Sample Exam questions 2

MAST90097 Algebraic Geometry Semester II 2018 Lecturer: Arun Ram

August 3, 2018

- (1) (What is $Pic(\mathbb{P}^n)$?)
 - (a) Define \mathbb{P}^n
 - (b) Define $Pic(\mathbb{P}^n)$
 - (c) Explain, with proof, how $Pic(\mathbb{P}^n)$ is an abelian group.
 - (d) Prove that $Pic(\mathbb{P}^n) \cong \mathbb{Z}$.
- (2) $(H^0(\mathbb{P}^n, \mathcal{O}(d)))$ Correct the following questions appropriately, and answer them thoroughly, including necessary proofs.
 - (a) Define $H^0(\mathbb{P}^n, \mathcal{O}(d))$.

(b) Prove that
$$\dim_k(H^0(\mathbb{P}^n_k,\mathcal{O}(d)) = \binom{n+d-1}{n}$$
.

- (b) Prove that $\dim_k(H^0(\mathbb{P}^n_k, \mathcal{O}(d)) = 0.$
- (c) Explain how $H^0(\mathbb{P}^n, \mathcal{O}(d))$ is a $GL_n(\mathbb{C})$ -module?
- (d) Prove that $H^0(\mathbb{P}^n, \mathcal{O}(d)) \cong Sym^d(\mathbb{C}^n)$ as $GL_n(\mathbb{C})$ -modules.
- (2) $(\mathcal{O}(d))$ Let $d \in \mathbb{Z}$ and let $X = \mathbb{P}^n$.
 - (a) Construct $\mathcal{O}(d)$.
 - (b) Prove that $\mathcal{O}(d)$ is a line bundle.
- (3) (a) State the gluing theorem.
 - (b) Prove the gluing theorem.

- (4) Carefully define \mathcal{O}_X -module.
- (5) Show that there exists a finite open cover \mathcal{S} of \mathbb{P}^n and isomorphisms of ringed spaces

$$\varphi \colon (U, \mathcal{T}_U^{\operatorname{Zar}}, \mathcal{O}_U) \xrightarrow{\sim} (\mathbb{A}^n, \mathcal{T}_{\mathbb{A}^n}^{\operatorname{Zar}}, \mathcal{O}_{\mathbb{A}^n}), \quad \text{for } U \in \mathcal{S}.$$

- (6) (a) Define $\mathcal{O}_{\mathbb{P}^n}$.
 - (b) Let $U \subseteq \mathbb{P}^n$ be open. Define regular function on U.
 - (c) Show that $\mathcal{O}_{\mathbb{P}^n}(U) = \{\text{regular functions on } U\}.$
- (7) Correct the following questions appropriately, and answer them thoroughly, including necessary proofs.
 - (a) Define the Zariski topology on \mathbb{P}^n
 - (b) Show that the quotient topology on \mathbb{P}^n coming from $\mathbb{C}^{n+1} \{0\}$ is the Zariski topology.
 - (c) Show that the quotient topology on \mathbb{P}^n coming from $\mathbb{C}^{n+1} \{0\}$ is not the Zariski topology.
 - (d) Show that the quotient topology on \mathbb{P}^n coming from $\mathbb{C}^{n+1} \{0\}$ is quasicompact and Hausdorff.
 - (e) Show that the quotient topology on \mathbb{P}^n coming from $\mathbb{C}^{n+1} \{0\}$ is quasicompact and not Hausdorff.
- (8) (affine algebraic sets)
 - (a) Carefully define *affine algebraic set*.
 - (b) Classify all affine algebraic sets in k[x].
 - (c) Define a topology on \mathbb{A}_k^n by using affine algebraic sets.
 - (d) Show that the topology defined in (c) is a topology.
- (9) (The Zariski topology)
 - (a) Carfully define the Zariski topology.
 - (b) Carefully prove that the Zariski topology is a topology
- (10) Correct the following questions appropriately, and answer them thoroughly, including necessary proofs.
 - (a) Carefully define the Zariski topology.

- (b) Explain why the Zariski topology on k[x] is not Hausdorff.
- (c) Explain why the topology on \mathbb{C} is Hausdorff.
- (d) Explain why the topology on \mathbb{C} is Hausdorff.
- (11) Prove the lemma on gluing of sheaves.

(12) (\mathbb{P}^n is a CW-complex)

- (a) Carefully define CW-complex.
- (b) Prove, by construction (and with proof that your construction is correct), that \mathbb{P}^n is a CW-complex with one cell each of dimensions $0, 1, \ldots, n$.

(13) (\mathbb{P}^n)

- (a) Carefully define \mathbb{P}^n .
- (b) Carefully prove that $\mathbb{P}^n \cong \{ \text{lines through origin in } k^{n+1} \}$

 $(14) (\mathbb{A}^n)$

- (a) Carefully define \mathbb{A}_k^n .
- (b) Carefully define regular function on U.
- (c) Prove that $\mathcal{O}_{\mathbb{A}^n}(U) = \{\text{regular functions on } U\}$ is a ring.
- (d) Prove that $\mathcal{O}_{\mathbb{A}_n}(\mathbb{A}^n) = k[x_1, \dots, x_n].$
- (e) Carefully define the sheaf $\mathcal{O}_{\mathbb{A}^n}$.
- (f) Prove that $\mathcal{O}_{\mathbb{A}^n}$ is a sheaf on \mathbb{A}^n .
- (15) (a) Carefully define $\mathcal{O}_{\mathbb{A}_n}(\mathbb{A}^n)$.
 - (b) Prove that $\mathcal{O}_{\mathbb{A}_n}(\mathbb{A}^n) = k[x_1, \dots, x_n].$
 - (c) Give an example (with proof) to shows that $\mathcal{O}_{\mathbb{A}_n}(\mathbb{A}^n)$ is not always equal to $k[x_1,\ldots,x_n]$.

(16) (\mathbb{A}^n)

- (a) Carefully define the set $\mathbb{B}^n = \operatorname{Spec}(\mathbb{C}[x_1, \dots, x_n]).$
- (b) Carefully define the set $\mathbb{A}^n_{\mathbb{C}}$ as Arik did in class.
- (c) Describe the relationship between the sets $\mathbb{A}^n_{\mathbb{C}}$ and \mathbb{B}^n .
- (d) Carefully define the topology on $\mathbb{A}^n_{\mathbb{C}}$ as Arik did in class.

- (e) Carefully define the Zariski topology on $\mathbb{B}^n_{\mathbb{C}}$.
- (f) Describe the relationship between the topology on $\mathbb{A}^n_{\mathbb{C}}$ and the topology on \mathbb{B}^n .
- (g) Carefully define the structure sheaf of $\mathbb{A}^n_{\mathbb{C}}$ as Arik did in class.
- (h) Carefully define the structure sheaf of $\mathbb{B}^n_{\mathbb{C}}$.
- (f) Describe the relationship between the structure sheaf of $\mathbb{A}^n_{\mathbb{C}}$ and the structure sheaf of \mathbb{B}^n .
- (17) (a) Carefully define \mathbb{CP}^n , the quotient of $\mathbb{C}^n \{0\}$ with the standard topology.
 - (b) Show that \mathbb{CP}^n is quasicompact and Hausdroff.
 - (c) Define an imbedding \mathbb{CP}^{n-1} into \mathbb{CP}^n . Show that this map is well defined and injective.
 - (d) Define the disc D^{2n} , and a function $f_n: D^{2n} \to \mathbb{CP}^n$.
 - (e) Show that the function $f_n: D^{2n} \to \mathbb{CP}^n$ is continuous and surjective.
 - (f) Define the sphere S^{2n-1} , and a function $g_n \colon S^{2n-1} \to \mathbb{CP}^{n-1}$.
 - (g) Show that the function $f_n \colon D^{2n} \to \mathbb{CP}^n$ is continuous and surjective.
 - (h) Carefully define $D^{2n} \sqcup_{g_k} \mathbb{CP}^{n-1}$.
 - (i) Prove that $D^{2n} \sqcup_{g_k} \mathbb{CP}^{n-1}$ is homeomorphic to \mathbb{CP}^n .
- (18) (a) Carefully define $\mathbb{P}^n_{\mathbb{C}}$, the quotient of $\mathbb{C}^{n+1} \{0\}$ with the Zariski topology.
 - (b) Carefully define a *projective algebraic set* and how to construct a topology using projective algebraic sets.
 - (c) Show that the topology coming from projective algebraic sets coincides with topology on $\mathbb{P}^n_{\mathbb{C}}$ obtained from the quotient of the Zariski topology on $\mathbb{C}^{n+1} \{0\}$. topology.
- (18) (a) Carefully define a regular function on $\mathbb{P}^n_{\mathbb{C}}$.
 - (c) Prove that $\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(U) = \{\text{regular functions on } U\}$ is a ring.
 - (d) Prove that $\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(\mathbb{A}^n) = \mathbb{C}$.
 - (e) Carefully define the sheaf $\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}$.
 - (f) Prove that $\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}$ is a sheaf on $\mathbb{P}^n_{\mathbb{C}}$.
- (18) (a) Carefully define a holomorphic function on \mathbb{CP}^n .
 - (c) Prove that $\mathcal{O}_{\mathbb{CP}^n}(U) = \{\text{holomorphic functions on } U\}$ is a ring.
 - (d) Prove that $\mathcal{O}_{\mathbb{CP}^n}(\mathbb{A}^n) = \mathbb{C}$.
 - (e) Carefully define the sheaf $\mathcal{O}_{\mathbb{CP}^n}$.
 - (f) Prove that $\mathcal{O}_{\mathbb{CP}^n}$ is a sheaf on \mathbb{CP}^n .