Assignment 2

MAST90097 Algebraic Geometry Semester II 2018 Lecturer: Arun Ram to be turned in before 2pm on 7 September 2018

1. Carefully, precisely and accurately (i.e. in proof machine) define projective space.

2. Looking at \mathbb{P}^1 .

- (a) Explain precisely (with proof) how \mathbb{P}^1 is two copies of \mathbb{C} glued together.
- (b) Explain precisely (with proof) how \mathbb{P}^1 is isomorphic to S^2 .
- (c) Explain precisely (with proof) how \mathbb{P}^1 is a one point compactification of \mathbb{C} .
- (d) Explain precisely (with proof) how \mathbb{P}^1 is $GL_2(\mathbb{C})/B$.
- (e) Explain precisely (with proof) how \mathbb{P}^1 is a quotient of $\mathbb{C}^2 \{0\}$.
- (f) Determine (with proof) the coordinate ring of \mathbb{P}^1 .
- (g) Determine (with proof) the structure sheaf of \mathbb{P}^1 .
- (h) Show that \mathbb{P}^1 is compact.
- (i) Show that \mathbb{P}^1 is a Riemann surface of genus 0.
- (j) Construct the line bundles on \mathbb{P}^1 .
- (k) Complete the classification of line bundles on \mathbb{P}^1 by showing that the line bundles you constructed in (j) form a set of representatives of the isomorphism classes of line bundles on \mathbb{P}^1 .
- (1) For each line bundle \mathcal{L} on \mathbb{P}^1 determine the holomorphic sections of \mathcal{L} .