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Abstract

Abstract. In this paper we use the combinatorics of alcove walks to give uniform combi-
natorial formulas for Macdonald polynomials for all Lie types. These formulas resemble the
formulas of Haglund-Haiman-Loehr for Macdonald polynoimals of type GL,,. At ¢ = 0 these
formulas specialize to the formula of Schwer for the Macdonald spherical function in terms
of positively folded alcove walks and at ¢ =t = 0 these formulas specialize to the formula for
the Weyl character in terms of the Littelmann path model (in the positively folded gallery
form of Gaussent-Littelmann).

1 Introduction

The Macdonald polynomials were introduced in the mid 1980s [Macl] [Mac2| as a remarkable
family of orthogonal polynomials generalizing the spherical functions for a p-adic group, the Weyl
characters, the Jack polynomials and the zonal polynomials. In the early 1990s Cherednik [Ch]
introduced the double affine Hecke algebra (the DAHA) and used it as a tool to prove conjectures
of Macdonald. The DAHA is a fundamental tool for studying Macdonald polynomials. Using the
DAHA, the nonsymmetric Macdonald polynomials E,, can be constructed by applying products
of “intertwining operators” 7,¥ to the generator 1 of the polynomial representation of the DAHA
(see [Hai, Prop. 6.13]), and the symmetric Macdonald polynomials P, can then be constructed
from the E, by “symmetrizing” (see [Mac3, Remarks after (6.8)]).

Of recent note in the theory of Macdonald polynomials has been the success of Haglund-
Haiman-Loehr in giving, in the type GL, case, explicit combinatorial formulas for the expan-
sion of Macdonald polynomials in terms of monomials. These formulas were conjectured by J.
Haglund and proved by Haglund-Haiman-Loehr in [HHL1] and [HHL2]. The papers [GR] and
[Hai] are excellent survey articles discussing these developments.
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Following a key idea of C. Schwer [Sc], the paper [Ra] developed a combinatorics for working
in the affine Hecke algebra, the alcove walk model. It turns out that this combinatorics is the
ideal tool for expansion of products of intertwining operators in the DAHA. These expansions,
when applied to the generator of the polynomial representation of the DAHA, give formulas for
the Macdonald polynomials for all root systems.

Our formulas resemble the formulas obtained by Haglund-Haiman-Loehr [HHL1] [HHL2| in
type GL,. The form of the terms is the same but our formula has many more terms. Lenart
[Le] has explained how to combine terms in our formula to obtain a formula similar to the
Haglund-Haiman-Loehr (HHL) one. The individual terms of our formula have, in general, many
more factors appearing in the denominators than the terms in the HHL formula. In the GL,
case there is an integral form of the Macdonald polynomials obtained by multiplying by a factor.
This factor cancels all denominators in the HHL formula but not in ours and so the “integrality”
of the integral form is not directly visible from our formula in the way that it is visible in the
HHL formula. To our knowledge, a suitable definition of an integral form of the Macdonald
polynomials is still unknown in the general root system setting.

At ¢ = 0 the symmetric Macdonald polynomials are the Hall-Littlewood polynomials or the
Macdonald spherical functions. These are the spherical functions for G/K, where G is a p-adic
group and K is a maximal compact subgroup. The work of Schwer [Sc, Thm. 1.1] provided
fomulas for the expansion of the Macdonald spherical functions in terms of positively folded
alcove walks. See [Ra, Thm. 4.2(a)] for a description of the Schwer formula in terms of the
alcove walk model. The formula for Macdonald polynomials which we give in Theorem 3.4
reduces to the Schwer formula at ¢ = 0.

At ¢ = t = 0 the symmetric Macdonald polynomials are the Weyl characters or Schur
functions. In this case our formula for the Macdonald polynomial specializes to the formula
for the Weyl character in terms of the Littelmann path model (in the maximal dimensional
positively folded gallery form of Gaussent-Littelmann [GL, Cor. 1 p. 62], or the A-chain form of
Lenart-Postnikov [LP1] [LP2]).

It is interesting to note that, in the formulas for the symmetric Macdonald polynomials, the
negative folds and the positive folds play an equal role. It is known [GL] that the alcove walks
with only positive folds contain detailed information about the geometry of Mirkovié-Vilonen
intersections in the loop Grassmannian. It is tantalizing to wonder whether the alcove walks
with both positive and negative folds play a similar role in the geometry of flag varieties for
reductive groups over two dimensional local fields and whether the expansions of Macdonald
polynomials in this paper are shadows of geometric decompositions.

The papers [GL], [LP1], [LP2]|, and [Ra] explain how the combinatorics of alcove walks is
almost equivalent to the combinatorics of crystal bases and Kashiwara operators (at least for the
positively folded alcove walks of maximal dimension). Our expansions of Macdonald polynomials
in terms of alcove walks give insight into possible relationships between Macdonald polynomials
and crystal and canonical bases.

This research was partially supported by the National Science Foundation (NSF) under
grant DMS-0353038 at the University of Wisconsin, Madison. We thank the NSF for continuing
support of our research. This paper was completed while the authors were in residence at the
special semester in Combinatorial Representation Theory at Mathematical Sciences Research
Institute (MSRI). It is a pleasure to thank MSRI for hospitality, support and a wonderful
and stimulating working environment. A. Ram thanks S. Griffeth for many many instructive
conversations about double affine Hecke algebras and Macdonald polynomials.



2 Double Weyl groups, braid groups and Hecke algebras

In this section we review the basic definitions and notations for affine Weyl groups and double
affine Hecke algebras following the expositions in [Ra], [Ch], [Mac4] and [Hai]. Following the
definitions we prove Theorem 2.2, a formula for the expansion of products of intertwining op-
erators in the DAHA. This formula is a “lift into the DAHA” of the expansions of Macdonald
polynomials given in Section 3.

2.1 Double affine Weyl groups

Let bz be a Z-lattice with an action of a finite subgroup Wy of GL(hz) generated by reflections.
Then Wy acts on b7 by

(wp, \VY = (p,w™IAY), where (\Y,u) = p(A\Y) for AV € bz, u € b, (2.1)

Let Rt C b} and (RY)™ C bz denote fixed choices of the positive roots and the positive coroots
so that the reflections s, in Wy act on bz and on by by

sad =X — (A, a)a and saN =AY — (A, a)aY, respectively. (2.2)
The groups
\%
X={X*|peby} and Y ={Y* |\ by} (2.3)
with
XPXY = XFY and YN YO =yAHel (2.4)

are the groups b7 and bz respectively, except written multiplicatively, and the semidirect product
Wo X (X xY) = {XFwY™" | we Wy, pe by A\ € bzl (2.5)

has additional relations
wX* = X"y and wYN =Y, (2.6)

for w € Wy, p € b3 and XY € by.

__ Assume that the action of Wy on hc = C ®z bz is irreducible. The double affine Weyl group
W is the universal central extension of Wy x (X x Y). If e is the smallest integer such that
(AV,n) € 1Z for all \Y € bz and p € b} then W is presented by

W = {¢" XPwY™ | ke 1z, pehs, AV € bhywe Wl
with (2.4), (2.6) and
XY AN = gAYy N xR for e by, AY € by (2.7)
The subgroup {q";X“Y/\v | k € %Z, p € b, A € bz} is a Heisenberg group and
W={X"w|pebhs,weW} and WY ={wY" |AY€bz,we Wy} (2.8)
are affine Weyl groups inside W, Letting

g=X°=y (2.9)



and extending the notation of (2.6) gives actions of W" on b} @ Z3§ and W on bz @ Zd with
YN p=p— (A6 and  XFAY =AY — (A, p)d. (2.10)

Let ¢ € R be the highest root and ¢V € RY the highest coroot and let

so=Y%s, and sy =X%¥s,v. (2.11)
Let
ag=—p+96, af=—¢ +d, (d,p) =0, (AY,8) =0, (d,8) =0, (2.12)
so that
sop = p— (i, o Yevg and sgAY =AY — (A, o)y . (2.13)

The alcoves of hy = R ®z b7, are the connected components of

b\ J et where bt = {z bl | (z,aV) = —j}. (2.14)
aVe(RY)t,jeZ

The action of W = {X*w | p € b}, w € Wy} on by given by

Xt v=v+upu and w-v=w, for w € Wy, p € b7 and v € by, (2.15)
sends alcoves to alcoves; s, ..., s, are the reflections in the walls f)ag e ho‘x of the fundamental
alcove

l={zebhy | (z,a)) >0, fori=0,1,...,n} and (2.16)
¢(v) = (number of hyperplanes between 1 and v) (2.17)
is the length of v € W. Let QV be the set of length zero elements of W. The affine Weyl group
W has an alternate presentation by generators sy, sy, ..., s, and QV with relations
(sV)? =1, sis) o =sls] and g’s! (")t = s;/v(i), for gV € QV, (2.18)
—_— =
m;/j mivj

where m/mj; is the angle between h' and h* and oV denotes the permutation of the ho

induced by the action of ¢g¥. If QY x bi is |QY| copies of b (sheets), with QY acting by
switching sheets then there is a bijection

W «— {alcoves in Q¥ x b} (2.19)

and we will often identify v € W with the corresponding alcove in Q¥ x hk. The pictures
illustrating this bijection in type SLs are displayed in the appendix.
The periodic orientation is the orientation of the hyperplanes ho‘v““d such that

(a) 1 is on the positive side of he' for ¥ € (RV)™*,
(2.20)
(b) b +kd and >’ have parallel orientations.

The pictures in the appendix illustrate the periodic orientation for type SLs.



A similar “pictorial” viewpoint applies to the group WV acting on Q x hg where hg = R®zb7
and € is the set of length zero elements of WV. Then WV has an alternate presentation by
generators g, S1, ..., S, and {2 with relations

57 =1, §i8j = 8;8; ", and gsig L= Sq(i), for g € Q, (2.21)
my; My

where m/m;; is the angle between h® and h® and o denotes the permutation of the h* induced
by the action of g.

2.2 Double affine braid groups
The double affine braid group B is the group generated by Ty, ..., Ty, Q and X with relations

TTj- =TT gTig ' = Tou, gX"=X%q, (2.22)
—— N —

for g € Q, and
T, XM = X5k if (u,af) =0

T XHT; = Xsik if (p,a)) =1, fori=0,1,...,n, (2.23)

where the action of WV on b, ® Z¢ is as in (2.10). The element
g = X° is in the center of B. (2.24)

For w € WV, view a reduced word w = gs;, - -+ s;, as a minimal length path p from the

fundamental alcove to w in hr and define
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+1, if the kth step of pis  _|

YO =g(T)" - (Th,)*,  with e = (2.25)

—1, if the kth step of pis ]

o ¥

with respect to the periodic orientation (see (2.20) and the pictures in the appendix). Forv € W,
view a reduced word v = g"s, -+ s} as a minimal length path p" from the fundamental alcove
to v in by and define

- | +
—1, ifthe kthstepof p¥is _{ 5 ,
v vV .
X0 =g @ @ it =] S )
+1, if the kth step of p¥ is 4 .,
Let T =T;, for i = 1,2,...,n,
gV = XTIy . ()T =XPTY,  g=Y®iT,), . To=Y?T,. (2.27)

where ¢ and ¢ are as in (2.11) and, using the action in (2.15), wy = ¢" -0 and wy is the longest
element of the stabilizer of w, in Wy.

The following theorem, discovered by Cherednik [Ch, Thm. 2.2], is proved in [Mac4, 3.5-3.7],
in [Io], and in [Hai, 4.13-4.18].



Theorem 2.1. (Duality) Let Y& = q~'. The double affine braid group B is generated by
Ty, TY,....,TY, Q" and Y with relations

ytn s

_ \ ViV
VT - =TT -, g'TY (gV) ! = Tavv(i), g'YN =Yy9 N gV, (2.28)
—_——

for gV € QV, and

VY = YSXAVTZ.V,v ’ if (\Y, ;)
A ) /I’f <>\v)ai>

(L)Y (T) =Y
where the action of W on bz & Zd is as in (2.10).

0,
1

)

fori=0,1,...,n, (2.29)

2.3 Double affine Hecke algebras

In the following, for simplicity of exposition we shall assume that we are not in the special case
of [Mac4, (2.1.6)] where the root system is type C,, and bz is the (co)root lattice. All our results
and proofs are valid in this special case but the definition of the double affine Hecke algebra and
the formulas in (2.32) and (2.34) may need some slight modification. See Remark 2.3 for details.

Let RV = (RY)" U (—(RY)") be the set of coroots and fix parameters cgv, indexed by
BY € RY + Zd, such that for all w € W and B3Y € RV + Zd,

CEV = CpBV- Set tgv =¢“" and t; = taiv. (2.30)

The double affine Hecke algebra H is the group algebra CB of the double braid group with the
additional relations

T2 = (2 V)T, 41,  fori=0,1,...,n. (2.31)

(2

The double affine Hecke algebra H has bases
(ToX* |weW, pebyozst, {YNTY |weW, \ € by o Zd},

and
(X" T, YN | we W, AV € bz, uebh ke lz)

(see [Hai, Prop. 5.4 and Cor. 5.8]).
In the presence of (2.31) the relations (2.29) are equivalent to

vy Ay sy AV v 3 BN S :
z-;Y =Y?% TZ +(t12_tl 2)w, fOl"Z:O,l,...,n. (232)
In turn (2.32) is equivalent to
My =ysN e fori=0,1,...,n, (2.33)
where
7%(1 t;) t*%(l t) Y —oi
t, —t . —t; i
vV _ Vv v Vy—1 7
T; —Tl +m—(n) + -2 1—Y7a¢v . (234)
Using that the 7,¥ satisfy the braid relations and that
ng)‘v = ng’\vgv, write TJY’\V = Yw/\vﬂ))/, for w e W.



Let w € W and let w = s}, --- s}, be a reduced word for w. For k =1,..., ¢ let

By =slsi - sikaaXC and tgy =ty (2.35)

so that the sequence 3/, 3) ;,..., 5y is the sequence of labels of the hyperplanes crossed by the

Walk wt =s)s; -5 For example, in Type Ay, with w = sys§sy sysysysysy the picture
is
N N NN N/
/\/\%N/\/\JKV
h
/N /N /\ /N /N /A
B%  Bs s BB hos  poY
Let v € WY. An alcove walk of type i1,...,1i, beginning at v is a sequence of steps, where a

step of type j is

T s - | + - | +
= =
z z85 z z8j5 z z85 z z8j

positive j-crossing negative j-crossing positive j-fold negative j-fold

Let B(v,w) be the set of alcove walks of type @/ = (i1,...,ip) beginning at v. For a walk
p € B(v, W) let

ft(p) = {k | the kth step of p is a positive fold},

f~(p) = {k | the kth step of p is a negative fold}, (2.36)

and
end(p) = endpoint of p  (an element of W). (2.37)
Theorem 2.2. Let v,w € W, let w = siv1 . -sZ-V(Z be a reduced word for w and let B, ..., 05 be

as defined in (2.35). Then, in H,

—1/2 -1/2 —BY
t (1 —tgv) t (1 —tgv)Y Pk
By By By By,
XszX _ § Xend(p) H k H k
_ 7ﬂv N 76V b
PEB(0.15) kefrp 1TV I
where the sum is over all alcove walks of type W = (i1, ...,1¢) beginning at v.

Proof. The proof is by induction on the length of w, the base case being the formulas in (2.34).
To do the induction step let p € B(v, ),

—1/2 —1/2 —BY
t v (]. — tﬁ\/) t v (1 — tﬁv)y k
o= [ 2—5"]. F®m-= u e
1Y~ 1-Y 5
keS* (p) kef=(p)



and let
p1,p2 € B(v,Ws;) be the two extensions of p by a step of type j

(by a crossing and a fold, respectively). Let z = end(p). By induction, a term in X7’ TJV is

X2FT(p)F~(p)1) = X*1/ (s;F*(p)) (s;F~ (p))
—1/2

20 ¢ ) N
o1+ e o), X = X7},
= ~1/2 Y
L A=Y _ — -
R [

_ Xend(p1)F+(p1)F— (p1) + Xend(P2)F+(p2)F_ (p2).

The last step of po is
— + —
=3 if X#%5 = XZT]V, and =

+
if X*%5 = X*(T))~".

z85 z85

O]

Remark 2.3. In some special cases when the affine root system is nonreduced (see [Mac4,
(2.1.6)]) the formulas in (2.32) and (2.34) need modification and the definition of the double
affine Hecke algebra may need an additional relation. The most involved of these cases is type
(CY,Cy) (see [Mac4, (1.4.3)]) where the double affine Hecke algebra needs additional parameters

ué/ 2 and uy? (in the notation of [Mac4], u(l)/ 2= 74, and u? = 7)) and additional relations

S

1 _ 1 1
(To —ud) Ty +ug2) =0 and (Ty —u2)(Ty +un?), where Ty = q_%XalT(;l, (2.38)

and the formulas for 7,/ and 7y need to be changed to

_1 _1 _1 _1
tn2(1—tn) + 1ty 2(1 —to)Y 50 (tn 2(1 = tn) + 1y 2(1 — to)Yor )Y 250

v _ _ 1
Tn =1In+ 1 — Y2 =T, + 1 — Y2y ’
(2.39)
and

2P0 ) g (1~ wg)gB Y

v v Un (L —up) +ug (1 —uo)g2Yed
7o = To + |1y (2.40)

(uié(l u )+u7%(1 ug)g 2 Y~ )g~ly —2Y
- - )

= (Ty) t + 2 . s : (2.41)

1—q 'Y=

The statement and proof of the analogue of Theorem 2.2 for this case is the same, except with
the factors associated to the O-folds and n-folds replaced by the rational functions in Y which
appear in the expressions of 7y and 7,/ in Equations (2.40), (2.41), and (2.39).

3 Macdonald polynomials

In this section we use Theorem 2.2 to give expansions of the nonsymmetric Macdonald polyno-
mials £, (Theorem 3.1) and the symmetric Macdonald polynomials P, (Theorem 3.4).



_ Let H be the double affine Hecke algebra (defined in (2.31)) and let H be the subalgebra of
H generated by Ty, ...,T, and 2. The polynomial representation of H is

C[X] = Indg(l) = C-span{¢"X"1 | k € 17,1 € bz} (3.1)

with

71 = t3/21 and gl=1, forge. (3.2)
The monomials X#1, uu € b3, form a Cg*™'/¢]-basis of C[X]. Another favourite C[q*/¢]-basis

of C[X] is the basis of nonsymmetric Macdonald polynomials

{E, | nebzt, where E, =7y,,,1 (3.3)

with X#m the minimal length element in the coset X#W,. Note that 7,71 = 0 for w € Wy since
V1=0fori=1,2,...,n.

If b is the set of dominant integral coweights (analogous to (h%)" defined in (3.8)), \Y € b
and YA =s;, -5

, is a reduced word, then

1 1
vAY] — Ty Tyl =t2 21 = q%(ci1+---+cie)1 - q% Laent calra)y = oA pe)y
since (A\V, ) is the number of hyperplanes parallel to h* which are between YA and 1. If
AV € bz then \Y = ¥ — vV for some ", vV € b5 and so, for all \V € bz,

Y1 = ¢gMpelq, where p. = 3 Z CaOr. (3.4)
aERT

More generally, if X#m is the minimal length element of the coset X*W{ then

YN E, = YN Yl = ¥, Y™ TN L = Y, Y Ay
—1y\V _/\V —1yV N \ _
= T3, Y A q Ao = q<m AV, pe)—(A ’“>T)V(um1 — q<’\ mpe H>Eu

<)‘V7X_Hm'pC>E

=q Iy

where, in the last line, the action of W on by is as in (2.15). Thus the E,, are eigenvectors for
the action of the Y*" on the polynomial representation C[X].

Retain the notation of (2.36-2.37) so that if w = s, --- s} is a reduced word then B(v, w)
denotes the set of alcove walks of type @ = (i1, ...,i¢) beginning at v. For p € B(v,w) define
the weight wt(p) and the final direction ¢(p) of p by

Xy = xry o with wt(p) € b, and ¢(p) € Wo. (3.5)
In other words, wt(p) is the “hexagon where p ends”. For w € W define

1 - v-.. V
ifw=s; s

t2 =% 0

Lt is a reduced word. (3.6)
4

If B = sf,---s} o are as defined in (2.35) then, by (3.4),

Tl ik

yB1 = y—(—"+id)g — qjq<'yV,pc>17 if BY = =7V + jd

Q

with ¥ € RY, j € Z. By (2.30) and the definition of p. in (3.4), the constant ¢\’ <) is
monomial in the symbols t; 2 To simplify the notation for these constants write ¢’ q<“/v’pc> =
q(*ﬁﬁ»ﬂd so that

y-Bi1 = q<—ﬁ,Z,pc>1' (3.7)



Theorem 3.1. Let in € b7, and let w = X#m be the minimal length element in the coset X*Wj.
Fiz a reduced word W = s;/I e 522 forw and let ﬂﬁv, ..., 3 be as defined in (2.35). With notations
as in (3.5-3.7) the nonsymmetric Macdonald polynomial

_1 Qv
1— q(*ﬁ?&ﬂc)

1
o L‘B;(l—tﬁz)
Z X sO(p H 1— ¢=Blwpe)

peEB(ii keft(p)

I

kef=(p)

where the sum is over the set B(fi) = B(1,W) of alcove walks of type i1, ...,ip beginning at 1.

Proof. Since E, = 7,1,

Xend(p)l — XWt(p)Tg;/(p)l — th(p)t% 1 and Y/\V1 _ q()\v,pc>17

»(p)

applying the formula for 7Y, in Theorem 2.2 to 1 gives the formula in the statement. O

Remark 3.2. From the expansion of F, in Theorem 3.1, the nonsymmetric Macdonald poly-

nomial E), has top term t,%QX # where X*m is the minimal length representative of the coset
XH*Wy. This term is the term corresponding to the unique alcove walk in B(f) with no folds.

Remark 3.3. If w = X¥m = s ---s) is a reduced word for the minimal length element of

the coset X#Wy then w1 = sy, -8 is a walk from 1 to w™! which stays completely in the

dominant chamber. This has the effect that the roots ), ..., ) are all of the form —y" + jd
with vV € (RY)* (positive coroots) and j € Z~o. The height of a coroot v

ht(y) = (7¥,p),  where p=1 > a.

acRt
In the case that all the parameters are equal (t; = t = ¢¢ for i = 0,...,n) the values which
appear in Theorem 3.1,
q<7ﬁl¥’pc> = qhv*jd’pc> = qjtht(wv), have positive exponents (in Zxg).
The set of dominant integral weights is
(b3)" = {ue by | (may) > 0fori=1,...,n}. (3.8)

Recall the notation for t4? from (3.6). For p € (b)), the symmetric Macdonald polynomial

(see [Mac3, Remarks after (6.8)]) is

_1
P,=10E,1  where 1o= Y tu2uTu, (3.9)
weWy

so that T;1¢p = ti/Zlo for i = 1,2...n, and 1p has top term T, with coefficient 1. The
symmetric Macdonald polynomials are Wy-symmetric polynomials in X* which are eigenvectors
for the action of Wy-symmetric polynomials in the YA

Theorem 3.4. Let pu € (h3)" and let XFm = s be a reduced word for the minimal length
element X*m in the coset XFWy. Let 3/ ,. ..,ﬁl be as defined in (2.35) and let

U B(v, W

veW)y
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be the set of alcove walks of type W = (i1,...,is) beginning at an element v € Wy. Then the
symmetric Macdonald polynomial

1 v
tﬁ; (1 — tﬁl\c/)q< By, »pe)
1— q<_ﬁ1\€/7pc>

_1
tﬂ;; (1- tﬁ,ﬁ)
1— q<_ﬂ]¥7pc>

1 1
o wt(p) 12 —3
Py= Y, x"@e e 11
PP () kS (p)

I

kef=(p)

where 1(p) is the initial alcove of the path p.

Proof. The expression

_1 _1
o= > twhX’,  gives Pl=10E1= Y tulX"Txu,l,
veW) veEW)y

which is computed by the same method as in Theorem 2.2 and Theorem 3.1. 0

Remark 3.5. The Hall-Littlewood polynomials or Macdonald spherical functions are P,(0,1t)
and the Schur functions or Weyl characters are s, = P,(0,0). In the first case the formula in
Theorem 3.4 reduces to the formula for the Macdonald spherical functions in terms of positively
folded alcove walks as given in [Sc, Thm. 1.1] (see also [Ra, Thm. 4.2(a)]). In the case ¢ =t =0,
the formula in Theorem 3.4 reduces to the formula for the Weyl characters in terms of maximal
dimensional positively folded alcove walks (the Littelmann path model) as given in [GL, Cor. 1
p. 62], or the A-chain formulation of [LP1],[LP2].

When p is not a regular weight, the formula for P, in Theorem 3.4 has an alternate formu-
lation as a sum over paths p whose initial alcove ¢(p) is in the minimal coset representatives
WH of Wo/W,,, where W, = {w € Wy | wu = p} is the stabilzer of u. To see this, suppose
sipt = p for some ¢ € {1,...,n}. Then (u, ) = 0 implies Y_aivEul = ti_lEul. Further, let
X#"m be the minimal length element in the coset X#Wj. Then s;X#m = X®%ts;m = XFms;

for some j € {1,...,n}, so 7YE,1 = 7/7¢.,1 = 7¢.,7'1 = 0. Therefore, T,E,1 =
-3 _,3 1
(Ti\/ — Il ch_v) E,1=t?E,1, and

_1 1 _1 _1
P1=1E1= Y tuluTuwB.l =t ( 3 twOQUTU> > twdTu | Eul
weWp veEWH ueW,

_1
=Wut) D twds X TXum1,
veWHr

where W, (t) = Zwewu tw is the Poincaré polynomial of W,.

Remark 3.6. In order to derive the Haglund-Haiman-Loehr formula for P, in the type GL,
case, one would need to start with a similar formula that is based on the alcove walk from
the fundamental alcove to the alcove X* instead of using the formula in Theorem 3.4. Such a
formula is equivalent to expanding the sum

1 _1 1
PA=1t5 > twd X 5Tl
veWy

in terms of the monomial basis.

11



Alternatively, let w, = s;, - - - s;, be the longest element in W), so that wow, is the shortest
element in the coset woW,,. Renormalizing P,

_1 1
l 3 tia‘2 B tl?j v
= 10 H jjlj + W E/J']' = 1OTUJ01U;LEH‘1 = 10Ew0wulf‘17
j=1 -

and expanding the right hand side in the same way as in the proof of Theorem 3.4 will produce
a formula based on the alcove walk from the fundamental alcove to the alcove X™wowr#.  This
walk has the same length as the walk from the fundamental alcove to the alcove X*.

4 Examples
4.1 Type A;
The Weyl group Wy = (s1 | s2 = 1) has order two and acts on the lattices
bz = Zw' and b} = Zw by siw’ = —w’ and sjw=-—w, (4.1)
and
o' =a" =2w", p=a=2w, and (WY a)=1. (4.2)
R N

, I I U
X7 Xes XY X¥si o XY Xy X

VoV oV (VIRY; v v VoV VoV oV
515051 5150 51 1 50 5051 505150
l | |
| | 1 I E—
X% X« 51 1 X%s1 X X22s
hav+2d hav—i-d hav hav—d ha\/—2d bozv—3d

The double affine braid group B is generated by Ty, T1, g, X*, and ¢'/2, with relations
Ty=gTig™', ¢*=1, ¢=X°

(4.3)
gX¥ = q1/2X_“’g, T X¢Ty =X, and ToX “Ty=q 'X¥.
In the double affine braid group
g=Y“'TY, T =veTrh gV =XYTy,  (TY)7' = X1y, (4.4)

At this point, the following Proposition, which is the Type A; case of Theorem 2.1, is easily
proved by direct computation.

Proposition 4.1. (Duality). Let Y% = ¢~'. The double affine braid group B is generated by
Ty, 1Y, 9", Y« and q'/2 with relations

Vi=q¢', (¢")?=1  T)Y=9¢"TV(g") ",

gV =AY g Ty T =Y and (Y)Y (DY) T = gy

12



The double affine Hecke algebra H is CB with the additional relations

T? = (t1/2 - t*1/2)Ti +1, for:=0,1, and to=1t1 =t =qg"

Using (4.5), the relations in Proposition (4.1) give

v Y
Vywv _ —1/2y—wv Y T wi _ Y—w\/T + (t1/2 _ t—1/2)Yw -y and
g =q g, 1 - 1 1_y-a’ ’
Vv —1 _wv
VywY 1y —wV v 1/2 iy (Y Y
TYY = ¢ty ' Ty + (112 —t /)< T )
With Y= = ¢Y* and Y~ =Y ~°", then
1
TV = gv, and TZ'V = 7—;‘\/ — (t1/2 — t71/2) <1}/av) s for i = 07 1.

To illustrate Theorem 2.2, note that X ~2* = sYsy is a reduced word and

tmu—w>v

T = <T1V+1 y—ay |70

vz‘fl/Q(l —1) . (Ta/)_ltq/z(l — 1) N <t1/2(1 — t)) (t1/2(1 - t)Ya3>
1-Y~w

_ VvV

ST Tyt T\ Ty
t1/2(1 —¢) 121 —¢) 121 =)\ (V20— )Yy

_ —2w \YJ 2wV

=X 1y X 1y ey Ty seay 1—Y— '

— —>)

The corresponding paths in B(1, —2w) = B(—
ld==1 | =1 || &= TEm. =]

I I T I !
21— ) V21— )y o

X72w \VJ t_1/2(1 - t) XQwTV t_l/Q(l - t)
Vi _y—of b —y—soef 1—y—soof ]_y-a

The polynomial representation is defined by
T,1=t/21, and g¢l=1.

In this case
1
pe = e and WO = (X% | e Zso} U{X¥sY | £ € Zso}, (4.6)
is the set of minimal length coset representatives of WV /Wj.
Applying the expansion of 7,7y to 1 and using
Y"1 = qYavl = q¢°1 = qt1, and y—soei] = yo'+2dy — q2Yav1 = ¢*t,
gives
E o, =1'11
— X%y tl/zt_l/Q(l —1) 4 X212 21— t) n 121 1) 121 = t)gt
1—qt 1—q%t 1—q¢%t 1—gqt
1—t 1—t 11—t 1—t
:X—2w+ +X2w + ( )q )
1—qt 1—q%t 1—q%t 1—qt

13



Since 19 =T} + t=1/2 the symmetric Macdonald polynomial P, = 19F5, = 1070\/ 1is

Py, = 19F5, = (Tlv —|—t_1/2)7'8/1

21—t t=12(1 — )y~
= <T1VTOV+T1V( Dy gyt g et 200 1

1-Y~% 1-Y~

—1/2 —1/2
_ X_2“+tl/2t 2(1—1t) +t—1/2X2wT1\/+t—1/2t 2(1 - t)qt 1
1—qt 1—qt

_ 1—t¢ (1—1t)q i 1—¢
— X2w - X2w 1= X2w X2w 1 - 7)1,
( T TX 1qt> ( + + ( +q)1iqt

N
The corresponding paths in P(2w) are

e R T e e e N e
X—Zw 1-t ng q(l — t)
1—qt 1—gqt
4.2 Type A,

The Weyl group Wy = (s1, 82 | 82 = 53 = 1,518951 = $25152) acts on the lattices
bz = Zwy + Zwy and h7, = Zwi + Zws, (4.7)

where s1 and s are the reflections in the hyperplanes determined by

af =20 —wy, ay =-—w! +2wy, a3 =2w —wy, and ay=—wi+ 2ws, (4.8)
with (WY, o) = 05, and (w;, o) = d;;. In this case,
0 =af + a3, and ¢ = + as. (4.9)

The double affine braid group B is generated by Ty, 11,75, g, X“, X“2 and ¢*/3, with rela-
tions

TT;T; = T;1;T;, for i # j,
XHEXA = XHTA = XAXH, for u, A € b5,
Ty X9 = X9y, ThX = XT,, TXOT) =X wrte ThX@T, = Xwi—w2 (4.10)
=1, gX =g AXTeteg gXer = PPX Ty,
gTog™" =T, gTig™t =T, gThg™t =Ty.
The formula (2.27) gives
9= lele_lTQ_lv 92 = YMQVTQ_lTl_l7 TO = wiTl_lTZ_lTl_lv (411)

g" = XT)'Ty, () = X211y, (Ty) ™' = XY Ty TY. (4.12)

At this point, the following Proposition, which is the Type As case of Theorem 2.1, is easily
proved by direct computation.
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Proposition 4.2. (Duality). Let Y? = ¢~'. The double affine braid group B is generated by
Ty, TY, Ty, gV, Yr, Y¥ and ¢*/3, with relations

(Y)Y (T Y () () -y,
(1) 7'y =y (1Y) (1) Ty =yl (1)
(gV)B =1, g\/Yw}/ _ qfl/iSY*fu.)}/erQVgV7 g\/waQv _ qf2/3Y'7<.ulvgv7
I T =T, ¢ ()T =T and  ¢'TY(g)T =T

To give a concrete example of Theorem 3.4 let us compute the symmetric Macdonald poly-
nomial P, where p = a1 + as. Since

10 — XS18281 + t_1/2X8182 + t_1/2XS281 + t_2/2XSI + t—2/2X52 + t_3/2,
and XPm = s§ is the minimal length element of the coset X?W,
P,=10E, = 1o7)'1

—1/2
_ <X515251 +t—l/2XS152 +t—l/2X5281> (TO\/ + t/(]'_vt)> 1
1-Y %

—-1/2¢1 _ —ay
n (t—2/2X51 22 t_3/2> (1) + t—/2(1 t)lc AN
1—-Y %

— (Xslszslso + t_1/2X818250 + t—1/2X828180 + t—2/2XS180 + t_2/2X8280 + t—3/2X80) 1
t=12(1 1)
1-Y~
121 — )y
-y~

+ <X818281 +t—1/2Xs152 +t—1/2X5251>

1 (t—Q/QXsl 122y t_3/2>

Since Y™ 1 = Y¥?'~d1 = gyeites1 = ¢¢21,

P Xwop 4 t—1/2X5152pT2\/ + t—1/2X5251pT1V L
P < Ht22XSPTYTY + 722X 2P TV TY + 732 XPTY Ty Ty
t=12(1 — 1)
1 — qt?
n <t72/2T1v 2Ty 4 t’3/2) t12(1 = t)qt?
1—qt?
— (X’LUOP + X5152p + X3251P + XSIP + X52p + XP) 1

t=12(1 - t) ,
3/2 | 41/2 | 41/2 —1/2 | 4—1/2 | ,—3/2
+(t +t1/2 ¢ ) e 1+(t +t7V2 4t )

+ (DT T+ P Ty 4 P TY)

t=1/2(1 — t)qt?
1 — qt?

1—t
= (Xw0P+X51$QP+XS2S“’+X$1P + X520 + XP + (t—|—2—|—2qt—{—q)71 — qt2> 1.
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The set P(p) contains 12 alcove walks,

and

The Hall-Littlewood polynomial and the Weyl character are

P,(0,t) =m,+ (2+1t)(1 —1) and sp = P,(0,0) =m, +2,

where mj, = XW0P 4 X515 4 X$2910 4 X510 4 X520 1 X,
The expression X*1%2P gy = sys3sy is a reduced word for the minimal length element in the
coset X*1%2PTVy and Theorem 2.2 is illustrated by

21—t 21—t
iy = <T1v + 020 ;QQ) ry = (TlvT; ey

= | TVTY + va R ) I e e L ) 7
142 1 1_ Yfag’ 2 1— st2a}/ 1— Yfag/ 1 _ Y*320‘1v 0

— Tl\/TQ\/TV + TVT\/ t71/2<1 — t) T\/7_V til/z(l — t) Vtil/2(1 — t) t71/2(1 — t)
0 170 1 — Y —soay 270 1 — Y —so0s2af 0 1 — Y—soas | _ y—sos2af

t=1/2(1 1) t=1/2(1 1)
_ VvV VvV Vv Vy—1

121 =)y~ ¢1/2(1 — ) Ty t12(1 —t)
1—y-o 1—y-say 2V 07 1 y-sesmaf

21—y Y2(1 —¢) -y V2=t Y2(1 - 1)
v ( 0 ) 1— Y—soozg 1— Y-SQSQO&Y

v
+ T2 1— Y—ozg 1 — Y —so0s2a
21— )y od 21— ) 121 —¢)

Vo

11—y 11—y %08 | —y o520

+ 1Y

where the eight terms in this expansion correspond to the eight alcove walks in B(1, sy sysy) =

B(s1s2p) pictured below. Applying the expansion of 7y/7y7y to 1 and using

Y—oa(\)/l _ Yﬂov_d]_ _ qt21, Y—soagl — Ya¥—d1 — qtl,
(4.13)

and y—sos2af 1 — y»'—2d1 — q2t21,
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computes

E _ Xs152pt1/2 + tt_1/2(1 — t) + Xslptt_l/Q(l — t) + t1/2t_1/2(1 B t)qt2 t_l/Q(l B t)
sLszp 1 — qt? 1—qt 1 — qt? 1—gqt
+_)(52ptt*1/2(1-—tj tl/gt‘J/Z(l —t)gt2t=2(1 —t)
1—q%t2 1 — qt? 1— ¢%t2
_%}(ptg/zt‘ﬂ/z(l — )tV (1 —t) V21—t V21— t) V21— t)
1—qt 1 — ¢2t2 1 — qt? 1—qt 1 — ¢2t2
— t1/2 X s152P + (1 - t) + X31P(1 B t) + (1 - t)q (1 - t) X 52P (1 _ t)
1—qt? 1—qt 1—qt? 1—gqt 1 — g?t2
1-—t 1-—t 1—-1%) (1—t 1—t)g(l—1t) (1—1¢
L0a (-0 (-0 (-0 (1-8a0-0 (1-9
1—qt? 1— qg2t2 1—qt1—¢%2 1—qt2 1—qt1—qg%t2

VAVAVAVIRRVAVAVAVIRRVAVAVAY

ANVANYA /N /N /N ANANYA
X8152pt1/2 751/2 (1 — t) Xslpt1/2 (1 — t)
1—qt? 1—qt

VAVAVAVIRRVAVAVAVIREVAVAVAY.

X—H—K ANANAN ANANA
1—t)(1—1 1-¢ L-tg -1
t3/2(1_q,5) (1 - q;q X 52P¢1/2 1(_ q2t)2 $3/2 (1 — q22q 1(_ q2t)2
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YK K

Xptl/Q(l —1) (1-¢) 3/2 (1-t)(1-1t)g (1-1)
1—qt 1— ¢t2 1—qt 1—qt? 1—q¢%t2
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5 Appendix: The bijection between W and alcoves in type SLj

The following pictures illustrate the bijection of (2.19) for type SLs. In this case, QV =
{1,9,(g")*} 2 Z/3Z, and ¥ x b} has 3 sheets. The alcoves are the triangles and the (centres
of) hexagons are the elements of b7.

h(y¥+d ba; b—a§/+2d b—a2v+4d

+b7w+4d

bftpv+3d

bfnpv+2d

+

%
%" .
a8
Ay,

he+d

btpv+2d

) “ A e +ad
j bapv+4d
+/)- /- +/)- + /- + /- + /- + /-
h—alv-i-d haY haY+2d balv+4d
Sheet 1
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ho
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