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Abstract

We define analogs of the Jucys-Murphy elements for the affine Temperley-Lieb algebra
and give their explicit expansion in terms of the basis of planar Brauer diagrams. These
Jucys-Murphy elements are a family of commuting elements in the affine Temperley-Lieb
algebra, and we compute their eigenvalues on the generic irreducible representations. We
show that they come from Jucys-Murphy elements in the affine Hecke algebra of type A,
which in turn come from the Casimir element of the quantum group Ujgl,,. We also give the
explicit specializations of these results to the finite Temperley-Lieb algebra.

1 Introduction

The “Jucys-Murphy elements” are a family of commuting elements in the group algebra of the
symmetric group. In characteristic 0, these elements have enough distinct eigenvalues to give a
full analysis of the representation theory of the symmetric group [OV]. Even in positive charac-
teristic these elements are powerful tools [K]. Similar elements are used in the Hecke algebras
of type A and, in a strong sense, it is these elements that control the beautiful connections
between the modular representation theory of Hecke algebras of type A and the Fock space
representations of the affine quantum group (see |Ax] and [Gr]).

Since the Temperley-Lieb algebra is a quotient of the Hecke algebra of type A it inherits
a commuting family of elements from the Hecke algebra. In order to use these elements for
modular representation theory it is important to have good control of the expansion in terms
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of the standard basis of planar Brauer diagrams. In this paper we study this question, in the
more general setting of the affine Temperley-Lieb algebras. Specifically, we analyze a convenient
choice of a commuting family of elements in the affine Temperley-Lieb algebra. Our main result,
Theorem is an explicit expansion of these elements in the standard basis. The fact that, in
the Templerley-Lieb algebra, these elements have integral coefficients is made explicit in Remark
2.9] The import of this result is that this commuting family can be used to attack questions in
modular representation theory.

In Section 3 we review the Schur-Weyl duality setup of Orellana and Ram |JOR] which (fol-
lowing the ideas in [Rel) explains how commuting families in centralizer algebras arise naturally
from Casimir elements. We explain, in detail, the cases that lead to commuting families in the
affine Hecke algebras of type A and the affine Temperley-Lieb algebra. One new consequence
of our analysis is an explanation of the “special” relation that is used in one of the Temperley-
Lieb algebras of Graham and Lehrer [GL]. In our context, this relation appears naturally from
the Schur-Weyl duality (see Proposition [3.2). Using the knowledge of eigenvalues of Casimir
elements we compute the eigenvalues of the commuting families in the affine Hecke algebra and
in the affine Temperley-Lieb algebra in the generic irreducible representations (analogues of the
Specht, or Weyl, modules).
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2 Affine braid groups, Hecke and Temperley-Lieb algebras

2.1 The Affine Braid Group l’;’k

The affine braid group is the group B of affine braids with & strands (braids with a flagpole).
The group By is presented by generators 11,75, ..., T_1 and X*!,

IR = == d2I0I e

, with relations
X XaT, =N XaT X

XT; = T,X°, for i > 1, (22)
LT, = T,T;, i i — | > 1, '
LT T = T TiTi 4, if1<i<k-2
For 1 < i < k define
(2
Ko = DTy DX DTy T = (1111 I I (2.3)
U R



By drawing pictures of the corresponding affine braids it is easy to check that

XX =X5X" forl<i,j<k, (2.4)
so that the elements X°!,..., X% are a commuting family for By. Thus X = (X% | 1<i<k)
is an abelian subgroup of Bj. The free abelian group generated by e1,. .., e is Z* and

X ={X*| A€ ZF} where X*=(X")M(X2) 2. (Xk) M (2.5)

for A= Xep + -+ A\peg in Zk.

Remark 2.1. An alternate presentation of By can be given using the generators Ty, Th, ..., Th_1

and T where
,I/'
~ \'

T= X_elel e T];_ll (ﬂj//zzﬁ and To=7"'Tyr =

Remark 2.2. The affine braid group By, is the affine braid group of type GLi. The affine braid
groups of type SLy and PGLy are the subgroup

. . B
Bg = (To, Th, - .., Tk—1) and the quotient Bp = ﬁ, respectively.
T
Then 7F = X—81 X2 ... X%k 4s q central element of l’;’k, tTir~ ! = i+1 (where the indices are
taken mod n), and TX% 7! = X%+1 and
Z(By) = (%),  Bp = () x By, Bp = (7) x Bg.

In Bj, we have (1) 2 Z, and T € Bp is defined to be the image of T under the homomorphism
Z — ZJKZ so that (T) = ZL/KZ.
2.2 The Temperley-Lieb algebra TLy(n)

A Temperley-Lieb diagram on k dots is a graph with k dots in the top row, k dots in the bottom
row, and k edges pairing the dots such that the graph is planar (without edge crossings). For

example, s s s s
VAR w3 ]

are Temperley-Lieb diagrams on 7 dots. The composition d;j o dy of two diagrams dy,dy € T}, is
the diagram obtained by placing d; above do and identifying the bottom vertices of d; with the
top dots of dy removing any connected components that live entirely in the middle row. If Ty
is the set of Temperley-Lieb diagrams on k dots then the Temperley-Lieb algebra TLi(n) is the
associative algebra with basis T},

TLy(n) = span{d € T} } with multiplication defined by didy = ne(dl ods),

where £ is the number of blocks removed from the middle row when constructing the composition
di o do and n is a fixed element of the base ring. For example, using the diagrams d; and ds

above, we have
Eg P
ity = LEEFRF Y -0 2 I %
« e )
f.\:\\. S
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The algebra TLy(n) is presented by generators

i it
QZIIIXIII 1<i<k-1, (2.6)
and relations ¢} = ne;, €i€it1€; = €, and  eej =eje;, ifli—j|>1  (2.7)

(see |GHJ, Lemma 2.8.4]).

Remark 2.3. In the definition of the Temperley-Lieb algebra, and for other algebras defined in
this paper, the base Ting could be any one of several useful rings (e.g. C, C(q), C[[h]], Z[q,q™ ']
Z[n] or localizations of these at special primes). The most useful approach is to view the results
of computations as valid over any ring R with n,q,h € R such that the formulas make sense.

)

2.3 The Surjection Hy(q) — TL(n)

The affine Hecke algebra Hj, is the quotient of the group algebra of the affine braid group CBy,
by the relations

T2 = (g — ¢ T} + 1, sothat  CBy — Hy, (2.8)

7

is a surjective homomorphism (¢ is a fixed element of the base ring). The affine Hecke algebra
Hj, is the affine Hecke algebra of type GLg. The affine Hecke algebras of types SLy and PGLy
are, respectively, the quotients Hy and Hp of the group algebras of Bg and Bp (see Remark

by the relations (12.8)). )
The Iwahori-Hecke algebra is the subalgebra Hj of Hj generated by Ti,...,Tk_1. In the

Iwahori-Hecke algebra Hy, define
e, =q—1T;, fori=1,2,...,k—1. (2.9)
Direct calculations show that 612 =(¢+ q_l)ei and that ejese; = e and egejes = eg if and only
if
@ — T — P+ qTi T + ¢ T — TV TTh = 0. (2.10)
Thus, setting n = [2] = ¢ + ¢!, there are surjective algebra homomorphisms given by
Y: Hilg) — Hila) — TLg(n)
X — 1 — 1 (2.11)

T; — T; —  q—e.

The kernel of 1 is generated by the element on the left hand side of equation (2.10). In the
notation of Theorem the representations of Hy correspond to the case when p = (). Writing

H ,? M as H ,g‘, the element from ([2.10)) acts as 0 on the irreducible Iwahori-Hecke algebra modules
ﬁ?";‘“’ and f[gj , and (up to a scalar multiple) it is a projection onto ﬁ?ﬁ)

Remark 2.4. There is an alternative surjective homomorphism that instead sends Ty — e;—q L.
This alternative surjection has kernel generated by

T+ T+ q T+ ¢ "y + ¢ T Ty + Ty T

This element is 0 on ﬁg and ﬁgj, and (up to a scalar multiple) it is a projection onto I:I?’



Remark 2.5. A priori, there are two different kinds of integrality for the Temperley-Lieb algebra:
coefficients in Z[n] or coefficients in Z[q,q '] (in terms of the basis of Temperley-Lieb diagrams).
The relation between these is as follows. If

1 1
2l=q+q ' =n  then q=§(n+\/E), ¢ ==V -4,

since ¢> —ng+1=0. Then

P (k+1)/2
q° —q 1 k k—2m+1, 2 m—1
[k] = q—q1 ~ gk—1 Z <2m _ 1>n Hn® —4)

so that [k] is a polynomial in n. The polynomials

k_ o~k
and [k = T=Lp,

q—4q
all form bases of the ring C[(q + q~1)]. The transition matriz B between the [k] and the {k}
is triangular (with 1s on the diagonal) and the transition matriz C between the n* and the {k}
is also triangular (the non zero entries are binomial coefficients). Hence, the transition matriz
BO~! between [k] and n* has integer entries and so [k] is, in fact, a polynomial in n with integer
coefficients.

nf=(qg+q " and {k}=¢"+4¢7"

2.4 Affine Temperley-Lieb algebras
The affine Temperley-Lieb algebra T is the diagram algebra generated by

oG = [1IR Husienn w2zt

The generators of T} satisfy e? = ne;, €jej116€; = €, Te;T L = ei+1 (where the indices are taken

mod k) and
'// FﬁJ =e1eg € (2.12)

(see |GLL 4.15(iv)]). In T,?, we let X =TTy T 771 (see Remark -i
Graham and Lehrer |[GL §4.3] define four shghtly different affine Temperley-Lieb algebras,
the diagram algebra T} and the algebras defined as follows:

Type GLy: ﬁz is H; with the relation (2.10)),
Type SL: TL{, is Howith the relation (2.10)),
Type PGLy: TLZ is Hp with the relation (2.10).
For each invertible element « in the base ring there is a surjective homomorphism
H, — ﬁz — I¥
T — T — oT (2.13)

i — q—¢ +— q—¢

and every irreducible representation of ﬁz factors through one of these homomorphisms (see
IGLL Prop. 4.14(v)]). In Proposition [3.2 we shall see that these homomorphisms arise naturally
in the Schur-Weyl duality setting.



2.5 A commuting family in the affine Temperley-Lieb algebra

View the elements X % in the affine Temperley-Lieb algebra ﬁz via the surjective algebra
homomorphism of (2.13]). Define

(g—qg ")mi=¢ X and (¢—q )m;=¢ (X —q 2X ), (2.14)

for i = 2,3,...,k. Since X %X % = X% X% for all 1 < 4,57 < k, and the m,; are linear
combinations of the X ~¢i,

m;m; = m;m; in ﬁz, forall 1 <14,j <k.

Proposition 2.6. For1 <i <k,

(@) X5 =g D(g—g ) (mi+qg 'mi1+q 2 mig+ -+ ¢ my),

(b) X 4o+ X5 = (g — g ) (my + [2mi1 + -+ [iJma).
Proof. Rewrite as

X~ =q (g — ¢ ymy + g2 X T

and use induction,

X =g g—qgmi+q (¢ T g — g mics + g s+ + T Pmy)),

to obtain the formula for X% in (a). Summing the formula in (a) over ¢ gives

i i j—2 i j-1
Zsz-:j — Z (q(gz) (g—qh qumjé> =q (g — g Z Zq“”’@mj,g
Jj=1 j=1 =0 j=1 ¢=0
and, thus, formula (c) follows from
i -1 i3 i . i
YD) DISEINES 3 W ERELIRD 2 WA y eI
j=1 =0 j=1r=1 r=1 j=r r=1
]
The following Lemma is a transfer of the recursion X% = T; 1 X®-1T; 1 to the m;. The
following are the base cases of Lemma
g x
my = 71X*51 and mg = ——— €1 — (egmy1 +myeq)

Ca—q q-q
Lemma 2.7. Let x be the constant defined by the equation e; X ley = xey. For2 <1 <k,
j—2

€1 — (ei,lml;l + mz;lei,l) - ([Z - E] - [Z -0 — 2])mg€i,1.

@
|
o
-
|

)
X



Proof. From (2.3)) and (2.9) we have X 5 = (¢7! — e;_1) X 5i-1(¢g~! — e;_1). Substituting this
into the definition of m; gives
(—g¢ mi=q (X5 =g 2X o) = ¢ (¢ —ei) X T (g — i) — g X
= ¢ e X T e — ¢ e X T 4 X T e ).

Use Proposition (a) to substitute for X -1

(¢—a Hmi = (a— ¢ g ™D e imireim1 — ¢ 3 (eim1mi—1 + mi_1ei1))
+@—a e T g M+ ¢ Ty (¢ e — 20" Pein)
=(q— q_l)(qei—lmi—lei—l — (ei—1mi—1 + mi_1€-1))
+(@—g Hmica+-+¢ TImi)(g+ g - 20 e
—(g—q Y ( Gei1Mi-1€io1 =~ (eim1mi—1 + ﬂl_z‘—iei—l) > 7
+g—q Hmicg+ -+ ¢ Imy)e;

which gives

m; = qei—1mi_1€i—1 — (e;_1mi—1 +mi_1€;1) ' (2.15)
Ha— g ) mica +q ' miss + ¢ 2mia + -+ ¢ my e '
Using induction, substitute for the first m;_; in this equation to get
i—2
mi = —(eimi1 +mirei1) +(q—q )¢ T Imge;
=1
¢ 3z i—3
+ q 7_161‘_1 — 2mi_26i_1 — Z([Z _—— 1] — [Z —{ — 3])77%61‘_1
-4 =1
i—2 i—2
qg T . .
= ——ei-1— (ei—1mi—1 +mi—re;-1) — Y ([i — €] —[i — £ —2])mye; 1.
q—4q —2
O

2.6 Diagram Representation of Murphy Elements

Label the vertices from left to right in the top row of a diagram d € T}, with 1,2, ..., k, and label
the corresponding vertices in the bottom row with 1/,2',... k. The cycle type of a diagram d €
Ty is the set partition 7(d) of {1,2,...,k} obtained from d by setting 1 =1,2=2',... k =k
If 7(d) is a set partition of the form {{1,2,...,vi}, {1+ L1 +2,....m +v+2}....{n +
o411+ 1,...,k}}, where (y1,...,7¢) is a composition of k, then we simplify notation by
writing 7(d) = (y1,...,7). For example

d—y \U = has 7(d) = (5,3,4).
e e ¢ o o o o e ¢

NS
for example d = oo
has cycle type {{1,4},{2,3}}) but all of the diagrams needed here have cycle types that are

compositions.

There are diagrams whose cycle type cannot be written as a composition (



If v = (7,-..,7) is a composition of k define
> d (2.16)
T(d)=y

as the sum of the Temperley-Lieb diagrams on k dots with cycle type 7. Define d7 be the sum
of diagrams obtained from the summands of d, by wrapping the first edge in each row around
the pole, with the orientation coming from X ~°! as shown in the examples below. When the
first edge in the top row connects to the first vertex in. the bottom row only one new diagram is

produced, otherwise there are two. For example, in TL4,
m= S0 20w N e et
| | R

|| eses « _ ||eses o
d22 o }““ d22 B %.. + %{“

View d, and d as elements of ﬁz by setting

—
—

dy = dyr—i, if 7y is a composition of ¢ with ¢ < k.

With this notation, expanding the first few m; in terms of diagrams gives

(g—q Ymi=q'd}, (¢g—q mg=uady—q 'ds,
(¢ — ¢ Yyms = qudi o — q 1 2)d} 5 — wd3 + ¢~ d},
(¢—g¢ )ma = ¢Pxdyzy — g7 ([3] = [1)d}a 5 — 2[2]d22 + ¢ '[2]d5 5
—qrdi3+q ~Y2]d; 3tadi—q ~Ld,
(¢ — q_l)m5 = q31‘d13,2 —q 1([ | = [2])dy 132 4 95d12,3 + q_l([?’] —[1]) >1k2,3
[

+ qudig — q ' [2)d} 4 — qr[2din + ¢ 21Pd] 5 + qx[2]das — ¢ [2]d5 5
— (8] = [)da12 + (18] = [1)d3 1 0 + x[2)ds 2 — ¢~ [2)d5 o — wds + ¢ d3,
where, as in Lemma x is the constant defined by the equation e; X ~*le; = ze;.

Theorem 2.8. Let x be the constant defined by the equation e; X ey = xey. Then (¢ —
g Ymy = q'di, (g— ¢ )mo = xdy — ¢~ 'd} and, fori > 2,

mi= Y (mi)ydy + (mi)ids,

compositions y
where the sum is over all compositions v = 1%1r11%2po - - 1%y, of i with ry > 1, and
by
_ _ q-T
(mi)y = (‘DM ) 1ﬁ H ([bj +2] - [bj}% and
1-4 b;>0,5>1
-1
* - q
(ma)y = (=)0 ——— (b + 1] == 1)) [T (15 +2 = b)),
14 b;>0,5>1

with £(y) =0+ by + -+ + by.



Proof. From our computations above, m; = Ad] and mg = Bdy — Ad;, where

-1
A=1 — and B=_"
q—4q

Let m; = Adj. For i > 2 the recursion in Lemma [2.7] gives

i—2
mi =q' ?Bei_1 — (eicimi—1 +mi_tei1) — > ([i — €] = [i — £ — 2])mge;
=1
=" ?Bdyi—2p — ([i = 1] = [i = 3)) Ad}i 2 5 — ((Mi1)yrrdyy pyr + (mi1)3rdiq)

)

2
50 (i = i = €= 20) () dyrisag + (1) piat).

=2
So if d has cycle type v = 1%1r11%2r - - - 1%r, with r, > 0, then

(a) Each part of size 7 (r > 1) contributes (—1)"~! to the coefficient. Thus, there is a total
contribution of (—1)"1=) from these parts.

(b) Each inner 1% (b > 0) contributes a factor of [b+ 2] — [b] to the coefficient.
(¢) The first 1° (b > 0) contributes a —¢’B in a nonstarred class,

(¢') The first 1° (b = 0) contributes a —B in a nonstarred class, which is the same as case (c)
with b = 0.

(d) The first 1° (b > 0) contributes a ([b+ 1] — [0 — 1])A4 in a starred class.

(d') The first 1° (b = 0) contributes an A in a starred class, which is the same as case (d) with
b =0 assuming [—-1] = 0.

O

Remark 2.9. To viewmy,...,my in the (nonaffine) Temperley-Lieb algebra TLy(n) (via (2.11]))
let X=°t =1 sothatx =q+q . Ifby > 1 then dy =dy and if by = 0 then d3, = 2d,. In both
cases the coefficients in Theorem [2.8 specialize to

(ma)y + (ma)y = ()P 1) TT ([ +2] - y))

b;>0,j>1
and
mi = ((ma)y + (ma)%) dy,
S
where the sum is over compositions v = 1°1r1%2ry .- 1%5, of i with vy > 1. The first few
examples are
g g’
my = — = —di, my = ez = da, mg3 = [2]d12 — ds,
q—dq qa—4q

myg = [3|dy2 9 — [2]d22 — [2]d1,3 + dy,
ms = [4]d1372 — [3]d1273 + [2]d174 — [2]2(11,2,2 + [2]d273 —([3] - [1])d2,1,2 + [2]d372 —ds.



3 Schur functors

3.1 R-matrices and quantum Casimir Elements

Let Upg be the Drinfeld-Jimbo quantum group corresponding to a finite dimensional complex
semisimple Lie algebra g. We shall use the notations and conventions for Uxg as in [LR] and
[OR]. There is an invertible element R = ) a; ® b; in (a suitable completion of) Uy g® Upg such
that, for two Upg modules M and N, the map

5 M® N

Ryn: M®N — N®M \<:
. . 'd

men —— me@azm NoM

is a Upg module isomorphism. In order to be consistent with the graphical calculus these
operators should be written on the right. The element R satisfies “quasitriangularity relations”
(see [LR} (2.1-2.3)]) which imply that, for Upg modules M, N, P and a Up,g module isomorphism
T™v: M — M,

M®N M®N
A - J
f }M PN
N®M N&M
Run(idy @ 7ar) = (tmr @ idn) R,
Mo (NP M®N®P MeN) o p M®N®P
R e
& f S | j
(N®P) @ M PRI P®(M®N) 'Y
NoPeoM PeM®N
Rynep = (Ryny ®@idp)(idy @ Rasp) Ruren.p = (idy ® Byp)(Barp @ idy),

which, together, imply the braid relation

o
'Y \.\ ( '
PROINM PRNRM
(Ryn ®@idp)(idy @ Rarp)(Ryp ®@idyr) = (idy @ Ryp)(Ryrp @ idy) (idp @ Rasy).
Let p be such that (p, ;) = 1 for all simple roots ;. As explained in [LR) (2.14)] and [Dr],

there is a quantum Casimir element e~ v in the center of Uy,g and, for a U,g module M we
define a Upg module isomorphism

M

Cy: M — ,,;M I Ot
m — (e "Pu)m
M
and the elements C)s satisfy
CM@N = (RMNRNM)_l(CM () CN), and Cy = _<’\’>‘+2p>idM (3.1)

10



if M is a Upg module generated by a highest weight vector vt of weight A (see [LR, Prop.
2.14] or [D1l, Prop. 3.2]). Note that (A\,A+2p) = (A + p, A+ p) — (p, p) are the eigenvalues of
the classical Casimir operator [Dxl, 7.8.5]. From the relation it follows that if M = L(u),
N = L(v) are finite dimensional irreducible Uyg modules then Ry;nRyas acts on the A isotypic
component L(A)@CW of the decomposition

@ L(A Y by the constant gMIAT2P) = (popit 20) = (vv+2p) (3.2)

3.2 The B, module M @ V®*

Let Upg be a quantum group and let M and V be U-modules such that the operators Ry,
Ry and Ry are well defined. Define R;, 1 <i <k — 1, and Ro in Endy (M @ VEF) by

(k—i—1)

RZ’ = idM & idg(iil) & RVV & id% and R% = (RMVRVM) & id%—(kil).

U
RiRi 11 R; = Q| \j— Rit1RiRit
/

Sl &d LY
R2R B2R, % % % t/ — RR2R R,
MR g

imply that there is a well defined map

Then the braid relations

and

®: B, — Endy(M @ V)
T, +— R;, 1<i<k-—1, (3.3)
X Rg,

which makes M ® V®* into a right B, module. By (3.1) and the fact that

/%’w.ll

the eigenvalues of (X)) are related to the eigenvalues of the Casimir. The Schur functors are

the functors .
F): {U-modules} — {Bg-modules}

M — Homy(M(\), M & V&) (35)

where Homy (M (M), M ® V&%) is the vector space of highest weight vectors of weight A in
M ® V&,

11



3.3 The quantum group Ugl,

Although the Lie algebra gl,, is reductive, not semisimple, all of the general setup of Sections
3.1 and 3.2 can be applied without change. The simple roots are a; = €; — €441, 1 <i <n—1,
and

p=Mm—1)e1+(n—2)eg+ - +ep_1. (3.6)

The dominant integral weights of gl,, are
A= AEr+ -+ Apen, where A > X >--->X,, and Aq,...,\, €Z.

and these index the simple finite dimensional Uy gl,,-modules L(\). A partition with < n rows is a
dominant integral weight with A\, > 0. If A,, < 0 and A denotes the 1-dimensional “determinant”
representation of Upgl,, then (see [FH, §15.5])

L) 2 AM QLA+ (=An, .., =) with A+ (=An, ..., —\,) a partition. (3.7)

Identify each partition A\ with the configuration of boxes which has A; boxes in row 4. For
example,

]
[]
A= = be1 + beg 4+ 3e3 + 34 + €5 + 6. (3.8)

If u and X\ are partitions with g C A (as collections of boxes) then the skew shape \/u is the
collection of boxes of A\ that are not in p. For example, if A is as in (3.8) and

]
[]
u:@ then A p= )

H

If b is a box in position (7, 7) of A the content of b is

¢(b) = j — i = the diagonal number of b, so that —2|71 0 (3.9)
—3]-2[-1
—4
—s|

are the contents of the boxes for the partition in (3.8]).
If v is a partition and

V=LO) then L) aV=_ LW, (3.10)

Aevt

where the sum is over all partitions A with < n rows that are obtained by adding a box to v
[Mac, I App. A (8.4) and I (5.16)], Hence, the Upgl,,-module decompositions of

RV = @L N Y k€ Zs, (3.11)

12



are encoded by the graph H/F with
vertices on level k:  {skew shapes \/u with k boxes}

edges: A/ — v/, if v is obtained from A by adding a box
labels on edges: content of the added box.

For example if = (3,3,3,2) = D, then the first 4 rows of H/# are

[

VRN
Q[

F PO QQQ

(3.12)

Tﬁmmwmpggggggg

The following result is well known (see [Ji] or [LR] (4.4)]).

Proposition 3.1. If U = Upgl,, and V = L(e1) = L(o) is the n-dimensional “standard”

repre-

sentation of gl,, then the map ® of (3.3) factors through the surjective homomorphism (2.8) to

give a representation of the affine Hecke algebra.

For a skew shape A\/u with k boxes identify paths from g to A/p in H/® with standard
tableauzx of shape A/p by filling the boxes, successively, with 1,2,...,k as they appear. In the

example graph H/F above

2[3

13

r
corresponds to the path |__‘_| — Dﬁ — Dﬂ N g



3.4 The quantum group Ugl,

I]Aa the case when n = 2, U = Upgl, and the partitions which appear in (3.11)) and in the graph
H/® all have < 2 rows. For example if 1 = (42) =[ [ then the first few rows of H/* are

>
I
o

-~ ﬂ

k=1 [ &
4 9]
k=2: [d [P 0
4 ) 6
k=3 [ [
) 6 7
3 2 1
k=4: [oH Cf? o0 o (3.14)

and this is the graph which describes the decompositions in (3.11)).

Proposition 3.2. If U = Uygly, M = L(u) where p is a partition of m with < 2 rows,
and V' = L(e1) = L(n) is the 2-dimensional “standard” representation of gly then the map ®

of (3.3) factors through the surjective homomorphism of ([2.13) with a® = —¢*™ 1 to give a
representation of the affine Temperley-Lieb algebra T} .

Proof. The proof that the kernel of ® contains the element (2.12]) is exactly as in the proof of
[OR], Thm. 6.1(c)]: The element e; in T§ acts on V®?2 as (¢ + ¢~!) - pr where pr is the unique

Upg-invariant projection onto L(B) in V®2. Using e;T1 = —¢ 'e; and the pictorial equalities
5
U
- J}

it follows that ®o(e; X1 T1.X!) acts as —(q—i—q_1 RL(B) (u)RL(u) L@ (idp(uy ®pr). By (3.1),
this is equal to

(CL(M) ®C (B))C Lo )®L(E])(I)2(idL(“) ® e1)

= =g g T BRSO ey ®2(idiy @ ).

and the coefficient —g— g krt20) g—(e1tezerteat2p) ol

L(pter+es) simplifies to

_qflq*<u,u+2p>q*<€1+52,61+€2+2P>q<#+€1+€2,u+€1+€2+2p> — _q71q2(m+u2) — _2m-1

where m = py + po = |ul. O

14



3.5 The quantum group Usly

The restriction of an irreducible representation L(A) of Upgl, to Upsl, is irreducible and all
irreducible representations of Upsl,, are obtained in this fashion. Since the “determinant” repre-
sentation is trivial as an Uysl,, module it follows from that the irreducible representations
Lg,, (M) of Upsl, are indexed by partitions A = (A1,..., A,) with A\, = 0. Hence, the graph which
describes the Upsla-module decompositions of

=\
)@ VEF = @L Yo T, k€ Zso (3.15)
is exactly the same as the graph for Upgl, except with all columns of length 2 removed from the

partitions. More precisely, the decompositions are encoded by the graph T/ with
vertices on level k:  {puy —po+k,pn —pe+k—2,. ., 01 — p2 — k} NZ>o

edges: {— 0£1. (3.16)
For example if m = 7 and p1 — po = 3 then the first few rows of T/# are
k=0: O
k=1 O 11
k=2 1] (| 11
k=3 O o 1117
k=4: 0 m EEEE] 111 (3.17)

Paths in (3.17]) correspond to paths in (3.14]) which correspond to standard tableaux T' of shape
A p.

4 Eigenvalues

4.1 Eigenvalues of the X% in the affine Hecke algebra

Recall, from ([2.8)), that the affine Hecke algebra Hj, is the quotient of the group algebra of the
affine braid group CBy, by the relations

T} =(q—q Ti+1. (4.1)

As observed in Proposition [3.2 the map ® in ([3.3) makes the module L(x) ® V®* in (3.11]) into
an Hj, module. Thus the vector spaces H ,;\ /M in (3.11)) are the Hj-modules given by

ﬁ;‘/“ = F)(L(n)), where F{} are the Schur functors of (3.5).

The following theorem is well known (see, for example, [Ch]).

15



Theorem 4.1. (a) The X% 1 <1i <k, mutually commute in the affine Hecke algebra Hy,.

(b) The eigenvalues of X% are given by the graph H/M of (3.13) in the sense that if

H - = {skew shapes \/p with k bozes} and
H/\/“ {standard tableaux T of shape \/u}

for A€ ﬁ,é“, then

ﬁ,ﬁ“ is an index set for the simple lEIk modules ﬁ,;\/“ appearing in L(p) ® Vek
and
I:I]j/“ has a basis {vp | T € .FAI,?/“} with Xevp = 2Ty,
where ¢(T'(i)) is the content of box i of T.

(¢c) k=X X% is a central element of Hy, and

K acts on H A by the constant q2 2ver/u ()

Proof. (a) is a restatement of (2.4). (b) Since the Hj, action and the Upgl, action commute
on L(p) ® V®k it follows that the decomposition in (3.11)) is a decomposition as (Ugl,,, Hy)

bimodules, where the H ,i‘/ # are some Hy-modules. Comparing the L()\) components on each
side of

DL e m " =L eV =Lp e Vet ey = @L ® H/" oV

=D D rwoerli=@(rme( @ a)

A Av=0 A Av=0

gives
N -
a= @ a, (4.2)
A/v=0

for any ¢ € Z>( and skew shape \/u with ¢ boxes. Iterate (4.2)) (with ¢ = k,k—1,...) to produce
a decomposition
)‘/:U‘ @ Hl )
Ted)"

where the summands H I are 1-dimensional vector spaces. This determines a basis (unique up
to multiplication of the basis vectors by constants) {vr | T € H 2 /n } of ﬁé‘/ ¥ which respects the
decompositions in . for 1< E < k:

Combining (3.1] , and gives that X% acts on the L(\) component of the decom-
position - by the constant

q<)\,)\+2p> —(vv+2p)—(e1,61+2p) _ QQC(A/V)
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since if A = v + €5, so that A is the same as v except with an additional box in row j, then
v C A\ A/v=0and
(M A+2p) = (v,v +2p) — (e1,€1 + 2p)

=(v+ej,vtei+2p)— (v,v+2p) — (1+2(n—1))

=2+ (gj,6j+2p) —2n+1=20;+ (1 +2(n—j)) —2n+1

=2(v; +1) —2j =2c(\/v).
Hence, ‘

Xivp = 2Ty, for 1 <i <k,

where T'(7) is the box containing ¢ in 7.

The remainder of the proof, including the simplicity of the Hj-modules H 2 /n , is accomplished
as in [R, Thm. 4.1].

(¢) The element X' - - Xk is central in B, (it is a full twist) and hence its image is central in
Hj,. The constant describing its action on H l;\ /M follows from the formula X Sipp = 2T Dyp. O

4.2 Eigenvalues of the m; in T}

Let my1, ma, ..., my be the commuting family in the affine Temperley-Lieb algebra as defined in
(2.14)). We will use the results of Theorem to determine the eigenvalues of the m; in the
(generically) irreducible representations.

Theorem 4.2. (a) The elements m;, 1 < i < k, mutually commute in T} .

(b) The eigenvalues of the elements m; are given by the graph T/k of (3.17) in the sense that
if the set of vertices on level k is

T = (i — o+ by — o+ k=2, .., — o — k} N Zso, and
T = {paths p = (= p© — p® — - = p® = \/p) to M in T/},

for N € Tk{“ then

T,ﬁ“ is an index set for the simple Ty modules Tl;\/“ appearing in L(u) ® Vok,
and
T];\/“ has a basis {vp|p€Tk)‘/”}

with ' . ' '
i[p(lfl) +1vp, if pli=D) £ 1 = pli=2) — p()
mivp = .
0, otherwise.

where p@) is the partition (a single part in this case) on level i of the path p.

(¢c) Kk = my + [2lmp_1 + -+ + [k]my is a central element of T and K acts on T,;\/“ by the
constant

—(p1tp2)=(p1—p2)+1
g : 4B (N = Mg+ 2]+ A — Ag 4] o+ [ — oo+ ).

[£]

q9—q
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Proof. (a) The elements X commute with one another in the affine Hecke algebra (see
and the m; are by definition linear combinations of the X (see [2.14]), so they commute.

(b) Let p be a path to A\/u in T* and let T be the corresponding standard tableau on 2 rows.
If p@) = p(=D — 1 = p(=2) — 2 or If pV) = (=1 41 = p(i=2) 42 then ¢(T(i — 1)) = ¢(T(i)) — 1
and, from and Theorem [£.1|(b),

~2e(T(i)) _ g=24-20(T(~1)) o0 _ g 2g2eT@)+2
1 vr =4 1
q—4q q—4q

—2¢(T(#))
24 vp = 0.

Z’,
m;ur = (q

If p() = p(i=2) = p(i=1) _ 1 with 70~ = (a,b) then ¢(T(i)) = a and ¢(T(i — 1)) = b — 2 and
Lq 20— gm2g2bt (gt (g=(o=br1) _ gla—b+1))

1 vur =4¢q 1 = *q_m[a —b + ]-]UTa
q—4q q—dq

17—
m;vr = (¢

where m = |u| = a+b—i+1. If p) = p(=2) = p=1) 1 with 70~V = (a,b) then ¢(T(i — 1)) =
a—1and ¢(T(i)) =b—1 and

) —2b+2 _ -2, —2a+2 o (at+b+1) ((a—b+1) _ —(a—b+1)
mivr = ¢24 d ,1q or = g'2 (a — d ) =q "a—b+1vr,
q—q q—q
where m = |p| =a+b—7+ 1.
(c) Let k = |A/u|. The identity
Ao—1
12N 20 = LN X =20 (g — g7 |+ Rl

beN/ 1 1=p2

is best visible in an example: With A\ = (10,6) and p = (4,2),

1 +0 40 +¢% +¢* +¢ % +¢78
0 40 +0  +0  +¢° +¢* +¢® +¢" +¢? +¢*
_< 0 +0 +0 +0 +0 +0 +0 +0 +0 +0)
+0 +0 (¢%—q¢ ") +(@-a") +@®-¢®) +(-a°)
0 40 +0 40 ¢ * +¢? +¢" +¢* +¢* +¢°
+0 +0 +¢7' ¢ 4+¢® +¢°

6-1
_ (Z 162 q—(16—2z)> 4 [10]g 2,
=2
Then Proposition [2.6] says

X4 X% = 52— 7Y (my, + [2]mp_1 + - - - + [K]ma),

18



and so my, + [2]my_1 + - - - + [k]m acts on T,;\/” by the constant

(q_q—l)—lqk—Q Z q—2c(b) _ (q o q—l)—lq—(u1+u2)q)\1+)\2—2 Z q—ZC(b)

beA/ beEN/ 1
A2—1
= (g—q¢ ") g ) | Rl 4 Y T A+ A — 2] (g — g7 )
T=U2

—m—p(® 41 A2—1
d + 3 g m+ k- 2i]

1
q—q =
qufp(0)+1
=W P D+ PO A O 4 k-2 O 4 kD),

since pu + po = m, i1 — p2 = plO, M + X =m +k and A — Ao = p®).
O
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