67, American
Mathematical Society, Providence, RI, 2000.

[Cas67] Algebraic number theory, Proceedings of an instructional confer-
ence organized by the London Mathematical Society (a NATO
Advanced Study Institute) with the support of the International
Mathematical Union. Edited by J. W. S. Cassels and A. Fröhlich,
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